Implicative AT-ideals of AT-Algebra

Dr. Ahmed Hamzah¹ and Dr. Areej Tawfeeq Hameed²

¹ College of Islamic Sciences, AL Iraqia University, Baghdad, Iraq. ahmedh.abed@uokufa.edu.iq

² Department of Mathematics, Faculty of Education for Girls, University of Kufa, Najaf, Iraq. E-mail: areej.tawfeeq@uokufa.edu.iq, areej238@gmail.com

Abstract— We consider the of implicative, positive implicative and commutative on AT — algebras, and investigate some related properties. We give conditions implicative AT — ideal, positive implicative AT — ideal and commutative AT — ideal on AT — algebras .

Keywords— AT - algebras, implicative, implicative, commutative, implicative AT - ideal, positive implicative AT - ideal, commutative AT - ideal.

1- Introduction

notion of a BCI – algebra which *Iseki* [4] *introduced the* is generalization of BCK - algebra. in BCK - algebrasThe notions of ideals and positive implicative (implicative) ideals in BCK - algebraswere introduced and investigated some related properties. Mostafa and et al [5-7] introduced the notion of KUideals of KU-algebras and then they investigated several basic properties which are related to KU-ideals. The idea of sub implicative ideal was introduced, they established the concepts sub - implicative idealscommutative ideals in KU - algebras andinvestigated some of their properties. The goal of this paper is to introduce the notions of implicative, positive implicative, commutative AT – ideals on AT – algebras and investigate some their related properties.

2- PRELIMINARIES

c) $z * x \le z * y$ implies that $x \le y$ (left cancellation law).

d) $x * y \le z imply z * y \le x$.

Now, we will recall some known concepts related to AT-algebra from the literature which will be helpful in further study of this article.

```
AT - algebra is a nonempty set X with a constant (0) and a binary operation (
DEF. 2.1[1-3]. An
) satisfying the following axioms: for all x, y, z \in X,
(i) (x * y)*((y * z) * (x * z)) = 0,
(ii) 0 * x = x,
       x * 0 = 0.
 In X we can define a binary relation (\leq) by : x \leq y if and only if y * x = 0.
 In AT-algebra (X; *, 0), the following properties are satisfied: for all ^{x, y, z \in X},
(i') (y*z)*(x*z) \le (x*y),
(ii') 0 \le x...
PROP. 2.2 [3]. In any AT-algebra (X; *, 0), the following properties holds: for all x, y, z \in X;
   a) x * x = 0,
   b) z * (x * z) = 0,
   c) y * ((y * z) * z) = 0,
   d) x * y = 0 implies that x * 0 = y * 0,
   e) x = 0 * (0 * x),
   f) 0 * x = 0 * y implies that x = y.
PROP. 2.3[1-3]. In any AT-algebra (X; *, 0), the following properties holds: for all x, y, z \in X;
   a) x \le y implies that y * z \le x * z,
   b) x \le y implies that z * x \le z * y,
```

Vol. 6 Issue 10, October - 2022, Pages: 12-18

DEF. 2.4 [1-3]. A nonempty subset S of an AT-algebra (X; *, 0) is called **an AT-subalgebra of AT-algebra X** if $x * y \in S$, whenever $x, y \in S$.

DEF. 2.5 [3]. A nonempty subset I of an AT-algebra (X; *, 0) is called **an ideal of AT-algebra** X if it satisfies the following conditions: for all $x, y, z \in X$;

1) $0 \in I$;

2) $x * y \in I$ and $x \in I \implies y \in I$.

DEF. 2.6 [2-4]. A nonempty subset I of an AT-algebra (X;*,0) is called **an AT-ideal of AT-algebra** X if it satisfies the following conditions: for all $x, y, z \in X$;

 AT_1) $0 \in I$;

 AT_2) $x * (y * z) \in I$ and $y \in I \implies x * z \in I$.

3. Commutative, positive implicative and implicative ideals of AT – algebras

In this section, we discuss the notions of sub – implicative, positive implicative, sub commutative AT – ideals of AT –algebra and we give some characterizations of these concepts.

DEF. 3.1. an AT - algebra(X; *, 0) is said to be **positive implicative**, if it satisfies:

$$(z * x) * (z * y) = z * (x * y)$$
, for all, $y, z \in X$.

TH.3.2. Let (X; *,0) be an AT-algebra. X is positive implicative if and only if

$$y * x = y * (y * x).$$

PR.: Clear.

DEF. 3.3. an AT-algebra (X; *, 0) is said to be **implicative**, if it satisfies: x = (x * y) * x, for all $x, y \in X$.

DEF. 3.4. An AT-algebra (X; *, 0) is said to be **commutative** if it satisfies: $\forall x, y \in X$, (y * x) * x = (x * y) * y.

TH.3.5. For an AT-algebra (X; *,0), the following are equivalent: $\forall x, y \in X$

(a) X is commutative,

(b)
$$(y * x) * x \le (x * y) * y$$
,

(c)
$$((x * y) * y) * ((y * x) * x) = 0$$
.

PR.:

(a) \Leftrightarrow (b) Suppose that X is commutative, then $(y * x) * x = ((x * y) * y) * x) * x \le (x * y) * y$ that is (b) holds.

Conversely, the inequality $(y * x) \le ((x * y) * y) * x)$ holding. Next by (b)

$$((x * y) * y) * x \le ((y * x) * x) * x = y * x$$
. Hence $y * x = ((x * y) * y) * x$ n and X is commutative.

(b)
$$\Leftrightarrow$$
 (c) Since $(y * x) * x \le (x * y) * y \Leftrightarrow ((x * y) * y) * ((y * x) * x) = 0$.

DEF. 3.6. An AT-algebra (X; *,0) is said to be **n-fold implicative** if it satisfies

 $x = (x^n * y) * x, \forall x, y \in X, and n \in Z^+.$

DEF. 3.7. An AT-algebra (X; *,0) is said to be **n-fold positive implicative** if it satisfies

$$x^n * y = x^{n+1} * y, \forall x, y \in X, and n \in Z^+.$$

DEF. 3.8. An AT-algebra (X; *,0) is said to be **n-fold commutative** if it satisfies

$$y * x = ((x^n * y) * y) * x, \forall x, y \in X, and n \in Z^+.$$

EX. 3.9. Let $X = \{0, a, b, c, d\}$ in which the operation * is given by:

*	0	a	b	С	d
0	0	a	b	С	d
a	0	0	a	a	b

Vol. 6 Issue 10, October - 2022, Pages: 12-18

b	0	0	0	a	a
С	0	0	a	0	b
d	0	0	0	0	0

Then (X; *, 0) is an AT-algebra, it is easy to verify that X is 2-fold commutative, but not commutative since $(d * c) * c = c \neq a = (c * d) * d$. And X is neither 2-fold positive implicative nor 2-fold implicative, since $a^2 * b = b \neq a = a^3 * b$ and $(a^2 * b) * a = 0 \neq a$.

PROP. 3.10. Let (X; *, 0) be an AT-algebra. If X is n-fold implicative then X is n-fold commutative but the inverse is false.

PR.: Suppose that X is n-fold implicative, then for any $y \in X$, there exists a natural number n such that $x = (x^n * y) * x$,

 $(y*x)*x = (y*x)*((x^n*y)*x) \le (x^n*y)*y$ and so X is n-fold commutative by Theorem (3.5). From EX. (3.9), the inverse is not true.

PROP. 3.11. Let (X; *, 0) be an AT-algebra. If X is n-fold implicative then X is n-fold positive implicative.

PR.: Suppose that X is n-fold implicative, and putting $u = (x^n * y)$, since X is n-fold implicative, then there exists a natural number n' such that $u = (u^{n'} * x) * u$. Because

 $u*x = (x^n*y)*x$, we have $u^{n'}*x = x$. Then $u = (u^{n'}*x)*u = x*u$, i.e., $x^n*y = x^{n+1}*y$. Therefore X is n-fold positive implicative.

PROP. 3.12. In AT-algebra (X; *,0). X is n-fold $implicative \Leftrightarrow X$ is both n —fold positive implicative and n-fold <math>commutative.

PR.: It suffices to prove the part " \Leftarrow ".

Let $x, y \in X$ and $u = (x^n * y)$. Since X is n-fold positive implicative, $x^n * u = u$. So by X is n-fold commutative and by Theorem (3.5), we have

 $((x^n * y) * x) * x = (u * x) * x = (x^n * u) * u = u * u = 0 \text{ n n}$. Likewise $((x^n * y) * x) \le x$. Hence $((x^n * y) * x) = x$, then X is n-fold implicative.

4. $N-fold\ of\ commutative$, positive implicative and implicative ideals of AT-algebras

In this section, we discuss the notions of n-fold commutative, positive implicative, implicative AT-ideals, and then we give some characterizations of these concepts.

DEF. 4.1. A non empty subset I of an AT-algebra (X; *,0) is called a **commutative AT-ideal of** X, if $\forall x, y, z \in X$ $(1) \ 0 \in I$.

(2) if $y * (z * x) \in I$ and $z \in I$, imply $((x * y) * y) * x) \in I$.

TH.4.2. An AT – ideal I of an AT-algebra (X; *,0) is commutative if and only if, for all $x,y \in X$, $y * x \in I$ implies $((x * y) * y) * x) \in I$ (B).

PR.: (\Rightarrow) If an AT-idael *I* is commutative and $y * x \in I$, then $(y * (0 * x)) \in I$ and $0 \in I$ by the Definition of AT-ideal, we have $((x * y) * y) * x) \in I$.

Conversely, let an AT-ideal I satisfies (B), if $y*(z*x) \in I$ and $z \in I$, then by the definition of AT-ideals, we obtain $y*x \in I$ and It follows from (B) that

 $((x * y) * y) * x) \in I$. This means that I is a commutative AT-ideal.

DEF. 4.3. A non empty subset I of an AT-algebra (X; *,0) is called **an n-fold commutative AT-ideal of**, if $\forall x,y \in X$ (i) $0 \in I$

(ii) $y * (z * x) \in I$ and $z \in I$, $imply ((x^n * y) * y) * x \in I$.

LM. 4.4. An AT – ideal I of an AT-algebra (X; *,0) is an n-fold commutative AT-ideal if and only if, for all $x, y \in X$, $y * x \in I$ implies $((x^n * y) * y) * x \in I$.

PR.: the proof is similar to that Theorem (4.2).

ISSN: 2643-640X

Vol. 6 Issue 10, October - 2022, Pages: 12-18

DEF. 4.5. Let (X; *,0) be an AT-algebra, a nonempty subset I of X is said to be a **positive implicative AT-ideal** if it satisfies, for all $y, z \in X$,

 $(1) 0 \in I$,

(2) $*(x * y) \in I \text{ and } z * x \in I \text{ imply } z * y \in I$.

DEF. 4.6. A non *empty* subset *I* of an AT-algebra (X; *,0) is said to be n-fold positive implicative AT-ideal of X, if $\forall x, y, z \in X$

(i) $0 \in I$.

(ii) $x^{n+1} * (z * y) \in I$ and $z \in I$, imply $x^n * y \in I$.

DEF. 4.7. A non *emp*ty subset I of an AT-algebra (X; *,0) is said to be **an** *implicative* **AT-ideal of** X, if $\forall x, y, z \in X$ (i) $0 \in I$,

(ii) $((x * y) * (z * x)) \in I$ and $z \in I$, imply $x \in I$.

EX. 4.8. Let $X = \{0,a,b,c,d\}$ in which the operation *is given by:

*	0	a	b	С	d
0	0	a	b	С	d
a	0	0	a	С	d
b	0	0	0	С	d
С	0	0	0	0	d
d	0	0	0	0	0

Then (X; *, 0) is an AT-algebra. It is easy to verify that $I = \{0, a, b, c\}$ is an implicative AT - ideal of X.

DEF. 4.9. A non empty subset I of an AT-algebra (X; *,0) is called a **n-fold implicative AT-ideal of X**, if $\forall x, y, z \in X$ (i) $0 \in I$,

(ii) $((x^n * y) * z) * x \in I$ and $z \in I$, imply $x \in I$.

LM. 4.10. A AT – $ideal\ I$ of an AT-algebra (X; *,0) is an n-fold $implicative\ AT$ -ideal if and only if, $for\ all\ ,y\in X$, $(x^n*y)*x\in I\ implies\ x\in I$. **PR.:** Clear.

TH.4.11. Let (X; *,0) be an AT-algebra. If an AT- ideal I of X is n-fold positive implicative AT-ideal and n-fold commutative AT-ideal of X, then it is n-fold implicative AT-ideal of X.

PR.: Suppose that *I* is both n - fold positive implicative and n-fold commutative AT-ideals. Let $(x^n * y) * x \in I$, for all $x, y \in X$, since $x^n * ((x^n * y) * y) = 0 \in I$ and *I* is n-fold positive implicative, then

 $(x^n(x^n*y))*(x^n*y) \in I$, put $(x^n*y) = u$, $(x^n*u)*u \in I$, as I is n-fold commutative, ap plying Theorem (3.5), we obtain

 $(u * x) * x \le (x^n * u) * u \in I$, i.e., $(u * x) * x = x \in I$. Hence I is n-fold implicative AT-ideal.

5. Sub - implicative AT - ideals

In this section, we discuss the notions of sub — commutative, sub-positive implicative, sub-implicative ideals, and we give some characterizations of these concepts.

DEF. 5.1. A non - *em* pty subset I of an AT-algebra (X; *, 0) is *called* **a sub-implicative AT-ideal of** X, **if** $x, y, z \in X$, $(1) 0 \in I$,

(2) $z * ((x * y) * ((y * x) * x)) \in I \text{ and } z \in I, imply (x * y) * y \in I.$

EX. 5.2. Let $X = \{0,1,2,3,4\}$ in which the operation * *is* given by:

*	0	1	2	3	4
0	0	1	2	3	4
1	0	0	1	3	4
2	0	0	0	3	4
3	0	0	0	0	4
4	0	0	0	0	0

Then (X; *, 0) is an AT-algebra. It is easy to verify that $I = \{0, 1, 2, 3\}$ is an sub – implicative AT-ideal of X.

TH.5.3. Let I be an AT-ideal of an AT-algebra (X; *, 0). Then I is sub-implicative if and only if

$$((x*y)*((y*x)*x)) \in I \text{ implies } (x*y)*y \in I \dots (A).$$

PR.. Suppose that *I* is a sub-implicative AT-ideal of *X*. For any $x, y \in X$,

If
$$((x * y) * ((y * x) * x)) \in I$$
, then $0 * ((x * y) * ((y * x) * x)) \in I$ and $0 \in I$ by Definition (5.1). Hence (A) holds.

Conversely, suppose that an AT-ideal I satisfies (A), For $y, z \in X$,

if
$$z * ((x * y) * ((y * x) * x)) \in I$$
 and $z \in I$, (by the definition of AT-ideals), we obtain

 $((x*y)*((y*x)*x)) \in I$, It follows f rom (A) that $(x*y)*y \in I$. This mean that I is a sub-implicative AT-ideal. This completes the PR..

PROP. 5.4. Any sub-implicative AT-ideal is an ideal, but the converse is not true.

PR.. Suppose that I is sub-implicative AT-ideal of X and let x = y in DEF. (5.1), we get $z * (x * x) * (x * x) * (x * x) * z * (0 * (0 * x)) = z * x \in I$ and $z \in I$ imply $\in I$. This means that I is an ideal. The last part is shown by the following exmpale.

EX. 5.5. Let $X = \{0,1,2,3,4\}$ in which the operation * is given by:

*	0	1	2	3	4
0	0	1	2	3	4
1	0	0	2	1	4
2	0	1	0	3	4
3	0	0	2	0	4
4	0	1	0	3	0

Then (X; *, 0) is an AT-algebra. It is easy to verify that $I = \{0\}$ is an ideal, but not sub-implicative ideal of . Since, $0*((4*2)*((2*4)*4)) \in I, 0 \in I$, but $(4*2)*2 = 2 \notin I$.

DEF. 5.6. Let (X; *,0) be an AT-algebra, a nonempty subset I of X is said to be a **positive implicative AT-ideal** if it satisfies, for all $y, z \in X$,

1) $0 \in I$,

2) *
$$(x * y) \in I$$
 and $z * x \in I$ imply $z * y \in I$.

LM. 5.7. Any positive implicative AT-ideal is an ideal, but the converse is not true.

PR.: clear.

Example. 5.8. Let $X = \{0,1,2,3,4\}$ in which the operation * is given by the table in Example(5.5) Then (X; *, 0) is an AT-Algebra. $\{0,1,3\},\{0,1,2,3\}$ are positive implicative AT-ideals of X. $\{0\},\{0,2\}$ and $\{0,2,4\}$ are ideals of X, but not positive implicative AT-ideals.

TH.5.9. Let (X; *, 0) be an AT-algebra, if I is a positive implicative AT-ideal of , the following are equivalent:

- (a) I is a positive *implicative* ideal of X,
- (b) I is an ideal and for any $x, y \in X$, $y * (y * x) \in I$ implies $y * x \in I$.
- (c) I is an ideal and for any $x, y, z \in X$, $z * (y * x) \in I$ implies $(z * y) * (z * x) \in I$.
- (d) $0 \in I$ and $z * (y * (y * x)) \in I$, $z \in I$ implies $y * x \in I$.

PR.. (a) \Rightarrow (b) If A is a positive *implicative AT-ideal of X*, by Lemma (5.7) is an ideal. Suppose $y*(y*x) \in I$, since $y*y=0 \in I$, by DEF. (5.6), we have

 $(y * x) \in I$, (b) hold.

- (b) \Rightarrow (c) Assume (b) and $z * (y * x) \in I$. Since $z * ((z * y) * x)) = z * (((z * y) * (z * x)) \le z * (y * x) \in I$, it follows that $z * (z * ((z * y) * x)) \in I$, by (b) we have $(z * y) * (z * x) = z * ((z * y) * x) \in I$ And so (c) *hold*.
 - (c) \Rightarrow (d) It clear that $0 \in I$. If $*((y * (y * x)) \in I, z \in I)$, then

 $(y*(y*(z*x)) \in I \text{ by } (c), \text{ we get } z*(y*x)=0*(z*(y*x)=(y*y)*(z*(y*x) \in I. \text{ Since } I \text{ is an ideal and } z \in I, \text{ then } (y*x) \in I, \text{ and so (d) hold }.$

(d) \Rightarrow (a) First observe that if I satisfied (d), then I is an ideal of X. In fact suppose

 $(y * x) \in I$ and $y \in I$, then $(y * (0 * (0 * x)) \in I, y \in I$, using (d), we obtain

 $x = 0 * x \in I$, i.e., I is an ideal. Next, let $z * (y * x) \in I$ and $* y \in I$. As

 $(z * y) * (z * (z * x)) \le y * (z * x) = z * (y * x) \in I$, it follows that

 $(z*y)*(z*(z*x)) \in I$. Combining $(y*x) \in I$ and using (d), we have

 $(z * x) \in I$. This have proved I is a positive implicative AT-ideal of.

PROP. 5.10. Any sub-implicative AT-ideal is a positive implicative AT-ideal, but the converse does not hold.

PR.. Assume that I is a sub-implicative AT-ideal of X. It follows from Proposition (5.4) that I is an ideal. In order to prove that I is a positive implicative AT-ideal from Theorem (5.9(b)) it suffices to show that if $y * (y * x) \in I$ then $y * x \in I$, by Theorem (5.3), for any $u, v \in X$, we have $((u * v) * ((v * u) * u)) \in I$ implies

 $(u * v) * v \in I$. Substituting x = u, y * x = v, then

$$((u*v)*(v*u)*u) = (((x*(y*x))*((y*x)*x)*x)$$
$$= ((y*x)*x)*(y*x) = ((y*((y*x)*x)*x)$$
$$= y*(y*x).$$

Hence if $y * (y * x) \in I$, then $(u * v) * v \in I$, i.e.,

$$\left(\left(\left(x*(y*x)\right)*(y*x)=\left(\left(y*(x*x)\right)*(y*x)=0*(y*x)=(y*x)\in I\right.\right)$$

Therefore *I* is a *positive implicative* AT-ideal of .

Example. 5.11. Let $X = \{0,1,2,3,4\}$ in which the operation * is given by the table in Example(5.5) Then (X; *, 0) is an AT-Algebra. $\{0,1,3\}$ is positive implicative AT-ideal of X, but it is not positive implicative AT-ideal. This finishes the PR..

DEF. 5.12. A non - empty subset I of an AT-algebra (X; *, 0) is called **a sub - commutative AT-ideal of**, if

 $1)\ 0\in I,$

2) *
$$(((y * x) * x) * y) * y \in I \text{ and } z \in I \text{ imply } (y * x) * x \in I.$$

EX. 5.13. Let $X = \{0, 1, 2, 3\}$ in which the operation * is given by:

*	0	1	2	3
0	0	1	2	3
1	0	0	1	3
2	0	0	0	3
3	0	1	2	0

Then (X; *, 0) is an AT-algebra. It is easy to verify that $\{0\}$ and $\{0,3\}$ are all sub-commutative AT-ideals of X.

PROP. 5.14. An ideal I of an AT-algebra (X; *, 0) is sub-commutative if and only if $((y * x) * x) * y) * y \in I$, we have $(y * x) * x \in I$ (C).

PR.. Suppose that I is a sub-commutative AT-ideal of X. For any, $y \in X$.

If
$$((y * x) * x) * y) * y \in I$$
, then $0 * ((y * x) * x) * y) * y \in I$ and $0 \in I$ by Definition (5.12). Hence (C) holds.

Conversely, suppose that an ideal I satisfies (C). For $y, z \in X$, if

 $z * ((y * x) * x) * y) * y) \in I$ and $z \in I$, by the Definition of ideals, we obtain

 $((y*x)*x)*y)*y) \in I$, It follows f rom (C) that $(y*x)*x \in I$. This mean that I is a sub-commutative AT-ideal. This completes the proof.

PROP. 5.15. Any sub – commutative AT-ideal is an ideal, but the converse does not hold.

PR.. Suppose that I is sub-commutative AT-ideal of an AT-algebra and let x = y in Definition (5.12), $z * (((x * x) * x) * x) * x = z * x \in I, z \in I$, imply $x \in I$. This means that I is ideal. The last part is shown by Example (5.5), $\{0,1,3\}$ is ideal, but not sub - commutative AT-ideal. This f in ishes the proof.

References

- [1] A.T. Hameed and B.H. Hadi, **Anti-Fuzzy AT-Ideals on AT-algebras**, Journal Al-Qadisyah for Computer Science and Mathematics, 2018.
- [2] A.T. Hameed and B.H.Hadi, **Intuitionistic Fuzzy AT-Ideals on AT-algebras**, Journal of Adv Research in Dynamical & Control Systems, vol.10, 10-Special Issue, 2018.
- [3] A.T. Hameed, **AT-ideals and Fuzzy AT-ideals of AT-algebras**, Journal of Iraqi AL-Khwarizmi Society, vol.1, no.2, (2018), pp.2521-2621.
- [4] K.Iseki., On BCI-algebras. Math. Sem. Notes, vol. 8 (1980), pp.125-130.
- [5] S. M.Mostafa, Omar R. A. K, Abd El- Baseer, O. W., **Sub implicative ideals of KU-Algebras**, International Journal of Modern Science and Technology vol. 2, no. 5, (2017), pp.223-227.
- [6] S. M. Mostafa and F. F. Kareem, N-Fold Commutative KU-Algebras, International Journal of Algebra, vol. 8, no. 6 (2014), pp.267 275.
- [7] S. M. Mostafa, Abd-Elnaby M. and Yousef M. M., **Fuzzy ideals of KU-Algebras**, International Math.Forum, vol.6, no.63, (2011), pp.3139-3149.