
International Journal of Academic Information Systems Research (IJAISR)
ISSN: 2643-9026

Vol. 6 Issue 12, December - 2022, Pages: 4-13

44

Examining the Design Patterns of Microservices for Achieving

Performance Quality Tactics
Abdelkareem M. Alashqar1 and Zaki Kurdya2

Faculty of Information Technology, Islamic University of Gaza

P.O. Box 108, Gaza, Palestine
1aashgar@yahoo.com, 2zkordya@gmail.com

Abstract: Microservices is one of the newest architectural styles used in the field of software development. The approach of

microservice architectural style focuses on designing the software as a collection of very small services, each of which handles small

functionality, runs separately on its own process, and communicates with other microservices to provide comprehensive and coherent

functionality. Many existing research works offer insights into applying design patterns and tactics when using microservice style

without considering the achievement of software qualities. However, some research works reported on how design patterns

contribute to software qualities. Yet, no study takes into consideration the performance quality in particular and how it is affected

by patterns and tactics when adopting the microservice architectural style. This paper reviews and reports the most well-known

design patterns that are practically used in achieving performance quality when developing microservices applications and provides

qualitative analysis on how much these patterns can achieve the performance tactics as proposed in the literature. It also examines

the degree to which the selected design patterns are discussed and handled in the Stack Overflow by developers and practitioners.

Keywords— Microservices, Architectural Tactics, Design Patterns, Performance, Stack Overflow

1. INTRODUCTION

The software architectural style describes the overall
structure of the software being developed and it significantly
affects the quality attributes in a positive or a negative way.
Microservices is one of the most recent architectural styles
used by developers when building software. As an
architectural style, microservices permits the building of
software systems as small services, each of which runs
separately on a processing node and can communicate with
other services to provide comprehensive and cohesive
functionality [1]. While this approach of modular
decomposition of the system into small services units enhances
software qualities such as scalability, elasticity and
deployability [2][3] it usually detriments other quality
attributes such as performance in particular because of the
communication overhead between the large number of
microservices that construct the software. This overhead
includes an increase in the interprocess communication, the
context switches and the involved I/O operations [4].
Moreover, while microservices are beneficial to scalability
attributes the trading-off with performance attributes must be
considered [5]. Additionally, the dynamic and volatility of
deploying microservice creates more challenges on
performance [3] and optimizing performance in the
microservice design is more challenging than monolithic
design [6].

Although the microservices style has an overall impact on
quality attributes, the detailed design approaches such as
architectural tactics and design patterns play important roles in
enhancing quality attributes directly when designing software.
A tactic is a design decision related to a specific quality
attribute that tends to be a general and abstract concept. A
design pattern is a reusable and proven solution to a real-world
design problem related to quality attributes or other.

While some research works studied how tactics and
patterns affect quality in the microservices environment, to the
best of our knowledge, there is no study focused on handling
the performance quality in particular. In this paper, we provide
an examination on how the design patterns can achieve the
architectural tactics of performance when developing
microservices systems. And how these patterns are handled by
developers and practitioners in the community forums
especially in the Stack Overflow. The results of our study will
help practitioners deepen their understanding with how much
the mostly used design patterns contribute in achieving
performance when developing microservices systems.

The rest of this paper is organized as follows: Section 2

provides the related work. Section 3 introduces the scope and

research methodology including the research questions.

Section 4 provides the results and discussion. Threats to

validity are stated in Section 5. Section 6 concludes the paper

with a future outlook.

2. RELATED WORK

There are many research works found in the literature for
studying the impact of architectural styles on quality attributes
such as in [7]. The relationships between architectural styles
and tactics are also handled in the existing research such as
in [8].

Some research works in the literature examined the
architectural tactics and design patterns when adopting
microservices. The authors in [9] followed a systematic review
of academia and industry to explore evidence of using
architectural tactics and patterns in microservices. While they
noted that there is no evidence of using architectural tactics for
microservices in the academic and industrial literature, they
generally documented 44 architectural patterns proposed in
academia and 80 in industry, and they argued that the majority
of these patterns are related to scalability, flexibility,

International Journal of Academic Information Systems Research (IJAISR)
ISSN: 2643-9026

Vol. 6 Issue 12, December - 2022, Pages: 4-13

55

testability, performance, and elasticity quality attributes. An
extension to this work is done by [10] where the authors
conducted an actual analysis of 30 microservice projects in
open source and found that a few of the architectural patterns
are used in these projects most of them are considered SOA
patterns.

The authors in [11] conducted a literature review for
understanding and addressing quality attributes in
microservices and reported 6 quality attributes which are
scalability, availability, security, monitorability, performance,
and testability then identified 19 tactics for addressing these
quality attributes. However, the authors in [11] handled the
architectural tactics related to modifiability quality attributes
in particular. They provided a qualitative analysis of the degree
to which the principles and design patterns of service-oriented
architecture (SOA) and microservices systems can be mapped
onto modifiability tactics.

The authors in [12] followed the qualitative approach using
the interviews for studying the adoption of microservices in the
software industry. They provided insights on the microservices
characteristics, the applied technologies used and the effect of
microservices on the ISO 25010 quality attributes. They
reported that microservices style has a positive impact on these
quality attributes.

With respect to collecting data from discussion forums
related to using architectural tactics, the authors in [13]
provided knowledge about the relationship between some
general architectural tactics and some quality attributes by
mining the information from the developers’ discussions that
were posted on Stack Overflow.

The authors in [14] conducted a performance analysis
related to query response time, efficient hardware usage,
hosting costs, and packet loss rate when applying the API
Gateway, Chain of Responsibility and Asynchronous
Messaging design patterns in the software industry.

As stated in the previous work and to the best of our
knowledge, no study has focused particularly on addressing the
performance patterns and how they can meet the architectural
tactics for achieving the performance quality attribute when
using the microservices architectural style.

3. THE SCOPE AND METHODOLOGY

This research aims at studying the design patterns of
microservices for achieving the architectural performance
tactics, and hence the goal of our study is framed using the
following research questions:

RQ1: What are the design patterns that are mostly used in
microservice architecture as extracted from the literature? To
what extent can these design patterns be fitted to performance
architectural tactics?

RQ2: To what extent are the selected design patterns from
RQ1 used by developers and practitioners as extracted from
the Stack Overflow discussion forum?

RQ3: What general statements about achieving
performance quality attribute in microservices can be inferred
from the answers of RQ1 and RQ2?

For answering the first part of RQ1 we followed the

literature review to explore the most commonly used design

patterns in microservices for achieving performance quality.

For this purpose, we reviewed the most recent related sources

including textbooks, published papers and white papers. As a

result of our review we selected nine design patterns that are

shown in Table 1 where the description of these patterns will

be provided in Section 4.

Table 1: Performance design patterns for microservices

architecture

Design Patterns

1 Timeout

2 Circuit Breaker

3 Service Mesh

4 Throttling

5 Asynchronous Communication

6 Bulkhead

7 Map-Reduce

8 Load Balancer

9 CQRS

Then to answer the second part of RQ1 we followed an

analysis process based on our understanding, intuition and

experience to determine to what extent each of the selected

design patterns can achieve the performance architectural

tactics. We used performance tactics from [15] which are

depicted in Fig. 1.

For answering RQ2 we examined the Stack Overflow as a

popular discussion forum used by developers and practitioners

in order to determine the degree to which the selected design

patterns from RQ1 are used. For this purpose, we followed the

steps of data collection, processing and analysis that depicted

in Fig. 2. At the beginning we collected the posts published in

Stack Overflow that tagged with “microservices” term. An

example of a tagged Stack Overflow post that handles the

usage of a design pattern for achieving performance is shown

in Fig. 3. Then we filtered out the collected posts to select only

those that include the performance quality based on

predetermined related performance terms. After that the data is

preprocessed to remove null values, merge the comments of

the posts to their questions and answers and convert all of the

text to lowercase. Finally, the degree of using design patterns

for achieving performance quality is examined and discussed.

We answered RQ3 based on the results of RQ1 and RQ2

and provided general statements about the achievement of

performance quality in microservices systems.

International Journal of Academic Information Systems Research (IJAISR)
ISSN: 2643-9026

Vol. 6 Issue 12, December - 2022, Pages: 4-13

66

Fig. 1. Performance architectural tactics

Fig. 2. The main steps for examining the design patterns in Stack Overflow

Performance Tactics

Control Resource Demand Manage Resources

 Manage Work Requests

 Limit Event Response

 Prioritize Events

 Reduce Computational

Overhead

 Bound Execution Times

 Increase Efficiency

 Increase Resources

 Introduce Concurrency

 Maintain Multiple Copies

of Computations

 Maintain Multiple Copies

of Data

 Bound Queue Sizes

 Schedule Resources

Events

Arrive

Events

processed

within time

and

resource

budget

International Journal of Academic Information Systems Research (IJAISR)
ISSN: 2643-9026

Vol. 6 Issue 12, December - 2022, Pages: 4-13

77

Fig. 3. Example of Stack overflow post on microservices

4. RESULTS AND DISCUSSION

For answering the first part of RQ1 to determine the design
patterns for microservices, and while the microservices field is
very young in software development, we summarized nine
well-known design patterns from the most prominent
sources [2][15][16][17]. These patterns are shown in Table 1
and described in the next subsections.

 Timeout

In this pattern the timeout is a maximum period of time that
is allowed for a calling microservice to wait for a requested
microservice, where the requested microservice is considered
a failed one if it does not respond within this given period of
time. The timeout pattern is also used whether the microservice
meets its timing constraints [15][17].

 Circuit Breaker

The circuit breaker acts as an electrical circuit breaker in
preventing the access of failed microservice without the delays
of related timeouts. Any microservice call is routed via the
circuit breaker, which immediately responds with a failure
status when the requested microservice does not respond
several times. Thus, preventing the calling microservice from
waiting and retrying for a response from the faulty
microservice. The circuit breaker periodically sends a request
to the failed microservice and when it detects that the
microservice is responding, it resets the circuit and routes any
future calls to this newly recovered microservice [15][17].

 Service Mesh

The service mesh includes a sidecar that accompanies each
microservice and acts as a proxy for addressing application-
independent concerns such as communication and monitoring.
The sidecar is executed alongside each microservice to handle
all interservice communication and coordination. Also, the
elements of the microservice and the sidecar are often

packaged and deployed together on a processing node called a
pod, which improves performance by reducing the overhead of
remote communication via the network [2][15].

 Throttling

The throttling pattern involves placing an intermediary
called a throttle in front of a microservice to monitor the rate
of requests coming to this microservice to determine whether
these requests can be serviced. This guarantees the
microservice to continue operating even when the demand
reaches an extreme level [15].

 Asynchronous Communication

In asynchronous communication between microservices,
the sender microservice sends a message and does not wait for
a response from the receiver microservice. The sending
messages are put in a queue to be processed by consumer
microservice. In the case of asynchronous communication, the
threads of the sender microservice will be released just after
sending the request so that they can be utilized by other
processing in the system and they can be notified when a
response to the original request arrives. The request message
in asynchronous communication can be processed by multiple
receivers. The asynchronous mechanism permits for delivering
messages between different microservices concurrently [4].

 Bulkhead

In the bulkhead pattern use isolated pools (also called
thread pools) when connecting to different microservices.
Having a dedicated pool for each individual microservice will
reduce the bad impact caused by a failed microservice on the
other microservices. And therefore, the system will continue to
provide functionality depending on the other successful
microservices [18].

 Map-Reduce

International Journal of Academic Information Systems Research (IJAISR)
ISSN: 2643-9026

Vol. 6 Issue 12, December - 2022, Pages: 4-13

88

The map-reduce pattern is designed particularly to provide
high performance when sorting and analyzing large data. In the
first step, the software in map-reduce is allocated to multiple
nodes of processing that run in parallel to sort the data. In the
second step, two functions called map and reduce are invoked
for additional processing in the sorted data. The map function
takes the data and a key as input then it hashes the data into
buckets based on the key. The map function is also used to
filter the data to determine which data will be considered for
further processing. The data mapping is achieved by multiple
map instances that run in parallel where each instance accesses
a different part of data. In the third and final step, the mapped
buckets are shuffled in order to be processed by multiple
reduce instances that run in parallel where the number of
instances are similar to those in map step. The reduce step
performs heavy analysis on the data buckets and produces
summarized output such as averages where the amount of data
output of the reduce step is always smaller than the input
data [15][19].

 Load Balancer

The load balancer acts as a mediator that handles all
requests that come from client services and determines which
service from a pool of service providers will respond to these
requests. The load balancer applies a scheduling algorithm to
balance the load among the pool of service providers. The
scheduling algorithm takes into consideration the waiting
requests for a service provider and the load on each service
provider as well [2][15].

 Command query responsibility segregation

(CQRS)

The CQRS applies the separation of concern concept. It
separates the command operations from the query operations
that are performed on data. The command operations represent
writing data which includes creating, updating, and deleting
data whereas the query operations represent reading data
which includes retrieving data operation. The command
operations are done asynchronously in a normalized database
while the query operations are done synchronously in a
separate database. When the command operations are
performed, the system publishes events so that the separate
database used by the query operations will be updated
automatically to be consistent with the main database used by
the command operations. The CQRS implements query
operations more efficiently, especially when retrieving data
from multiple microservices. Moreover, it avoids the slowness
of database operations when there is contention on a large
number of reading and writing operations on the system [16].

To answer the second part of RQ2 we used the list of
performance tactics shown in Fig. 1 to analyze how much these
tactics can be realized by the selected design patterns we have
determined and explained previously in this section. Table 2
summarizes the relationships between the architectural tactics
and the design patterns when achieving performance quality in
microservices. As shown in the table some design patterns are
able to achieve a considerable number of tactics, such as “Load
balancer” and “Map-Reduce” where 8 of the 12 tactics were
realized by the “Load Balancer”. Each of “Service Mesh”,
“Bulkhead”, “Map-Reduce” and “CQRS” realizes a number of
4 tactics. The next sections provide our analysis results on how
each of the selected patterns contributes in realizing the
architectural performance tactics.

Table 2: The relationships between performance design patterns and performance tactics

 Timeout Circuit

Breaker

Service

Mesh

Throttling Asynchron

ous Com.

Bulkhead Map-

Reduce

Load

Balancer

CQRS

Control Resource Demand

Manage Work Requests √ √ √ √ √

Limit Event Response √ √ √

Prioritize Events √

Reduce Computational Overhead √ √

Bound Execution Times

Increase Efficiency √ √ √

Mange Resources

Increase Resources √

Introduce Concurrency √ √ √ √ √

Maintain Multiple Copies of

Computations

 √ √ √ √ √ √

Maintain Multiple Copies of Data √ √

Bound Queue Sizes √ √

Schedule Resources √

International Journal of Academic Information Systems Research (IJAISR)
ISSN: 2643-9026

Vol. 6 Issue 12, December - 2022, Pages: 4-13

99

It is noticed that the “Load Balancer” performs all of the
“Manage Resources” tactics category. Since the “Load
Balancer” acts as a mediator between client requests and a pool
of servers that respond to these requests, the servers can indeed
work concurrently and hence the “Introduce Concurrency”
tactic is achieved. Also, the tactics of both “Maintain Multiple
Copies of Computations” and “Maintain Multiple Copies of
Data” can be realized through the existing servers. Moreover,
additional servers can be added easily so the “Increase
Resources” tactic is applied, any requests can be controlled so
the “Bound Queue Sizes” tactic is realized and these requests
can be scheduled so the “Schedule Resources” tactic is realized
as well. Additionally, the “Load Balancer” permits for
“Prioritize Events” tactic because any event can be checked for
priority before forwarding it to the dedicated server so that the
low-priority requests can be discarded to free resources for the
high-priority requests. The efficiency of a server resources can
be enhanced and hence the “Increase Efficiency” tactic is
achieved by the “Load Balancer”.

In “Map-Reduce” design pattern, sorting the huge amount
of data is done by multiple processing nodes that run in parallel
and hence the tactic “Introduce Concurrency” is realized. In
the analysis step, the function of data mapping is processed by
multiple instances that run concurrently on different portions
of data to produce multiple buckets of transformed data. Then
these buckets of data are processed for data reduction by
different concurrent processing instances where the number of
these instances is similar to the number of data buckets. And
hence in addition to achieving “Introduce Concurrency” tactic,
the “Maintain Multiple Copies of Computations” is totally
realized by the “Map-Reduce” pattern. Since each portion of
data is processed locally in a specific processing node with
independence from other nodes, then the “Reduce
Computational Overhead” tactic is realized. Moreover, the
“Increase Efficiency” tactic can be achieved by enhancing the
algorithms of “map” and “reduce” functions.

The “CQRS” design pattern permits for the separation of
data processing responsibilities into read and write operations.
This separation includes conceptual means as well as physical
means. As a result, it achieves the “Introduce Concurrency”
tactic where the two types of read and write operation can be
done concurrently with the possibility of controlling the
coming data processing requests. Also, the “CQRS” applies
the requests of read operations to be done on a separate
database and hence it realizes the tactic of “Maintain Multiple
Copies of Data”. Since each separate database can be
processed on a separate processing node, and the “CQRS” also
permits for creating multiple instances for the same type of
operations, the “Maintain Multiple Copies of Computations”
is carefully performed. Additionally, the “CQRS” permits for
enhancing servicing the data operations through programming
algorithms and hence it realizes the “Increase Efficiency”
tactic.

In the “Bulkhead” each coming request is checked before
forwarded it to the server so the “Manage Work Requests”
tactic is realized. The result of checking the request is placing
it into a pool that acts as a queue for a dedicated microservice
which means that microservice has its own controlled pool of

requests so the “Bound Queue Sizes” tactic is realized. While
each microservice runs independently from other
microservices then the “Introduce Concurrency” tactic is
achieved. Additionally, different instances for the same
microservice can run on multiple servers so the “Maintain
Multiple Copies of Computations” tactic is considerably
realized.

The existence of the collocated sidecar alongside the
microservice in the “Service Mesh” pattern can handle all the
remote communication with other microservices and hence it
applies the “Reduce Computational Overhead” tactic. The
microservice and its collocated sidecar are processed
separately and hence the “Maintain Multiple Copies of
Computations” is realized. Additionally, the “Service Mesh”
pattern has the capability of controlling the delivery of
microservice requests so it applies the “Manage Work
Requests” tactic and controls the coming requests as well so it
realizes the “Limit Event Response” tactic.

The “Asynchronous Communication” pattern permits the
requester microservice to send a request without waiting for
the server to respond. The server notifies the requested
microservice by calling back upon completion so the two
microservices can work separately and concurrently and hence
the “Introduce Concurrency” and “Maintain Multiple Copies
of Computations” tactics are realized. Queueing the sending
requests before servicing them permits for the “Manage Work
Requests” tactic.

The “Circuit Breaker” design pattern carefully applies the
“Manage Work Requests” since it can determine whether the
calling microservice requests a failure microservice or not. It
can determine the failed microservice and responds
immediately with a failure status for the requests of this failed
microservice. Not forwarding the requests for the failed
microservice means applying the “Limit Event Response”
tactic.

Controlling the waiting time for calling a microservice in
the “Timeout” pattern realizes the “Manage Work Requests”
tactic. And controlling the coming request for a microservice
in the “Throttling” design pattern means that the “Limit Event
Response” tactic is achieved.

For answering RQ2 to determine the degree to which the
selected design patterns are used by developers and
practitioners when addressing the performance, we followed
the steps of data processing and analysis that shown in Fig. 2
and previously explained in Section 3.

In the “Collecting Data” step, we used the community posts
published by developers and practitioners in the Stack
Overflow that handled the development of microservices
systems. We collected all posts published in the Stack
Overflow until October 4, 2022 that were mainly tagged by the
“microservices” keyword [20]. The number of collected posts
reached 8433 where each post has 11 elements of data which
are the “Number of votes”, “Number of answers”, “Number of
views”, “Question title”, Question short description”,
“Question tags”, “Owned user”, “User details”, “Date”,
“Question text” and “Answers”. The text of “Question text”
and “Answers” elements also include the comments that may

International Journal of Academic Information Systems Research (IJAISR)
ISSN: 2643-9026

Vol. 6 Issue 12, December - 2022, Pages: 4-13

1010

be augmented to them. Although these elements are important
for guiding us to the right collected data, we are interested only
in the questions, their answers and comments for the purpose
of this study. Then we applied two filtering steps on the
original data. First, we filtered out the original collected data
by selecting only the posts that handled the performance
quality attribute. We selected any post that includes at least one
of the following terms related to performance quality attribute:

"performance", "perform", "performing" , "latency",
"deadline", "delay", "efficiency", "efficient",
"throughput", "response time", "waiting time", "processing
time", "execution time", "loading time", "blocked time",
"resource utilization", "resource consumption", "resource

usage", "resource contention", "memory occupancy",
"capacity" , "load".

As a result, the number of posts that include the

performance terms becomes 1467. Second, from the 1467

posts we selected only the posts that handled only at least one

of the 9 examined design patterns in this study. For applying

the automatic selection of posts that handled the design

patterns we adopted the related and equivalent terms in

addition to different writing formats for each design pattern as

shown in Table 3. After this filtering process the number of

selected posts becomes 967.

Table 3: Related terms and equivalent written formats of the design patterns

Design Patterns Equivalent Terms

1 Timeout timeout, time-out, time out

2 Circuit Breaker circuit breaker, circuit-breaker, circuitbreaker

3 Service Mesh service mesh, service-mesh

4 Throttling throttling

5 Asynchronous

Communication

asynchronous communication, asynchronous integration,

asynchronous-communication, asynchronous-integration

6 Bulkheads bulkhead, bulk head, thread pool, thread-pool, threadpool

7 Map-Reduce mapreduce, map-reduce, map reduce|map and reduce

8 Load Balancer load balancer, load-balancer, loadbalancer

9 CQRS cqrs, command query responsibility segregation

Then we automatically [20] find the occurrence for each
design pattern that is handled when discussing the achievement
of performance quality in microservices. It is important to
denote that when manually reviewing the majority of these
posts, although the participants are interested in achieving the
performance quality by considering the design patterns in
microservices, they sometimes ask for more information about
the patterns, how these the design patterns are applied, how to
fix the errors they encountered when implementing the
patterns.

Fig. 4 depicts the number of posts in each of which a design
pattern is discussed when handling the performance quality
terms. The design patterns are ordered from left to right in
descending order based on the number of posts that handle a
design pattern.

It is clear that the “Load Balancer” is the most frequently
discussed design pattern and the “Map-Reduce” is the least
frequently discussed one. It is obvious that the “Load
Balancer” is heavily discussed by developers and practitioners
for achieving performance quality in microservices since 479

of the total performance posts handled this design pattern. The
“Timeout” and “CQRS” patterns are discussed with high
consideration but the “Map-Reduce” and “Throttling” are
discussed very little. The “Circuit Breaker” and “Bulkhead”
are moderately considered by participants when discussing the
performance design patterns in microservices.

It is important to denote that the design pattern can be
discussed individually in the published posts or discussed
alongside other design patterns. For instance, as depicted in the
UpSet plot in Fig. 5, from the total of 479 posts that handled
the “Load Balancer” 361 of them discussed this pattern
individually while 41 of them also discussed the “Timeout”
pattern. In other words, 41 of the published posts that discussed
the “Load Balancer” also discussed the “Timeout” as well.
Moreover, there are published posts that handle 3 design
patterns or more at the same time. For instance, 6 published
posts discussed the “Timeout”, “Circuit Breaker” and
“Bulkhead” patterns at the same time while 1 post discussed
the “CQRS”, “Circuit Breaker”, “Bulkhead” and
“Asynchronous” patterns simultaneously.

International Journal of Academic Information Systems Research (IJAISR)
ISSN: 2643-9026

Vol. 6 Issue 12, December - 2022, Pages: 4-13

1111

Fig. 4. The occurrence of contribution of design patterns in achieving performance quality

Fig. 5. UpSet plot showing the intersections between design patterns via Stack Overflow posts

For answering RQ3, when interpreting the results obtained
from answering RQ1 and RQ2, we found that some design

patterns are handled heavily by developers and practitioners
when discussing the development issues related to achieving
performance quality in microservices systems such as “Load

International Journal of Academic Information Systems Research (IJAISR)
ISSN: 2643-9026

Vol. 6 Issue 12, December - 2022, Pages: 4-13

1212

balancer”, “Timeout” and “CQRS”, while some design
patterns are discussed very little such as “Map-Reduce” and
“Throttling”. Although the most frequently discussed design
pattern such as “Load Balancer” has the capability of achieving
a considerable number of tactics, the “Map-Reduce” design
pattern also contributes in achieving a considerable number of
tactics but it is not highly discussed by the Stack Overflow
participants. It is clear that the “Map-Reduce” is more suitable
to be used in systems that process large amounts of data which
is rarely used in the microservices architecture since each
microservice manages its own data storage.

Moreover, the highly discussed design pattern (e.g.
“Timeout”) does not mean that this pattern realizes a larger
number of performance tactics and vice versa. It appears that a
considerable number of highly discussed design patterns are
known to developers because they are familiar with these
patterns because they mostly used them in preceding types of
architectural styles such as SOA. Also, we argue that the
“Timeout” design pattern can be easily implemented and
integrated with existing platforms with comparison to other
design patterns.

So, the occurrence of discussing a design pattern is not
always a key indicator for its capability in achieving the
performance tactics. Additional issues that can contribute to
the usage of a design pattern include its popularity between
practitioners, ease of implementation, availability of tools that
implement the pattern.

When looking at the realization of tactics by the selected
design patterns, it is clear that the realization is more focused
on the “Manage Resources” category of performance tactics.
And this category that includes 6 tactics is completely achieved
by the “Load Balancer” pattern, while 4 of these 6 tactics are
fitted by the “CQRS”, “Bulkhead” and “Map-Reduce”
patterns. Also, we found that the “Bound Execution Times”
tactic is not explicitly applied by any of the selected design
patterns.

5. THREATS TO VALIDITY

There are several potential limitations and threats to
validity that can affect the results of this study.

The microservices is considered a younger architectural
style with comparison to other styles where the concepts,
theories and practices related to it are still not completely
mature and this may affect the validity of results in making
some results related temporality to the current state of
microservices especially for the design patterns. To mitigate
this threat, we searched for considerable and recent resources
to provide a comprehensive view for the selected design
patterns.

The qualitative analysis on how much each design pattern
can achieve the performance quality attributes are based on the
authors judgments which possibly provides subjectively biased
results that may affect its reproducibility.

Collecting the data from only Stack Overflow affects the
generalization of the results and findings of this research.
Nonetheless this threat is mitigated since Stack Overflow is

considered the largest and the most popular community forum
used by developers and practitioners especially for the new
approaches of software development. Although other sources
of information like Stack Exchange and GitHub can strengthen
the results of this research, adopting these sources in collecting
data can be an extended future work.

6. CONCLUSION AND FUTURE WORK

In this paper we provided an examination on how much the
design patterns of microservices can achieve performance
quality tactics. For this purpose, we first searched the literature
for the most known performance design patterns used in
microservices systems and provided an analysis on how each
of the selected design patterns can achieve the performance
tactics. Second, we studied the degree to which the selected
design patterns can be discussed by developers and
practitioners in the Stack Overflow.

Based on our findings, some design patterns realize a large
number of performance tactics such as “Load Balancer” and
are also handled heavily by developers and practitioners in the
Stack Overflow. However, some design patterns achieve a
limited number of performance tactics but they are also highly
considered by developers and participants in the Stack
Overflow such as “Timeout”. Other design patterns such as
“Bulkhead” achieve performance tactics and are handled by
practitioners moderately. So, the capability of a design pattern
in achieving performance tactics is not always the main reason
for its popularity when discussed by practitioners.

While software developers discuss some design patterns
largely via the community forums such as the Stack Overflow,
they should pay more attention to other design patterns,
especially those that contribute in the realization of
performance tactics when developing microservices.

An extension to this work is to extract information from
community forums other than the Stack Overflow. The
extracted information will also include, in addition to design
patterns, the performance tactics. Also, use machine learning
techniques for extracting information and mining knowledge
for achieving the performance quality through the design
patterns.

7. REFERENCES

[1] Fowler, M. (2014). Microservices: a definition of this

new architectural term. MartinFowler. com, 25(14),

14-26.

[2] Richardson, C. (2017). Microservices Patterns.

Manning Publications.

[3] Heinrich, R., Hoorn, A. V., Knoche, H., Li, F.,

Lwakatare, L. E., Pahl, C., Schulte, S., & Wettinger, J.

(2017). Performance engineering for microservices:

research challenges and directions. In Proceedings of

the 8th ACM/SPEC on International Conference on

Performance Engineering Companion, 223-226.

[4] Christudas, B. (2019). Practical Microservices

Architectural Patterns: Event-Based Java

International Journal of Academic Information Systems Research (IJAISR)
ISSN: 2643-9026

Vol. 6 Issue 12, December - 2022, Pages: 4-13

1313

Microservices with Spring Boot and Spring Cloud.

Apress.

[5] Li, S., Zhang, H., Jia, Z., Zhong, C., Zhang, C., Shan,

Z., Shen, J., & Babar, M. A. (2021). Understanding and

addressing quality attributes of microservices

architecture: A Systematic literature review.

Information and software technology, 131(106449).

[6] Zeng, R., Hou, X., Zhang, L., Li, C., Zheng, W., &

Guo, M. (2022). Performance optimization for cloud

computing systems in the microservice era: state-of-

the-art and research opportunities. Frontiers of

Computer Science, 16(6), 1-13.

[7] Alashqar, A., El-Bakry, H., & Abo Elfetouh, A.

(2017). A framework for selecting architectural tactics

using fuzzy measures. nternational Journal of Software

Engineering and Knowledge Engineering, 27(03),

475-498.

[8] Harrison, N. B., & Avgeriou, P. (2010). How do

architecture patterns and tactics interact? A model and

annotation. Journal of Systems and Software, 83(10),

1735-1758.

[9] Osses, F., Márquez, G., & Astudillo, H. (2018).

Exploration of academic and industrial evidence about

architectural tactics and patterns in microservices.

Proceedings of the 40th International Conference on

Software Engineering: Companion Proceeedings.

[10] Márquez, G., & Astudillo, H. (2018). Actual Use of

Architectural Patterns in Microservices-based Open

Source Projects. In 2018 25th Asia-Pacific Software

Engineering Conference (APSEC), 31-40.

[11] Bogner, J., Wagner, S., & Zimmermann, A. (2019).

Using architectural modifiability tactics to examine

evolution qualities of Service‑ and

Microservice‑Based Systems. SICS Software-

Intensive Cyber-Physical Systems, 34(2), 141-149.

[12] Bogner, J., Fritzsch, J., Wagner, S., & Zimmermann,

A. (2019). Microservices in Industry: Insights into

Technologies, Characteristics, and Software Quality.

In 2019 IEEE international conference on software

architecture companion (ICSA-C), 187-195.

[13] Bi, T., Liang, P., Tang, A., & Xia, X. (2021). Mining

architecture tactics and quality attributes knowledge in

Stack Overflow. Journal of Systems and Software,

180(111005).

[14] Akbulut, A., & Perros, H. G. (2019). Performance

Analysis of Microservices Design Patterns. IEEE

Internet Computing, 23(6), 19-27.

[15] Bass, L., Clements, P., & Kazman, R. (2022). Software

architecture in practice. Addison-Wesley.

[16] Pacheco, V. F. (2018). Microservice Patterns and Best

Practices: Explore patterns like CQRS and event

sourcing to create scalable, maintainable, and testable

microservices. Packt Publishing Ltd.

[17] Sommerville, I. (2020). Engineering software

products. Pearson.

[18] "Bulkhead pattern - Azure Architecture Center |

Microsoft Learn." https://learn.microsoft.com/en-

us/azure/architecture/patterns/bulkhead. Accessed

November 29, 2022.

[19] Miner, D., & Shook, A. (2012). MapReduce design

patterns: building effective algorithms and analytics

for Hadoop and other systems. O'Reilly Media, Inc.

[20] Examining the Design Patterns of Microservices for

Achieving Performance Quality Tactics. (2022).

Retrieved November 17, 2022, from

https://colab.research.google.com/drive/1dOmmWO

YxvHNshxr7baGDmkKosWl4lpUj#scrollTo=OizCjP

UQ9U-o.

https://learn.microsoft.com/en-us/azure/architecture/patterns/bulkhead
https://learn.microsoft.com/en-us/azure/architecture/patterns/bulkhead
https://colab.research.google.com/drive/1dOmmWOYxvHNshxr7baGDmkKosWl4lpUj#scrollTo=OizCjPUQ9U-o
https://colab.research.google.com/drive/1dOmmWOYxvHNshxr7baGDmkKosWl4lpUj#scrollTo=OizCjPUQ9U-o
https://colab.research.google.com/drive/1dOmmWOYxvHNshxr7baGDmkKosWl4lpUj#scrollTo=OizCjPUQ9U-o

