Digraphic Topology On Directed Edges

Hussein A. Neamah¹ and Khalid Sh. Al'Dzhabri²

¹Department of Mathematics, University of Al-Qadisiyah, College of Education, Iraq, Al Diwaniyah edu-math.post6@qu.edu.iq

²Department of Mathematics, University of Al-Qadisiyah , College of Education, Iraq , Al Diwaniyah khalid.aljabrimath@qu.edu.iq

Abstract: In this paper, we study the digraphic topology τ_{ID} for a directed edges of a digraph. We give some properties of this topology, in particular we prove that τ_{ID} is an Alexandroff topology and when two digraphs are isomorphic, their digraphic topologies will be homeomorphic. We give some properties matching digraphs and homeomorphic topology spaces. Finally, we investigate the connectedness of this topology and some relations between the connectedness of the digraph and the topology τ_{ID} .

Keywords—digraph, topology, Alexandroff topology and separation axioms.

1.Introduction:

Topological structures are mathematical models that can be used to analyze data without the concept of distance. Topological structures, in our opinion, are a crucial adjustment for the extraction and processing of knowledge [2]. This publication provides a few topological fundamentals that are pertinent to our study. One of the most crucial structures in discrete mathematics is the graph [1]. Two observations explain their pervasiveness. Graphs are mathematically elegant, to start, from a theoretical standpoint. Although a graph merely has a set of vertices and a relationship between pairs of vertices, it is a simple structure, yet graph theory is a vast and diverse field of study. This is partially because graphs can be thought of as topological spaces, combinatorial objects, and many other mathematical structures in addition to being relational structures [1]. This brings us to our second argument about the significance of graphs: many ideas may be abstractly represented by graphs[3], which makes them very helpful in real-world applications. Several earlier studies on the subject of topological graphs we can see in [4-11]. In this paper we discuss a new method to generate topology τ_{ID} on graph by using new method of taking neighborhood is determining a vertex on the digraph and calculate each vertex and its edges indgree of it and we defined $S_{ID} = \{ \overrightarrow{E_v} | v \in V \}$, where $\overrightarrow{E_v}$ is the set of all edges indgree to y, we have $E = U_{v \in V} \overrightarrow{E_v}$. hence S_{ID} forms a subbasis for a topology τ_{ID} on E, called digraphic topology, (briefly digtopology) of D.

2.PRELIMINARIES:

In this work , some basic notions of graph theory [1-2], and topology [2] are presented. A graph (resp., directed graph or digraph) D = (V, E) consists of a vertex set V and an edge set E of unordered (resp., ordered) pairs of elements of V. To avoid ambiguities, we assume that the vertex and edge sets are disjoint. We say that two vertices V and V of a graph (resp., digraph V or V or V joining them, and the vertices V and V are then incident with such an edge. A subdigraph V of a digraph V is a digraph, each of whose vertices belong to V and each

of whose edges belong to E. The degree of a vertex v of D is the number of edges incident with v, and written deg(v). A vertex of degree zero is an isolated vertex. In digraph, the outdegree, of a vertex y of D is the number of edges of the form vw and denoted by d+(v), similarly, the indegree of a vertex y of D is the number of edges of the form wy, and denoted by d⁻(v),. A vertex of out-degree and in-degree are zero is an isolated vertex. A topology τ on a set X is a combination of subset of X, called open, such that the union of the member of any subset of τ is a member of τ , the intersection of the members of any finite subset of τ is a member of τ , and both empty set and X are in τ and the ordered pair (X, τ) is called topological space. The topology $\tau = P(X)$ on X is called discrete topology while the topology $\tau = \{X, \emptyset\}$ on X is called indiscrete topology. A topology in which arbitrary intersection of open set is open called Alexandroff space.

3.DIGRAPHIC TOPOLOGY.

In this section, we introduce our new subbasis family to generated a topology on the set of edges E of a digraph D = (V,E).

Definition 3.1: Let D = (Y, E) be a digraph, we defined $S_{ID} = \{ \overline{E_y} | y \in Y \}$, where E_y is the set of all edges indgree to y, we have $E = \bigcup_{y \in Y} \overline{E_y}$, hence S_{ID} forms a subbasis for a topology τ_{ID} on E, called digraphic topology, (briefly digtopology) of D.

Theorem 3.2: Let D=(V,E) be digraph then (E,τ_{ID}) is topological space .

 \boldsymbol{prove} : we will prove that τ_{ID} is topological graph ,

- 1) Since $E = \bigcup_{i \in I} W_i$ where $W_i \in \beta_{ID}$ such that β_{ID} is a basis for a topological graph τ_{ID} , then $W_i = \bigcap_{i=1}^n S_i$ where $S_i \in S_{ID}$ and $S_i = \overrightarrow{E_{Y_t}}$, $\forall_i \in Y$. Then $E = \bigcup_{i \in I} (\overrightarrow{E_{Y_t}})$ and so $E \in \tau_{ID}$. Also $\emptyset \in \tau_{ID}$ by complement of E.
- 2) Let $U_i \in \tau_{ID}$, $U_i = \bigcup_{i \in I} W_i$ where $W_i \in \beta_{ID}$, $W_i = \bigcap_{i=1}^n S_i$ where $S_i \in S_{ID}$, $S_i = \overrightarrow{E}_{V_i}$, $v_i \in V$, then $U_i = V$

 $B_i = \bigcup_{i \in I} (\bigcap_{i=1}^n \overrightarrow{\overline{F}_{v_i}})$ then:

 $\begin{array}{lll} \bigcup_{i \in I} (\bigcap_{j=1}^{n} \overline{\mathbb{E}}_{\forall_{t}}) & \text{so} & U_{i} = \bigcup_{i \in I} (\bigcap_{j=1}^{n} \overline{\mathbb{E}}_{\forall_{t}}) \in \tau_{ID}. \\ \text{Therefore } \bigcup_{i \in I} U_{i} \in \tau_{ID}. \\ \text{3) Let } A_{i}, B_{i} \in \tau_{ID}, A_{i} = \bigcup_{i \in I} W_{i} & \text{where } W_{i} \in \beta_{ID}, \\ W_{i} = \bigcap_{i=1}^{n} S_{i} & \text{where } S_{i} \in S_{ID}, S_{i} = \overline{\mathbb{E}}_{\forall_{i}}, \ \forall_{i} \in \mathbb{Y} & \text{then} \\ A_{i} = \bigcup_{i \in I} (\bigcap_{j=1}^{n} \overline{\mathbb{E}}_{\forall_{i}}), & B_{i} = \bigcup_{i \in I} U_{i} & \text{where } U_{i} \in \beta_{ID}, \\ U_{i} = \bigcap_{i=1}^{n} S_{i} & \text{where } S_{i} \in S_{ID}, S_{i} = \overline{\mathbb{E}}_{\forall_{i}}, & \forall_{i} \in \mathbb{Y} & \text{then} \end{array}$

- i) If there are no element in intersection i.e., $A_i \cap B_i = \emptyset$ since $\emptyset \in \tau_{I'D}$ then $A_i \cap B_i \in \tau_{I'D}$.
- ii) If there exist element in intersection $U_i \cap W_i$ then we denote it \overrightarrow{E}_{v_i} , $v \in V$ since $A_i = \bigcup_{i \in I} (\bigcap_{j=1}^n \overrightarrow{E}_{v_i})$ and $B_i = \bigcup_{k \in I} (\bigcap_{j=1}^n \overrightarrow{E}_{v_i})$ then \overrightarrow{F}_v one of these Posts. Therefore $A_i \cap B_i \in \tau_{ID}$.

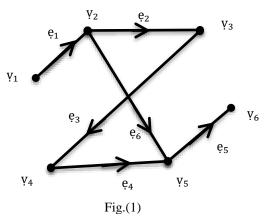
Example 3.3: Let D = (V, E) be digraph as in Figure (1), such that $V = \{v_1, v_2, v_3, v_4, v_5, v_6\}$, $E = \{e_1, e_2, e_3, e_4, e_5, e_6\}$.

We have,
$$\overline{E_{v_1}} = \emptyset$$
, $\overline{E_{v_2}} = \{e_1\}$, $\overline{E_{v_3}} = \{e_2\}$, $\overline{E_{v_4}} = \{e_3\}$, $\overline{E_{v_5}} = \{e_4, e_6\}$, $\overline{E_{v_6}} = \{e_5\}$ and $S_{ID} = \{\emptyset, \{e_1\}, \{e_2\}, \{e_3\}, \{e_5\}, \{e_4, e_6\}\}$.

By taking finitely intersection the basis obtained is : $\{\emptyset, \{e_1\}, \{e_2\}, \{e_3\}, \{e_5\}, \{e_4, e_6\}\}$. Then by taking all unions the topology can be written as:

$$\begin{split} \tau_{\text{ID}} = & \{ \ E(D), \emptyset, \{e_1\}, \{e_2\}, \{e_3\}, \{e_5\}, \{e_4, e_6\}, \{\ e_1, e_2\}, \\ \{e_1, e_3\}, \{e_1, e_5\}, \{\ e_2, e_3\}, \{e_2, e_5\}, \{e_3, e_5\}, \{e_1, e_2, e_3\}, \\ \{e_1, e_2, e_5\}, \{e_1, e_3, e_5\}, \end{split}$$

 $\begin{array}{l} \{e_2,e_3,e_5\}, \{e_1,e_4,e_6\}, \{e_2,e_4,e_6\}, \{e_3,e_4,e_6\}, \{e_5,e_4,e_6\}, \\ \{e_1,e_2,e_3,e_5\}, \{e_1,e_2,e_4,e_6\}, \{e_1,e_3,e_4,e_5\}, \{e_1,e_5,e_4,e_5\}, \\ \{e_2,e_3,e_4,e_5\}, \{e_2,e_5,e_4,e_5\}, \{e_3,e_5,e_4,e_5\}, \{e_1,e_2,e_3,e_4,e_6\}, \\ \{e_1,e_2,e_5,e_4,e_6\}, \{e_1,e_3,e_5,e_4,e_6\}, \{e_2,e_3,e_5,e_4,e_6\}\}. \end{array}$ Then τ_{ID} is topology is called digtopology τ_{ID} .



Remark 3.4: Let C_n be cyclic digraph if every edges are in the same directed then we get the digtopology τ_{ID} on C_n is discrete, and if the edges are not all in the same direction we get the digtopology τ_{ID} on C_n is not discrete.

This Remark illustrates in the next two Examples.

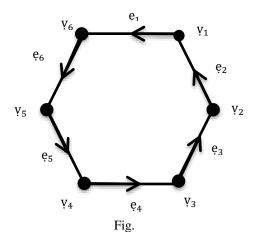
Example 3.5: Let C_5 be cyclic digraph such that every edges are in the same direction, show in Figure (2).

We have,
$$\overline{E_{v_1}} = \{e_2\}$$
, $\overline{E_{v_2}} = \{e_3\}$, $\overline{E_{v_3}} = \{e_4\}$, $\overline{E_{v_4}} = \{e_5\}$, $\overline{E_{v_5}} = \{e_6\}$ $\overline{E_{v_6}} = \{e_1\}$.

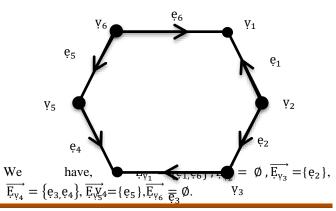
And
$$S_{TD} = \{\{e_1\}, \{e_2\}, \{e_3\}, \{e_4\}, \{e_5\}, \{e_6\}\}\}$$
.
 $\tau_{ID} = \{ E(D), \emptyset, \{e_1\}, \{e_2\}, \{e_3\}, \{e_4\}, \{e_5\}, \{e_6\}, \{e_1, e_2\}, \{e_1, e_3\}, \{e_1, e_4\}, \{e_1, e_5\}, \{e_1, e_6\}, \{e_2, e_3\}, \{e_2, e_4\},$

$$\{e_2, e_5\}, \{e_2, e_6\}, \{e_3, e_4\}, \{e_3, e_5\}, \{e_3, e_6\}, \{e_4, e_5\}, \\ \{e_4, e_6\}, \{e_1, e_2, e_3\}, \{e_1, e_2, e_4\}, \{e_1, e_2, e_5\}, \{e_1, e_2, e_6\}, \\ \{e_1, e_3, e_4\}, \{e_1, e_3, e_5\}, \{e_1, e_3, e_6\}, \{e_1, e_4, e_5\}, \{e_1, e_4, e_6\}, \\ \{e_2, e_3, e_4\}, \{e_2, e_3, e_5\}, \{e_2, e_3, e_6\}, \{e_2, e_4, e_5\}, \{e_2, e_4, e_6\},$$

 $\{e_3, e_4, e_5\}, \{e_3, e_4, e_6\}, \{e_1, e_2, e_3, e_4\}, \{e_1, e_2, e_3, e_5\}, \\ \{e_1, e_2, e_3, e_6\} \{e_1, e_2, e_4, e_5\}, \{e_1, e_2, e_4, e_6\}, \{e_1, e_3, e_4, e_5\}, \\ \{e_1, e_3, e_4, e_6\}, \{e_2, e_3, e_4, e_5\}, \{e_1, e_3, e_4, e_6\}, \{e_1, e_2, e_3, e_4, e_5\}, \\ \{e_1, e_2, e_3, e_4, e_6\}, \{e_1, e_2, e_3, e_5, e_6\} \{e_1, e_3, e_4, e_5, e_6\}, \\ \{e_2, e_3, e_4, e_5, e_6\}\}. Then we get the digtopology <math>\tau_{ID}$ of C_6 is discrete topology.



Example 3.6: Let C_5 be cyclic digraph such that the edges are not all in the same direction, show in Figure (3).



ISSN: 2643-640X

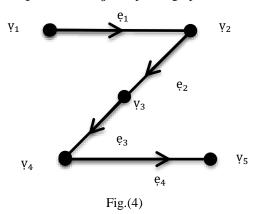
Vol. 6 Issue 12, December - 2022, Pages: 7-13

And $S_{ID} = \{\emptyset, \{e_1, e_6\}, \{e_3, e_4\}, \{e_2\}, \{e_5\}\}.$ $\tau_{\text{ID}} = \{ \text{ E(D), } \emptyset, \{e_{1}, e_{6}\}, \{e_{3}, e_{4}\}, \{e_{2}\}, \{e_{5}\}, e_{2}, e_{5}\}, \{e_{1}, e_{6}, e_{2}\},$ $\{e_1, e_6, e_5\}\{e_3, e_4, e_2\}, \{e_3, e_4, e_5\}, \{e_1, e_6, e_3, e_4\},$ $\{e_1, e_6, e_2, e_5\}\{e_1, e_6, e_5, e_2\}\{e_3, e_4, e_2, e_5\}, \{e_3, e_4, e_5, e_2\},$ $\{e_1, e_6, e_3, e_4, e_2\}, \{e_1, e_6, e_3, e_4, e_5\}\}$. Then we get the digtopology τ_{ID} of C_6 is not discrete topology.

Remark 3.7: Let P_n be a path digraph if every edges are in the same directed then we get the digtopology τ_{ID} on P_n is discrete, and if the edges are not all in the same direction we get the digtopology τ_{ID} on P_n is not necessary discrete .

This Remark illustrates in the next Examples.

Example 3.8: Let P_5 be a path digraph, show in Figure (4).

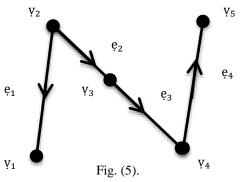


We have
$$\overrightarrow{E_{\gamma_1}} = \emptyset$$
, $\overrightarrow{E_{\gamma_2}} = \{e_1\}$, $\overrightarrow{E_{\gamma_3}} = \{e_2\}$, $\overrightarrow{E_{\gamma_4}} = \{e_3\}$, $\overrightarrow{E_{\gamma_5}} = \{e_4\}$. And $S_{ID} = \{\emptyset, \{e_1\}, \{e_2\}, \{e_3\}, \{e_4\}\}$. $\tau_{ID} = \{E(D), \emptyset, \{e_1\} \{e_2\}, \{e_3\}, \{e_4\}, \{e_1, e_2\}, \{e_1, e_3\}, \{e_1, e_4\}, \{e_2, e_4\}, \{e_3, e_4\}, \{e_1, e_2, v_3\}, \{e_1, e_2, e_4\}, \{e_2, e_3, e_4\}$. We note the ine.to.digsp. τ_{ID} is discret topology.

have, $\overrightarrow{E}_{v_1} = \{e_1\}, \overrightarrow{E}_{v_2} =$ $\emptyset \text{ , } \overrightarrow{\overline{F_{\gamma_3}}} = \{\underline{e_2}\}, \overrightarrow{\overline{F_{\gamma_4}}} = \{\underline{e_3}\}, \overrightarrow{\overline{F_{\gamma_5}}} = \{\underline{e_4}\} \text{ .}$ And $S_{ID} = \{\emptyset, \{e_1\}, \{e_2\}, \{e_3\}, \{e_4\}\}.$ $\{E(D), \emptyset, \{e_1\}\{e_2\}, \{e_3\}, \{e_4\}, \{e_1, e_2\}, \{e_1, e_3\}, \{e_1, e_4\}, \{e_2, e_3\},$

Example 3.9: Let P_5 be a path digraph, show in Figure (5).

 $\{e_2, e_4\}, \{e_3, e_4\}, \{e_1, e_2, v_3\}, \{e_1, e_2, e_4\}, \{e_2, e_3, e_4\},$

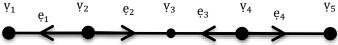


 $\{e_1, e_2, e_3, e_4\}$. We note the digtopology τ_{ID} is discret topology.

Example 3.10: Let P_5 be a path digraph, show in Figure (6)

then we get the digtopology
$$\tau_{ID}$$
 of P_5 is not discrete.
We have, $\overrightarrow{E_{v_1}} = \{e_1\}$, $\overrightarrow{E_{v_2}} = \emptyset$, $\overrightarrow{E_{v_3}} = \{e_2, e_3\}$, $\overrightarrow{E_{v_4}} = \emptyset$, $\overrightarrow{E_{v_5}} = \{e_4\}$. And $S_{ID} = \{\emptyset, \{e_1\}, \{e_2, e_3\}, \{e_4\}\}$.

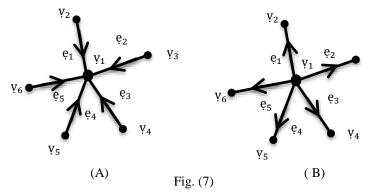
 $\tau_{\text{ID}} = \big\{ E(D), \emptyset, \{e_1\}, \{e_2, e_3\}, \{e_4\}, \{e_1, e_4\}, \{e_1, e_2, e_3\} \big\},$ $\{e_2, e_3, e_4\}, \{e_1, e_2, e_3, e_4\}\}$. We note the ine.to.digsp. τ_{ID} is not discret topology.



Remark 3.11: Let S_n be a star digraph then :

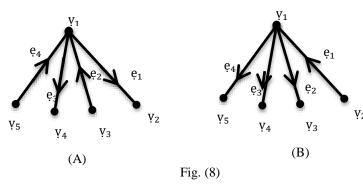
- (i) If every edges Fig. (66) ction to center vertex then the digtopology τ_{ID} is indiscreet topology.
- (ii) If every edges are not direction to center vertex then the digtopology τ_{ID} is discreet topology.
- If most edge is direction to center vertex then the (iii) digtopology τ_{ID} is not discrete topology. This Remark illustrates in the next Examples.

Example 3.12: Let S_5 be a star digraph ,show in Figure (7). In Figure(7)(A), every edges are directed to center vertex. We have $\overline{E}_{Y_1} = \{e_1, e_2, e_3, e_4, e_5\}, \overline{E}_{Y_2} = \emptyset, \overline{E}_{Y_3} = \emptyset, \overline{E}_{Y_4} = \emptyset, \overline{E}_{Y_5} = \emptyset, \overline{E}_{Y_6} = \emptyset$. And $S_{ID} = \{\emptyset, E(D)\}$ $\tau_{ID} = \{\emptyset, E(D)\}$ then we get the digtopology τ_{ID} is indiscrete topology.But in Figure (7)(B) every the edges not direction to center vertixe We note, $\overline{E}_{v_1} = \emptyset$, $\overline{E}_{v_2} = \emptyset$ $\begin{aligned} &\{e_1\}, \overline{E_{v_3}} = \{e_2\}, \overline{E_{v_4}} = \{e_3\}, \overline{E_{v_5}} = \{e_4\}, \overline{E_{v_6}} = \{e_5\}. \\ &\text{And } S_{ID} = \{\emptyset, \{e_1\}, \{e_2\}, \{e_3\}, \{e_4\}, \{e_5\}\} \end{aligned}$ $\tau_{\text{ID}} = \{ E(D), \emptyset, \{e_1\}, \{e_2\}, \{e_3\}, \{e_4\}, \{e_5\}, \{e_1, e_2\}, \{e_1, e_3\}, \{e_4\}, \{e_5\}, \{e_1, e_2\}, \{e_2\}, \{e_3\}, \{e_4\}, \{e_5\}, \{e_5$ $\{e_1, e_4\}, \{e_1, e_5\}, \{e_2, e_3\}, \{e_2, e_4\}, \{e_2, e_5\}, \{e_3, e_4\}, \{e_3, e_5\},$ $\{e_4, e_5\}, \{e_1, e_2, e_3\}, \{e_1, e_2, e_4\}, \{e_1, e_2, e_5\}, \{e_1, e_3, e_4\},$ $\{e_1, e_3, e_5\}, \{e_1, e_4, e_5\}, \{e_2, e_3, e_4\}, \{e_2, e_3, e_5\}, \{e_2, e_4, e_5\},$ $\{e_3, e_4, e_5\}, \{e_1, e_2, e_3, e_4\}, \{e_1, e_2, e_3, e_5\}, \{e_1, e_2, e_4, e_5\},$



 $\{e_1,e_3,e_4,e_5\},\{e_2,e_3,e_4,e_5\}\}$ we get the digtopology τ_{ID} of S_5 is discrete topology.

Example 3.13: Let S_4 be a star digraph, show in Figure (8).



We note, in Figure (8)(A), is most edges is not same $\overrightarrow{\mathrm{directed}}, \overrightarrow{\overline{\mathrm{E}_{\gamma_{1}}}} = \{\underline{e}_{2},\underline{e}_{4}\}, \overrightarrow{\overline{\mathrm{E}_{\gamma_{2}}}} = \ \{\underline{e}_{1}\}, \overrightarrow{\overline{\mathrm{E}_{\gamma_{3}}}} =$ $\{e_3\}, \overrightarrow{E_{V_5}} = \emptyset$. And $S_{ID} = \{\emptyset, \{e_1\}, \{e_3\}, \{e_2, e_4\}\}$.

= $\{E(D), \emptyset, \{e_1\}, \{e_3\}, \{e_2, e_3\}, \{e_1, e_3\}, \{e_1, e_2, e_4\}\}, \{e_3, e_2, e_4\}\}$ We get the digtopology τ_{ID} is not discret topology.

But in Figure (8)(B), we note only one edges is directed to center vertixe , hence $\ \overline{\underline{E}_{v_1}} = \{\underline{e}_1\}$, $\overline{\underline{E}_{v_2}} = \emptyset$, $\overline{\underline{E}_{v_3}} = \{\underline{e}_2\}$,

$$\overline{E}_{V_4} = \{e_3\}, \overline{E}_{V_5} = \{e_4\} \text{ And } S_{ID} = \{\emptyset, \{e_1\}, \{e_2\}, \{e_3\}, \{e_4\}\}.$$

$$\tau_{ID} = \{E(D), \emptyset, \{e_1\}, \{e_2\}, \{e_3\}, \{e_4\}, \{e_1, e_2\}, \{e_3\}, \{e_4\}, \{$$

 $e_1, e_3\}, \{\,e_1, e_4\}, \{\,e_2, e_3\}, \{e_2, e_4\}, \{e_3, e_4\}, \{e_1, e_2, e_3\}, \{e_1, e_2, e_4\},$ $\{e_1, e_3, e_4\}, \{e_2, e_3, e_4\}\}$. We get the digtopology τ_{ID} of S_5 is discrete topology.

Proposition 3.14: Suppose that τ_{ID} is the digtopology of the adigraphD = (V,E), then $\{e\} \in \tau_{1D}$ if $\overrightarrow{I_e}^{\nu} \neq \overrightarrow{I_e}^{\nu}$ for all $e \in E$

Prove: Let $e \in E$ then $\overrightarrow{I_e} = \{v\}$ for some $v \in V$ and byhypothesis $\overrightarrow{I_e}^{\nu} \neq \overrightarrow{I_e}^{\nu}$ for all $e \in E$ then we get e is only edge is directed to $v_{}$ and hence then $\; \overrightarrow{\overline{E}_{v}} = \{e_{}\}$ and by definition digtopology τ_{ID} we get $\{e\} \in \tau_{ID}$.

Remark 3.15: Let D = (V, E) be a digraph, then the digtopology τ_{ID} is not necessary to be discrete topology in general .The Example 3.3, illustrate Remark 3.15.

Corollary 3.16: Let D = (V, E) be a digraph if $\overrightarrow{I_e}^{\nu} \neq \overrightarrow{I_e}^{\nu}$ for every distance pair of edge $e, e \in E$, then digtopology τ_{ID} is discrete topology.

Prove: Since $\overrightarrow{I_e}^v \neq \overrightarrow{I_e}^v$ for every distance pair of edge in digraph D then by Proposition 3.14, $\{e\} \in \tau_{ID}$ for all $e \in E$, hence we get the digtopology τ_{ID} is discrete topology.

Example 3.17: According to Example 3.5,we note that $\overline{I_{e_1}}^{\nu} = \{y_5\}, \overline{I_{e_2}}^{\nu} = \{y_1\}, \overline{I_{e_3}}^{\nu} = \{y_2\}, \overline{I_{e_4}}^{\nu} = \{y_3\}, \overline{I_{e_5}}^{\nu} = \{y_4\}$ i.e $\overline{I_e}^{\nu} \neq \overline{I_e}^{\nu}$ $\forall e, e \in E$, hence digtopology τ_{ID} is

Remark 3.18: If D = (V,E) be reflexive digraph then digtopology τ_{ID} is not discrete topology .

The Example illustrate Remark 3.18.

Example 3.19:Let D = (V,E) be reflexive digraph show in Figure(9).

We note,
$$\overrightarrow{E_{v_1}} = \{e_1\}$$
, $\overrightarrow{E_{v_2}} = \{e_2, e_3\}$, $\overrightarrow{E_{v_3}} = \{e_4, e_5\}$.
And $S_{ID} = \{\{e_1\}, \{e_2, e_3\}, \{e_4, e_5\}\}$. $T_{ID} = \{E(D), \emptyset, \{e_1\}, \{e_2, e_3\}, \{e_4, e_5\}, \{e_1, e_2, e_3, \}\}$, e_1 e_2 e_3 e_4 e_5

Fig.(9). $\{e_1, e_4, e_5\},\$

 $\{e_2, e_3, e_4, e_5\}$. We get the digtopology τ_{ID} is not discrete topology.

Proposition 3.20: Let D = (V,E) be reflexive digraph and $d(y) \le 2$ then the digtopology τ_{ID} is discrete topology.

Prove: Since the D = (V, E) reflexive digraph and $d(v) \le 2$ for all y ∈V there exist only loop on every vertex and hence \forall \forall \forall \forall we get $E_v = \{e\}$, where e = (v, v) and by definition digtopology τ_{ID} implies $\{e\} \in \tau_{ID}$ for all $e \in E$, thus digtopology τ_{ID} is discrete topology. The Example illustrate proposition 3.20.

Example 3.21: Let D = (V,E) be reflexive digraph, show in

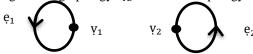
We note,
$$\overrightarrow{E_{\gamma_1}} = \{e_1\}, \overrightarrow{E_{\gamma_2}} = \{e_2\}, \overrightarrow{E_{\gamma_3}} = \{e_3\}, \overrightarrow{E_{\gamma_4}} = \{e_4\}.$$

And $S_{ID} = \{\{e_1\}, \{e_2\}, \{e_3\}, \{e_4\}\}.$

$$\tau_{ID} = \{ E(D), \emptyset, \{e_1\}, \{e_2\}, \{e_3\}, \{e_4\}, \{e_1, e_2\}, \{e_4\}, \{e_$$

$$e_1, e_3$$
, { e_1, e_4 }, { e_2, e_3 },

 $\{e_2, e_4\}, \{e_3, e_4\}, \{e_1, e_2, e_3\}, \{e_1, e_2, e_4\}, \{e_1, e_3, e_4\}, \{e_2, e_3, e_4\}\}$ We get the digtopology τ_{ID} is discrete topology.



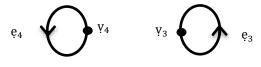


Fig.(10).

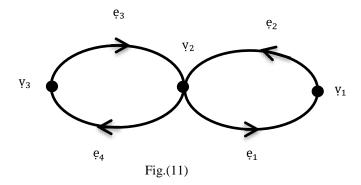
Remark 3.22: Let D = (V,E) be a symmetric digraph, then digtopology τ_{ID} not necessary to be discrete topology in general .the following Example shows Remark 3.22.

Example 3.23: Let D = (V, E) be symmetric digraph in Figure (11) such that $Y = \{y_1, y_2, y_3\}$, $E = \{e_1, e_2, e_3, e_4\}$

ISSN: 2643-640X

Vol. 6 Issue 12, December - 2022, Pages: 7-13

We have, $\overline{E}_{v_1} = \{e_1\}$, $\overline{E}_{v_2} = \{e_2, e_3\}$, $\overline{E}_{v_3} = \{e_4\}$. . $S_{ID} = \{\{e_1\}, \{e_4\}, \{e_2, e_3\}\}$. $\tau_{ID} = \{E(D), \emptyset, \{e_1\}, \{e_4\}, \{e_2, e_3\}, \{e_1, e_4\}, \{e_1, e_2, e_3\}, \{e_4, e_2, e_3\}\}$. We note the digtopology τ_{ID} is not discrete topology.



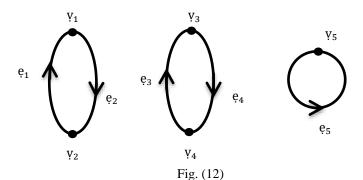
Proposition 3.24: If D = (V, E) be a symmetric digraph and $d(v) \le 2$ for all $v \in V$ then the digtopology τ_{ID} is discrete topology.

Prove: Since D=(V,E) be a symmetric digraph and $d(y) \leq 2$ implies we get for all $v \in V$ there exist at most one edge is directed to y for all $y \in V$ [because if there exist two edge are directed to y and $d(y) \leq 2$ implies D=(V,E) is not symmetric] and hence, $\overrightarrow{I_e}^{\nu} \neq \overrightarrow{I_e}^{\nu}$ for all $e \in E$, by proposition 3.14 then the digtopology τ_{ID} is discrete topology .

the following Example shows the Proposition 3.24.

Example 3.25 :Let D = (V, E) be symmetric digraph in Figure (12) such that $V = \{v_1, v_2, v_3, v_4, v_5\}$, $E = \{e_1, e_2, e_3, e_4, e_5\}$.

 $\begin{array}{l} \{e_1,e_2,e_3\,,e_4\,,e_5\}. \\ \text{We note }, \overline{E_{v_1}} = \{e_1\}, \overline{E_{v_2}} = \{e_2\}, \overline{E_{v_3}} = \{e_3\}, \overline{E_{v_4}} = \{e_4\}, \\ \overline{E_{v_5}} = \{e_5\}. \text{And } S_{ID} = \{\{e_1\}, \{e_2\}, \{e_3\}, \{e_4\}, \{e_5\}\}. \\ \tau_{ID} = \{E(D),\emptyset, \{e_1\}, \{e_2\}, \{e_3\}, \{e_4\}, \{e_5\}, \{e_1,e_2\}, \{e_1,e_3\}, \{e_1,e_4\}, \{e_1,e_5\}, \{e_2,e_3\}, \{e_2,e_4\}, \{e_2,e_5\}, \{e_3,e_4\}, \{e_3,e_5\}, \{e_4,e_5\}, \{e_1,e_2,e_3\}, \{e_1,e_2,e_4\}, \{e_1,e_2,e_5\}, \{e_1,e_3,e_4\}, \{e_1,e_3,e_4\}, \{e_1,e_3,e_4\}, \{e_1,e_2,e_3,e_5\}, \{e_1,e_2,e_4,e_5\}, \{e_1,e_2,e_3,e_4\}, \{e_1,e_2,e_3,e_5\}, \{e_1,e_2,e_4,e_5\}, \{e_1,e_3,e_4,e_5\}, \{e_2,e_3,e_4,e_5\}. \\ \text{We get the digtopology } \tau_{ID} \text{ is discrete topology.} \end{array}$



Proposition 3.26: The digtopology (E, τ_{ID}) of digraph D = (V, E) is Alexandroff space .

Prove : It is adequate to show that arbitrary intersection of elements of S_{ID} is open, Let $A \subseteq V$: $\bigcap_{v \in A} \overrightarrow{F_v} =$

 $\left\{ egin{array}{ll} \overline{\mathbb{F}_{\mathrm{v}}} & \textit{if A contin one vertex } \mathrm{v} \\ \emptyset & \textit{owther wise} \end{array}
ight.$

And by Definition 3.1 of digtopology τ_{ID} we get \emptyset ,

 $\overrightarrow{E_{y}} \in \tau_{ID}$, then $\bigcap_{y \in A} \overrightarrow{E_{y}}$ is open .Hence the digtopology τ_{ID} is satisfies property of Alexandroff .

Definition 3.27: In any digraph D = (V, E) since (E, τ_{ID}) is Alexandroff space, for each $e \in E$, the intersection of all open set containing e is the smallest open set containing e and denoted by U_e , Also the family $M_D = \{U_e | e \in E\}$ is the minimal basis for the digtopology τ_{ID} .

Proposition 3.28 : In any digraph $D=(V,E),\,U_e=\overline{E_v}$ where $\overline{I_e}^{\nu}=\{v\}$ for every $\,e\in E$.

Prove: \Rightarrow Since every $e \in E$ then $\overrightarrow{I_e}^{\nu} = \{v\}$ for some $v \in V$ and by Definition 3.1.1, of digtopology τ_{ID} , E_v is open contain e and by Definition 3.27, of U_e then we get $U_e \subseteq \overrightarrow{E_v}$.

Remark 3.29: Let D = (V, E) be a digraph, if $\overrightarrow{I_e}^{\nu} \neq \overrightarrow{I_e}^{\nu}$ for all $e \in E$ then $U_e = \{e\}$.

Prove: clear

Theorem 3.30: For any $e, e \in E$ in a digraph D = (V, E) we have $\overrightarrow{I_e}^{\nu} = \overrightarrow{I_e}^{\nu}$ iff $e \in U_e$ i.e $U_e = \{e \in E \mid \overrightarrow{I_e}^{\nu} = \overrightarrow{I_e}^{\nu}\}$. **Prove:** \Rightarrow Let $\overrightarrow{I_e}^{\nu} = \overrightarrow{I_e}^{\nu}$ to prove $e \in U_e$. Since $\overrightarrow{I_e}^{\nu} = \overrightarrow{I_e}^{\nu} = \overrightarrow{I_e}^{\nu}$

Prove: \Longrightarrow Let $\overrightarrow{I_e}^{\nu} = \overrightarrow{I_e}^{\nu}$ to prove $e \in U_e$. Since $\overrightarrow{I_e}^{\nu} = \overrightarrow{I_e}^{\nu} = \{v\}$, implies $e, e \in \overrightarrow{E_v}$ and by Properties 3.28 $U_e = \overrightarrow{E_v}$ and $U_e = \overrightarrow{E_v}$, and hence $U_e = U_e = E_v$ then $e \in U_e$.

Remark 3.31: The digtopology τ_{ID} in any digraph D = (V, E) is not necessary T_0 in general.

Example 3.32: According to Example 3.12 we get the digtopology $\tau_{ID} = \{\emptyset, E(D)\}$ is not T_0 because $e_2, e_3 \in E(D)$ But $\not\equiv$ open set A such that $e_2 \in A$ and $e_3 \notin A$ or $e_3 \in A$ and $e_2 \notin A$.

Remark 3.33: Let C_n be a cyclic digraph such that every edges are in the same direction then we get the digtopology τ_{ID} is T_0 and if the edges are not all in the same direction we get the the digtopology τ_{ID} is not T_0 .

The next Example are illustrates the remark 3.33.

Example 3.34:

(i) By according Example 3.5 we note that the cyclic digraph C_5 all edges in the same direction

and hence we note the digtopology τ_{ID} on C_5 is T_0 .

(ii) By according example 3.6 we note that the cyclic digraph C_6 all edges are not in the same direction and hence we note the digtopology τ_{ID} is not T_0 , because e_3 , $e_4 \in E$ but $\not\equiv A \in \tau_{\text{ID}}$ such that $e_3 \in A$ and $e_4 \notin A$ or $e_3 \notin A$ and $e_4 \in A$.

Remark 3.35 : Let P_n be a path digraph such that every edges are in the same direction then we get the digtopology τ_{ID} is T_0 , and if the edges are not all in the same direction we get the digtopology τ_{ID} is not necessary T_0 .

The next two Example are illustrates the Remark 3.35.

Example 3.36:

- (i) By according Example 3.8 we note that the path digraph P_5 all edges in the same direction and hence we note the digtopology τ_{ID} on P_5 is T_0 .
- (ii) By according Example 3.9 we note that the path digraph P_5 all edges are not in the same direction and hence we note the digtopology τ_{ID} is T_0 .
- (iii) By according Example 3.10 we note that the path digraph P_5 all edges are not in the same direction and hence we note the digtopology τ_{ID} is not T_0 , because e_2 , $e_3 \in E$ but $\not\equiv A \in \tau_{ID}$ such that $e_2 \in A$ and $e_3 \notin A$ or $e_3 \notin A$ and $e_2 \in A$.

Remark 3.37: Let S_n be a star digraph such that every edges are indgree to the center vertex then we get the digtopology $\tau_{\rm ID}$ is not T_0 , and if the every edges are not indgree to the center vertex we get the digtopology $\tau_{\rm ID}$ is T_0 . Also, if only one edge from set edges is directed in to center vertex then we have the digtopology $\tau_{\rm ID}$ is T_0 .

The next Example are illustrates the Remark 3.37.

Example 3.38:

- (i) By according Example 3.12 in Figure (9)(A) we note that the star digraph S_5 every edges are indgree to the center vertex and hence we note the digtopology τ_{ID} is not T_0 , because e_2 , $e_4 \in E$, but $\nexists A \in \tau_{ID}$ such that $e_2 \in A$ and $e_4 \notin A$ or $e_2 \notin A$ and $e_4 \notin A$.
- (ii) By according Example 3.12 in figure (7)(B) we note that the star digraph S_5 every edges are not indgree to the center vertex we get the digtopology τ_{TD} is T_0 .

Proposition 3.39: The digtopology τ_{ID} in any digraph D = (V, E) is T_0 if and only if $\overrightarrow{I_e} \neq \overrightarrow{I_e}$ for every distinct pair of edges $e, e \in E$.

Prove: \Rightarrow Suppos the digtopology τ_{ID} is T_0 to prove $\overrightarrow{I_e} \neq \overrightarrow{I_e}$ for every distinct pair of edges $e, e \in E$.

If $\overrightarrow{I_e} = \overrightarrow{I_e}$ then by Theorem 3.30 $e \in U_e$ and we get there exist u is open set such that $e \in u$ and $e \in u$ implies the

digtopology τ_{ID} is not T_0 this contradiction .then $\overrightarrow{I_e} \neq \overrightarrow{I_e}$ for every distinct pair of edges e, e \in e.

 $\Leftarrow \quad \text{since } \overrightarrow{I_e} \neq \overrightarrow{I_e} \text{ for every distinct pair of edges then by corollary 3.16} \quad \text{digtopology } \tau_{ID} \text{ is discrete} \quad \text{implies the digtopology } \tau_{ID} \text{ is } T_0 \text{ .}$

The next Example is illusteted this Proposition 3.39.

Example 3.40: Acorroding Example 3.5, we note that $\overrightarrow{I_e} \neq \overrightarrow{I_e}$ for every distinct pair of edges [since $\overrightarrow{I_{e_1}}^{\nu} = \{y_5\}, \overrightarrow{I_{e_2}}^{\nu} = \{y_1\}, \overrightarrow{I_{e_3}}^{\nu} = \{y_2\}, \overrightarrow{I_{e_4}}^{\nu} = \{y_3\}, \overrightarrow{I_{e_5}}^{\nu} = \{y_4\}]$ then we get the digtopology τ_{ID} is T_0 .

And we note, that in the Example 3.6 $[\overline{I_{e_1}}^{\nu} = \{y_1\}, \overline{I_{e_2}}^{\nu} = \{y_3\}, \overline{I_{e_3}}^{\nu} = \{y_4\}, \overline{I_{e_4}}^{\nu} = \{y_4\}, \overline{I_{e_4}}^{\nu} = \{y_5\}, \overline{I_{e_6}}^{\nu} = \{y_1\}]$ there exists $\overline{I_{e_1}}^{\nu} = \overline{I_{e_6}}^{\nu}$ and hence,

 $I_{e_5} = \{y_5\}, I_{e_6} = \{y_1\}\$ there exists $I_{e_1} = I_{e_6}$ and hence, the digtopology τ_{1D} is not T_0 .

Corollary 3.41: The digtopology τ_{ID} in any digraph = (V,E) is T_0 if and only if it is discrete.

Prove : The proof is easy by Properties 3.39 and Corollary 3.16.

Remark 3.42: The digtopology τ_{ID} in any digraph D = (V, E) is not necessary T_1 in general.

Example 3.43: According to Example 3.3 we get the digtopology τ_{ID} is not T_1 because e_4 , $e_6 \in E(D)$ But $\not\equiv 0$ open set A such tha $e_4 \in A$ and $e_6 \notin A$ and $e_6 \in A$ and $e_4 \notin A$. **Remark 3.44:** Let C_n be a cyclic digraph such that every edges are in the same direction then we get the digtopology τ_{ID} is T_1 , and if the edges are not all in the same direction we get the digtopology τ_{ID} is not T_1 .

The next Example are illustrates the Remark 3.44.

Example 3.45:

- (i) By according Example 3.5 we note that the cyclic digraph C_5 all edges in the same direction and hence we note the digtopology τ_{ID} on C_5 is T_1 .
- (ii) By according Example 3.6 we note that the cyclic digraph C_6 all edges are not in the same direction and hence we note the digtopology τ_{ID} is not T_1 , because $e_1, e_6 \in E$ but $\not\exists A \in \tau_{ID}$ such that $e_1 \in A$ and $e_6 \notin A$ and $e_6 \notin A$ and $e_6 \notin A$.

Remark 3.46: Let P_n be a path digraph such that every edges are in the same direction then we get the digtopology τ_{ID} is T_1 , and if the edges are not all in the same direction we get the digtopology τ_{ID} is not necessary T_0 .

This Remark illustrates in the next Example.

Example 3.47:

- (i) By according Example 3.8 we note that the path digraph P_5 all edges in the same direction and hence we note the digtopology τ_{ID} on P_5 is T_1 .
- (ii) By according Example 3.9 we note that the path digraph P_5 all edges are not in the same direction and hence we note the digtopology τ_{ID} is T_1 .

By according Example 3.10 we note that the path digraph P_5 all edges are not in the same direction and hence we digtopology τ_{ID} is not T_1 , because $e_2, e_3 \in E$ but $\not\exists A \in \tau_{ID}$ such that $e_2 \in A \ and \ e_3 \notin A \ and \ e_3 \notin A \ and \ e_2 \in A$.

Proposition 3.48: The digtopology τ_{ID} in any digraph = (V,E) is T_1 if and only if $\overrightarrow{I_e} \neq \overrightarrow{I_e}$ for every distinct pairs of edges $e, e \in E$.

Prove: \Rightarrow Suppose the digtopology τ_{ID} is T_1 to prove $\overrightarrow{I}_e \neq \overrightarrow{I}_e$ for every distinct pair of edges e, é ∈ E.

If $\overrightarrow{I_e} = \overrightarrow{I_e}$ then by Theorem 3.30 $e \in U_e$ and we get u is open set such that $e \in u$ and $e \in u$ implies the digtopology τ_{ID} is not T_1 this contradiction, thus $\overrightarrow{I}_e \neq \overrightarrow{I}_e$ for every distinct pair of edges $e, e \in E$.

 $\Leftarrow \ \ \text{Let} \ \overrightarrow{I_e} \neq \overrightarrow{I_e}$ for every distinct pair of edge by Corollary 3.16 implies the digtopology τ_{ID} is discrete and hence τ_{ID} is

Corollary 3.49: The digtopology τ_{ID} in any digraph D = (V,E) is T_1 if and only if it is discrete.

Prove: The proof is easy by Properties 3.48 and Corollary

D **Proposition 3.50:** The digtopology τ_{ID} in any digraph = (V,E) is T_0 if and only if T_1 .

Prove: By Proposition 3.46 and Proposition 3.41.

Corollary 3.51: Let D = (V, E) be a digraph, For every $e \in E$

E we have $\overline{U_e} = \overline{\overline{E_v}}$ where $\overline{I_e^{\nu}} = \{v\}$. **Prove:** Let $e \in E$ by Proposition 3.28 we get

 $\overrightarrow{E_{\gamma}}$ where $\overrightarrow{I_e}^{\nu} = \{y\}$ Therefor $\overline{U_e} = \overline{\overrightarrow{E_{\gamma}}}$ where $\overrightarrow{I_e}^{\nu} = \{y\}$. Corollary 3.52: Given a digraph D = (V,E). for every $e \in E$ $\overline{\{e\}} \subseteq \overline{U_e} = \overline{\overrightarrow{E_v}}$ where $\overrightarrow{I_e}^{\nu} = \{v\}$.

Prove: Let $u \in \{e\}$ this implies $U \cap \{e\} \neq \emptyset$ for all open set U containing e. since $\{e\} \subseteq U_e$ this implies $U \cap U_e \neq \emptyset$ for all open set U containing e. hence $e \in \overline{U_e}$ and so, $\overline{\{e\}} \subseteq$ $\overline{U_e}$ then by Corollary 3.42, $\overline{\{e\}} \subseteq \overline{U_e} = \overline{\overline{E_v}}$ where $\overline{I_e}^v =$ {v}.

Corollary 3.53: For any $e, e \in E$ in a digraph D = (V,E) we have, $ellipsi \in \overline{\{e\}}$ if and only if $\overrightarrow{I_e} = \overrightarrow{I_e}$.

Prove: $e \in \{e\} \iff U \cap \{e\} \neq \emptyset$ for all open set U containing $\acute{e} \Leftrightarrow e \in U_{\acute{e}} \Leftrightarrow \overrightarrow{I_{e}} = \overrightarrow{I_{\acute{e}}}$, by corollary 3.28.

References.

- [1] J. Bondy, D. S. Murty, Graph theory with applications, North- Holland, 1992.
- [2] J. R. Munkres, Topology, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1975.
- [3] R. J. Wilson, Introduction to Graph Theory, Longman Malaysia, 1996.
- [4] S.P. subbaih, A study of Graph Theory: Topology, Steiner Domination and Semigraph Concepts, Ph.D. thesis, Madurai Kamaraj University, India, 2007.

- [5] K.Karunakaran, Topics in Graph Theory-Topological Approach, Ph.D. thesis, University of Kerata, India 2007
- U.Thomas, A study on Topological set-indexers of Graphs ph.D. thesis, Mahatma Gandhi university, India, 2013.
- [7] M. Shorky, Generating Topology on Graphs by Operations on Graphs, Applied Mathematical Science, 9(54),PP 2843-2857, 2015.
- [8] Kh. Sh Al'Dzhabri, A.M. Hamza and Y.S. Eissa, On DG-Topological spaces Associated with directed graphs, Journal of Discrete Mathematical Sciences and Cryptograph, 12(1): 60-71 DoI: 10.1080109720529.2020.1714886
- [9] Kh. Sh Al⁻Dzhabri and M.F.Hani, On Certain Types of Topological spaces Associated with Digraphs, Journal of Physics: Conference Series 1591(2020)012055 doi:10.1088/1742-6596/1/012055
- [10] Kh.Sh. Al'Dzhabri and et al, DG-domination topology in Digraph. Journal of Prime Research in Mathematics 2021, 17(2), 93–100. http://jprm.sms.edu.pk/
- [11] Kh.Sh. Al'Dzhabri, Enumeration of connected components of acyclic digraph. Journal of Discrete Mathematical Sciences and Cryptography, 2021, 24(7), 2047-2058. DOI: 10.1080/09720529.2021.1965299.