
International Journal of Engineering and Information Systems (IJEAIS)

ISSN: 2643-640X

Vol. 6 Issue 12, December - 2022, Pages: 82-84

www.ijeais.org/ijeais

82

Speculative analysis for an APT detection Treatment of code

overlap by static analysis
Mourad M.H Henchiri1 and Sharyar Wani2

1KICT, IIUM, Malaysia

mourad@unizwa.edu.om
2KICT, IIUM, Malaysia

sharyarwani@iium.edu.my

Abstracts: Computer users want to trespass the risks towards their private data. It is required to scan as much code as possible in

order to approximate the perfect control flow graph. It is then necessary to overcome on the one hand the incompleteness of a

recursive route due to the presence of dynamic jumps and on the other hand the lack of precision of a linear route. One of the

challenges is code overlap obfuscation. In this research we would be describing the speculative approach to propose a

characterization of binaries using this technique. and this research considers only non-self-modifying programs.

Keywords: Data at rest, APT, Malware, hybrid analysis, obfuscation, code overlap.

I- INTRODUCTION

Although the code overlap problem is not a recent obfuscation

technique and is well documented [1], the disassembly

literature often assumes that a byte at a specific address can

only be present in only one instruction [19]. This constraint

prevents detection of any overlap but allows more precise

disassembly on a binary that does not use this protection

technique.

From the other side, and in order to analyze self-modifying

programs, we propose to divide any execution into a trace and

a series of execution snapshots: each snapshot represents a

non-self-modifying part of the program. Such implemented

solution of this slicing might be an emulation with the Binary

Analysis Platform (BAP) and by instrumentation with Pin.

The main concern of this research is devoted to the static

analysis of the code overlap problem. Besides, and as a

perspective, there will be a focus on the analysis of a self-

modifying program: we will focus and stress on the concepts

discussed, in order to reconstruct the waves corresponding to

each level of execution as well as a global control flow graph

for the binary studied.

Speculative route: Since the recursive path is less sensitive

to very simple obscurations such as the injection of dead code,

it is often taken as a starting point in research on static

disassembly. After an initial code search with a recursive scan

is performed, the remaining bytes can undergo a linear scan

that will seek to determine whether they are code or data using

heuristics. One of these approaches assesses the likelihood

that a string of bytes is actually code by first learning about

strings of bytes actually encoding instructions issued during

program execution [2, 13]. This sequence of the two routes is

called a speculative route.

From the famous proven theories, discussing the speculative

routes, and after a first recursive disassembly [3], and when

to try to identify the starting addresses of assembler functions

using the push then mov instruction suite, characteristic of

compiled functions: they start by stacking the pointer of base

stack with push ebp to replace it with stack pointer with mov

ebp, esp. Also, all the addresses are being identified where a

valid instruction is encoded. From these addresses they

recursively walk again to an unconditional jump instruction

(ret out jmp), believing that the identified code sequence stops

on that jump. The risk being great that the paths traversed in

this way are not valid, they then eliminate the paths which

lead to invalid code or to addresses known to be data.

Examples of overlap

In tElock disassembler: The code in figure 1 is taken from a

program protected by tElock and disassembled using a

recursive scan from address 0x01006e7a. There is a jmp +1

instruction at the address 0x01006e7d and encoded on the two

eb ff bytes, which jumps to the address 0x01006e7d+1 where

the dec ecx instruction is present, encoded on ff c9 and which

therefore shares the byte ff at address 0x01006e7d+1 with the

jmp instruction.

Bytes to disassemble: fe 04 0b eb ff c9 7f e6 8b c1

01006e7a fe 04 0b inc byte [ebx+ecx]

01006e7d eb ff jmp +1

01006e7e ff c9 dec ecx

01006e80 7f e6 jg 01006e68

01006e82 8b c1 mov eax , ecx

Figure 1 - Recursive disassembly of tElock

mailto:mourad@unizwa.edu.om
mailto:sharyarwani@iium.edu.my

International Journal of Engineering and Information Systems (IJEAIS)

ISSN: 2643-640X

Vol. 6 Issue 12, December - 2022, Pages: 82-84

www.ijeais.org/ijeais

2

Disassemblers available: Existing disassemblers, whether using a linear or recursive path, assume that the code cannot overlap and

fail to show consistent disassembly otherwise. The recursive disassembly of the example of tElock (figure 1) with IDA Pro (version

6.3) [4] is as follows:

01006E7A inc byte ptr [ebx+ecx]

01006E7D jmp short near ptr loc_1006E7D+1

; The following bytes have not been disassembled

01006E7F db 0C9h

01006E80 db 7Fh

01006E81 db 0E6h

01006E82 db 8Bh

01006E83 db 0C1h

Radare [5] performs the following linear disassembly:

01006 e7a f e 04 0b inc byte [ebx+ecx]

01006 e7d eb f f jmp 6 e7e

01006 e 7f c9 leave

01006 e80 7 f e6 jg 6 e68

01006 e82 8b c1 mov eax , ecx

Neither is able to follow the jump from the jmp instruction:

the target of the jump has already been counted as part of

another instruction.

Approaches taking into account overlap: The authors of the

overlap technique detailed, allowing to encode a hidden code

sequence in a sequence [6], propose to detect the protection

they expose. The idea is that a long sequence of bytes is

unlikely to represent a valid sequence of code. If such a

sequence exists, it must be code. So if two long valid strings

of code overlap, it is a deliberate obfuscation and one of the

two strings contains hidden code. This approach works for the

protection they expose but is not applicable to cases of UPX

for example because the byte sequences on which instructions

overlap are very short and it is plausible that the overlap is

accidental and that the overlapping code is not reachable.

II- STATIC ANALYSIS OF CODE OVERLAP

We propose a formalization of the code overlap problem.

From a disassembly perspective, a program that has a single

instruction that overlaps another can be seen as consisting of

a primary disassembly path and a secondary path in which the

overlapping instruction fits. Let's take the example of tElock:

the segment of bytes eb ff c9 7f e6 can be seen as composed

of the two layers of code given in figure 2: there are two

layers, the first contains the instructions jmp+1, leave and jg

0x1006e68 and the second contains the instruction dec ecx,

overlapping jmp+1. In fact, the eb ff c9 7f e6 byte segment

contains exactly the four preceding instructions: there is at

most one valid instruction at each address and the last

potential instruction, coded on e6, is not valid.

Adresses 0x01006e7d 0x01006e7e 0x01006e7f 0x01006e80 0x01006e81

Bytes eb ff c9 7f e6

Layer 1 Jmp +1 leave jg 0x1006e68

Layer 2 dec ecx

Figure 2 - Consistent cutting into layers of tElock extract

For an instruction I we denote the interval of memory addresses

on which it is coded C[I]. Formally we define a layer as a set

of instructions that do not overlap. Consequently, during

disassembly, an attempt is made to perform a coherent division

of the instructions included in the control flow graph into

different layers. The previous example for tElock is a consistent

segregation [7, 8].

International Journal of Engineering and Information Systems (IJEAIS)

ISSN: 2643-640X

Vol. 6 Issue 12, December - 2022, Pages: 82-84

www.ijeais.org/ijeais

2

III- CONCLUSION

Code overlap is rarely discussed in the literature and, when it

is, it is not analyzed as a full-fledged [9, 10, 11] obfuscation

technique but rather bypassed by ignoring the range of

addresses on which are coded disassembled instructions. We

have proposed a notion of code layer, allowing to observe and

quantify the use of code overlap by a binary. We propose an

algorithm to count these overlaps during recursive disassembly

of a binary.

This approach will be taken up and implemented in a related

research, in continuation of the current research, to assess the

use of overlap by malware.

REFERENCES:

1. Michael Sikorski et Andrew Honig. Practical

Malware Analysis : The Hands-On Guide to Dissecting

Malicious Software. 1st. San Francisco, CA, USA : No

Starch Press, 2012 (pages 24, 27, 57).

2. Nithya Krishnamoorthy, Saumya K. Debray et Keith

Fligg. “Static Detection of Disassembly Errors.” WCRE.

IEEE Computer Society, 2009, pages 259–268 (page 57).

3. Manish Prasad et Tzi cker Chiueh. “A Binary

Rewriting Defense Against Stack based Buffer Overflow

Attacks.” USENIX Annual Technical Conference, General

Track. USENIX, 3 septembre 2003, pages 211–224 (page

58).

4. Hex-Rays. IDA. https://www.hex-

rays.com/products/ida/index.shtml (pages 17, 58, 143).

5. radare. radare, the reverse engineering framework.

http://radare.org (pages 16, 59, 143).

6. Christopher Jämthagen, Patrik Lantz et Martin Hell.

“A new instruction overlapping technique for anti-

disassembly and obfuscation of x86 binaries”. 2013 (pages

29, 59, 62).

7. Bishop, C. M. (2006). Pattern recognition and

machine learning. Springer.

8. Brewer, R. (2014). Advanced persistent threats:

minimising the damage. Network Security, (pp. 5-9).

9. Brockwell, P. J., & Davis, R. A. (2013). Time series:

theory and methods. Springer Science & Business Media.

10. Canali, C., Casolari, S., & Lancellotti, R. (2010). A

quantitative methodology to identify relevant users in

social networks. IEEE International Workshop on Business

Applications of Social Network Analysis (BASNA), (pp. 1-

8).

11. Intel. Intel 64 and IA-32 Architectures Software

Developer’s Manual (Volume 2).

http://www.intel.com/content/dam/www/public/us/en/docu

ments/manuals/64-ia-32-architectures-software-

developerinstruction-set-reference-manual-325383.pdf

(pages 12, 27, 44)

12. Chari, S., Habeck, T., Molloy, I., Park, Y., &

Teiken, W. (2013). A bigData platform for analytics on

access control policies and logs. Proceedings of the 18th

ACM symposium on Access control models and

technologies (SACMAT ‘13).

13. Data Breaches. (2020, July). Retrieved from World

most popular data breaches, Information is beautiful:

http://www.informationisbeautiful.net/visualizations/world

s-biggest-data-breaches-hacks.

14. De Vries, J., Hoogstraaten, H., van den Berg, J., &

Daskapan, S. (2012). Systems for Detecting Advanced

Persistent Threats: A Development Roadmap Using

Intelligent Data Analysis. IEEE International Conference

on Cyber Security (CyberSecurity), (pp. 54-61).

15. Denning, D. E. (1987). An intrusion-detection

model. Software Engineering, IEEE Transactions on, (pp.

222-232).

16. Duffield, N. G., & Lo Presti, F. (2009). Multicast

inference of packet delay variance at interior network links.

IEEE Computer and Communications Societies., (pp. 280-

285).

17. CAPEC – Common Attack Pattern Enumeration and

Classification online Mechanism of Attack at

http://capec.mitre.org/data/definitions/1000.html [accessed

1 Jan 2014]

18. Friedberg, I., Skopik, F., Settanni, G., & Fiedler, R.

(2015). Combating advanced persistent threats: from

network event correlation to incident detection. Computers

& Security, (pp. 35-57).

19. Christopher Krügel, William K. Robertson, Fredrik

Valeur et Giovanni Vigna. “Static Disassembly of

Obfuscated Binaries.” USENIX Security Symposium.

USENIX, September 18, 2006, pages 255–270.

