Review of Bounded Linear Functionals and Dual Spaces

Rehab Amer Kamel ${ }^{1}$ and Ahmed Hadi Hussain ${ }^{2}$
1Department of Mathematics, University of Babylon, Babil, Iraq
pure.rehab.amer@uobabylon.edu.iq
2Department of Automobile Engineering / College of Engineering Al-Musayab/ University of Babylon, Babil, Iraq met.ahmed.hadi@uobabylon.edu.iq

Abstract- This article is review about bounded linear operator and functionals. We study some facts about them.

Keywords- bounded linear functional and operator, Banach space, normed linear spaces in $\mathbb{X} \times \mathbb{X}$, normed linear spaces \mathfrak{m}-times in $\mathbb{X} \times \mathbb{X} \times \ldots \times \mathbb{X}$, the dual space.

1. Introduction and Primilinaries:

S.Gahler was studied the concepts of normed space in $\mathbb{X} \times \mathbb{X}$ and normed spaces \mathbb{m} times $\mathbb{X} \times \mathbb{X} \times \ldots \times \mathbb{X}$ in about 1964 ,see [2] .Gahler offered that \mathbb{X} in \mathbb{m}-times with $\mathbb{d} \geq \mathbb{m}$ be able to showed as normed space in $\mathbb{m}-$ times by taking the Gahler norm in \mathfrak{m}-times, which is symbolize by $\|., \ldots,\|_{\mathbb{G}}$. Many scientists have investigated the operators and functionals on spaces of norms in 2 - and \mathfrak{m}-times ,see $[2,6,7]$. Pangalela and Gunawan showed in $[7,8]$ the idea of \mathbb{m}-dual spaces.
We need the following definitions.
1.1 Definition [9]:For a linear space of real numbers \mathbb{X} of $\mathbb{C l}>\mathbf{1}$ with $\|.,$.$\| is a real -valued -function in \mathbb{X} \times \mathbb{X}$ times having 4 properties:

* $\|\mathfrak{v}, \mathfrak{s}\|=0$ iff $\mathfrak{v}, \mathfrak{s}$ are linearly independent;
\& $\quad\|\mathfrak{v}, \mathfrak{s}\|=\|\mathfrak{s}, \mathfrak{v}\|$;
* $\quad\|\mathfrak{v}, \alpha \mathfrak{s}\|=|\alpha|\|\mathfrak{v}, \mathfrak{s}\|, \forall \alpha \in \mathbb{R}$;
* $\|\mathfrak{v}, \mathfrak{s}+\mathfrak{f}\| \leq\|\mathfrak{v}, \mathfrak{s}\|+\|\mathfrak{v}, \mathfrak{f}\|, \forall \mathfrak{v}, \mathfrak{s}, f \in \mathbb{X}$.

The $\|.,$.$\| defined a norm on \mathbb{X} \times \mathbb{X}(2$-times $)$ with $(\mathbb{X},\|.,\|$.$) a linear space of norm in 2-times.$
1.2 Definition [9]: When \mathbb{X} and \mathbb{Y} are linear spaces of real numbers. Symbolize by $G \neq \emptyset \subset \mathbb{X} \times \mathbb{Y}$, s.t. $\forall \mathfrak{v} \in \mathbb{X}, \mathfrak{s} \in \mathbb{Y}$, the sets $G_{\mathfrak{v}}=\{\mathfrak{s} \in \mathbb{Y} ;(\mathfrak{v}, \mathfrak{s}) \in G\}$ and $G^{\mathfrak{s}}=\{\mathfrak{v} \in \mathbb{X} ;(\mathfrak{p}, \mathfrak{s}) \in G\}$ are linear subspace of \mathbb{Y} and \mathbb{X}, in the order . For a mapping $\|.,\|:. G \rightarrow$ $[0, \infty)$ defines a generalized norm in 2 - times on G if it is accept the 3 conditions:

* $\quad\|\mathfrak{p}, \alpha \mathfrak{s}\|=|\alpha|\|\mathfrak{v}, \mathfrak{s}\|=\|\alpha \mathfrak{v}, \mathfrak{s}\|, \forall \alpha \in \mathbb{R}, \forall(\mathfrak{v}, \mathfrak{s}) \in G$;
* $\|\mathfrak{v}, \mathfrak{s}+\mathfrak{f}\| \leq\|\mathfrak{p}, \mathfrak{s}\|+\|\mathfrak{p}, \mathfrak{f}\|, \mathfrak{v} \in \mathbb{X}, \mathfrak{s}, \mathfrak{f} \in \mathbb{Y}$, s.t. $(\mathfrak{p}, \mathfrak{s}),(\mathfrak{p}, \mathfrak{f}) \in G$;
* $\|\mathfrak{v}+\mathfrak{s}, \mathfrak{f}\| \leq\|\mathfrak{v}, f\|+\|\mathfrak{s}, f\|$, for $\mathfrak{v}, \mathfrak{s} \in \mathbb{X}, f \in \mathbb{Y}$, s.t. $(\mathfrak{p}, \mathfrak{f}),(\mathfrak{s}, \mathfrak{f}) \in G$.

The system G is defined a 2-normed set.
 linear system $\mathcal{K}^{\mathfrak{s}}=\{\mathfrak{v} \in \mathbb{X} ;(\mathfrak{v}, \mathfrak{s}) \in \mathcal{\varkappa}\}$ is a subspace of $\mathbb{X}, \forall \mathfrak{s} \in \mathbb{X}$. Let $\|.\|:, \mathcal{X} \rightarrow[0, \infty)$ be a function accept 3 conditions:

* $\|\mathfrak{p}, \mathfrak{s}\|=\|\mathfrak{s}, \mathfrak{p}\|, \forall(\mathfrak{p}, \mathfrak{s}) \in \mathcal{K} ;$
* $\|\mathfrak{v}, \alpha \mathfrak{s}\|=|\alpha|\|\mathfrak{v}, \mathfrak{s}\|, \forall \alpha \in \mathbb{R},, \forall(\mathfrak{v}, \mathfrak{s}) \in \varkappa$;
* $\|\mathfrak{v}, \mathfrak{s}+\mathfrak{f}\| \leq\|\mathfrak{p}, \mathfrak{s}\|+\|\mathfrak{p}, \mathfrak{f}\|, \mathfrak{p}, \mathfrak{s}, \mathfrak{f} \in \mathbb{X}, \operatorname{s.t}(\mathfrak{p}, \mathfrak{s}),(\mathfrak{p}, \mathfrak{f}) \in \mathcal{K}$;
defines a generalized symmetric norm on $\mathcal{\varkappa}$ in 2-times. For the system $\mathcal{\varkappa}$ is defined a symmetric normed set in 2-times.
1.4 Definition [10]: Assume a space \mathbb{X} which satisfy the condition for all Cauchy sequence lie in the space \mathbb{X} which is convergent to a point in \mathbb{X} then is defined sequentially complete.
1.5 Theorem [10]: Banach space is said the space of norm $(\mathbb{X},\|\|$.$) iff the symmetric space of norm in 2-times with norm in 2-$ times defined by $\|\mathfrak{p}, \mathfrak{s}\|=\|\mathfrak{v}\| .\|\mathfrak{s}\|, \forall \mathfrak{v}, \mathfrak{s} \in \mathbb{X}$ is sequentially complete.
1.6 Definition $[3,4,5]:$ A mapping $\|., \ldots .\|:, \mathbb{X}^{\mathbb{m}} \rightarrow \mathbb{R}$, satisfying the following 4 properties with $\mathbb{m}>0$ and a vector space \mathbb{X} of real numbers with $\mathbb{d} \geq \mathfrak{m}$,

1. $\left\|\mathfrak{p}_{1}, \ldots \ldots ., \mathfrak{v}_{\mathrm{m}}\right\|=0 \leftrightarrow \mathfrak{p}_{1}, \mathfrak{v}_{2}, \ldots . ., \mathfrak{v}_{\mathrm{m}}$ not all equal zero ;
2. $\left\|\mathfrak{v}_{1}, \ldots \ldots, \mathfrak{v}_{\mathrm{m}}\right\|$ is invariant under permutation ;
3. $\left\|\alpha \mathfrak{v}_{1}, \ldots, \mathfrak{v}_{\mathrm{m}}\right\|=|\alpha|\left\|\mathfrak{p}_{1}, \ldots, \mathfrak{v}_{\mathrm{m}}\right\|$ for any $\alpha \in \mathbb{R}$;
4. $\left\|\mathfrak{v}+\mathfrak{s}, \mathfrak{v}_{2}, \ldots, \mathfrak{v}_{\mathrm{m}}\right\| \leq\left\|\mathfrak{v}, \mathfrak{v}_{2}, \ldots, \mathfrak{v}_{\mathrm{m}}\right\|+\left\|\mathfrak{s}, \mathfrak{v}_{2}, \ldots, \mathfrak{v}_{\mathrm{m}}\right\|$,
the space with 4 conditions is defined a norm on \mathbb{X} in \mathbb{m}-times, whereas the symbol $(\mathbb{X},\|., \ldots, \cdot\|)$ is defined a space of norm in m -times.
1.7 Definition [3,4,5]: The norm

1.8 Definition [7]: A functional \mathbb{f} is multi-linear in $\mathfrak{m}-$ times if it is satisfies 2 conditions:
$* \mathbb{f}\left(\mathfrak{v}_{1}+\mathfrak{s}_{1}, \ldots, \mathfrak{v}_{\mathrm{m}}+\mathfrak{s}_{\mathrm{m}}\right)=\sum_{z_{i \in\left\{n_{i}, m_{i}\right\}, 1 \leq i \leq \mathrm{m}}} \mathbb{f}\left(z_{1}, \ldots, z_{\mathrm{m}}\right)$
$* \mathbb{f}\left(\alpha_{1} \mathfrak{v}_{1}, \ldots, \alpha_{\mathrm{m}} \mathfrak{p}_{\mathrm{m}}\right)=\alpha_{1} \ldots \alpha_{\mathrm{m}-1} \mathbb{f}\left(\mathfrak{p}_{1}, \ldots, \mathfrak{v}_{\mathrm{m}}\right)$
for all $\mathfrak{p}_{1}, \ldots, \mathfrak{v}_{\mathrm{m}}, \mathfrak{s}_{1}, \ldots, \mathfrak{s}_{\mathrm{m}} \in \mathbb{X}$ and $\alpha_{1} \ldots \alpha_{\mathrm{m}} \in \mathbb{R}$.
1.9 Definition [7]: Assume that \mathbb{f}, \mathfrak{j} are multi-linear- functionals on \mathbb{X} in $\mathfrak{m}-$ times defined by the formula $\mathbb{f}+j$ as shown below $(\mathbb{f}+\mathfrak{j})\left(n_{1}, \ldots, n_{\mathfrak{m}}\right):=\mathbb{f}\left(\mathfrak{p}_{1}, \ldots, \mathfrak{v}_{\mathrm{m}}\right)+\mathfrak{j}\left(\mathfrak{p}, \ldots, \mathfrak{v}_{\mathrm{m}}\right)$ for $\mathfrak{v}_{1}, \ldots, \mathfrak{v}_{\mathfrak{m}} \in \mathbb{X}$. Then $\mathbb{f}+\mathfrak{j}$ is again multilinear .
1.10 Definition [7]: We say a functional \mathbb{f} in $\mathfrak{m}-$ times bounded on ($\mathbb{X},\|, \ldots,\|$.$) if \exists \mathcal{C}>0$, s.t. $\left|\mathbb{f}\left(\mathfrak{v}_{1}, \ldots, \mathfrak{v}_{\mathrm{m}}\right)\right| \leq$ $\mathcal{C}\left\|\mathfrak{v}_{1}, \ldots, \mathfrak{v}_{\mathrm{m}}\right\|, \forall \mathfrak{v}_{1}, \ldots, \mathfrak{v}_{\mathrm{m}} \in \mathbb{X}$,
also in space of norm $(\mathbb{X},\|\|$.$) in \mathfrak{m}$ - times which is a bounded if $\exists \mathcal{C}>0$, s.t. $\left|\mathbb{f}\left(\mathfrak{p}_{1}, \ldots, \mathfrak{v}_{\mathrm{m}}\right)\right| \leq \mathcal{C}\left\|\mathfrak{p}_{1}\right\| \ldots\left\|\mathfrak{p}_{\mathrm{m}}\right\|$.
1.11 Definition [7]: The collection of per-mutations $\mathrm{f}(1, \ldots, \mathrm{~m})$ denoted by \mathcal{G}_{m}. Reworded from that every multi-linear- functional \mathbb{f} on $(\mathbb{X},\|, \ldots\|$,$) which is bounded in \mathbb{m}$-times is anti-symmetric means that: $\mathbb{f}\left(\mathfrak{p}_{1}, \ldots, \mathfrak{v}_{\mathrm{m}}\right)=\operatorname{sign}(\sigma) \mathbb{f}\left(\mathfrak{v}_{\sigma(1)}, \ldots, \mathfrak{v}_{\sigma(\mathrm{m})}\right)$, for $\mathfrak{v}_{1}, \ldots, \mathfrak{v}_{\mathrm{m}} \in \mathbb{X}$ and $\sigma \in \mathcal{G}_{\mathrm{m}}$. Now $\operatorname{sign}(\sigma)=1$ if σ is $2,4, \ldots$ (even per-mutation) and $\operatorname{sign}(\sigma)=-1$ if σ is $1,3, \ldots$ (odd permutation). If the condition $\mathfrak{f}\left(\mathfrak{p}_{1}, \ldots, \mathfrak{v}_{\mathrm{m}}\right)=0$ hold for any linearly dependent $\mathfrak{p}_{1}, \ldots, \mathfrak{v}_{\mathrm{m}} \in \mathbb{X}$, then \mathbb{f} is anti-symmetric .
1.12 Definition [7]: The space of dual $(\mathbb{X},\|\cdot\|)$ in \mathbb{m}-times denoted by $\mathbb{X}^{(m)}$ is called the space of multi-linear - functionals which
 $\mathbb{f} \in \mathbb{X}^{(\mathrm{m})}$, sets a norm on $\mathbb{X}^{(\mathrm{m})}$. Whereas , the space of all multi-linear- functional \mathbb{f} on $(\mathbb{X},\|, \ldots,\|$.$) which is bounded in m$-times is known the dual of $(\mathbb{X},\|., \ldots, \cdot\|)$ in m-times .It is again space of norm with $\|f\|_{m, m}:=\sup _{\left\|v_{1}, \ldots, v_{m}\right\| \neq 0} \frac{\| f\left(v_{1}, \ldots, v_{m}\right) \mid}{\left\|v_{1}, \ldots, v_{m}\right\|}$.
1.13 Definition[7]: Assume that \mathbb{X}, \mathbb{Y} are spaces of norms for real numbers. The symbol $\mathcal{T}(\mathbb{X}, \mathbb{Y})$ is define the set linear of operators which is bounded from \mathbb{X} into \mathbb{Y}. The map $\|.\|_{o p}$ where $\|w\|_{o p}:=\sup _{n \neq 0} \frac{\|w(\mathfrak{v})\|}{\|\mathrm{v}\|}, \forall w \in \mathcal{T}(\mathbb{X}, \mathbb{Y})$, is a usual norm on $\mathcal{T}(\mathbb{X}, \mathbb{Y})$.
1.14 Definition [10] : Let $\mathcal{T}: G \rightarrow \mathbb{Y}, G \neq \emptyset \subseteq \mathbb{X} \times \mathbb{Y}$ is operator defined to be linear in 2-times if it is accept the two condition below:

* $\mathcal{J}(\mathfrak{v}+\mathfrak{s}, \mathfrak{f}+g)=\mathcal{T}(\mathfrak{p}, \mathfrak{s})+\mathcal{T}(f, g)$ for $\mathfrak{v}, \mathfrak{s}, \mathfrak{f}, g \in \mathbb{X}$, s.t. $\mathfrak{v}, f \in G^{\mathfrak{s}} \cap G^{g}$
* $\mathcal{T}(\alpha \mathfrak{v}, \beta \mathfrak{s})=\alpha . \beta . \mathcal{T}(\mathfrak{v}, \mathfrak{s})$ for $\alpha, \beta \in \mathbb{R},(\mathfrak{v}, \mathfrak{s}) \in G$.
1.15 Definition[10]: A normed operator \mathcal{T} in 2- times is defined to become bounded if there exists a number $\mathcal{C}>0$, s.t. $\|\mathcal{T}(\mathfrak{v}, \mathfrak{s})\| \leq \mathcal{C} .\|\mathfrak{v}, \mathfrak{s}\|$ for all $(\mathfrak{v}, \mathfrak{s}) \in G$.
1.16 Definition [10]: Suppose that \mathcal{T} is an operator which is bounded ,subsequently the numeral $\|\mathcal{T}\|=\inf \{\mathcal{C}>0 ;\|\mathcal{T}(\mathfrak{v}, \mathfrak{s})\| \leq$ $\mathcal{C} .\|\mathfrak{v}, \mathfrak{s}\|$ for $(\mathfrak{v}, \mathfrak{s}) \in G\}$ is defined the linear operator of norm in 2-times \mathcal{T}.
1.17 Definition[10]: Suppose that \mathbb{Y} a space of norm and $G \subseteq \mathbb{X} \times \mathbb{X}$ is a set of norm in 2-times. The Symbol by $\mathcal{T}_{2}(G, \mathbb{Y})$ is denoted the system of all linear operators which is bounded in 2 -times form G at \mathbb{Y}. Specially ,the system $\mathcal{T}_{2}(\mathbb{X}, \mathbb{Y})$,whether \mathbb{X} is a generalized space of norm in 2 -times and $G=\mathbb{X} \times \mathbb{X}$. See $\mathbb{L}, \mathbb{K} \in \mathcal{T}_{2}(G, \mathbb{Y})$ and satisfy two conditions:
$\dot{*}(\mathbb{L}+\mathbb{K})(\mathfrak{v}, \mathfrak{s})=\mathbb{L}(\mathfrak{v}, \mathfrak{s})+\mathbb{K}(\mathfrak{v}, \mathfrak{s}), \forall(\mathfrak{v}, \mathfrak{s}) \in G ;$
$\dot{*}(\alpha, \mathbb{L})(\mathfrak{v}, \mathfrak{s})=\alpha . \mathbb{L}(\mathfrak{v}, \mathfrak{s})$ for $\alpha \in \mathbb{R},(\mathfrak{p}, \mathfrak{s}) \in G$.
1.18 Definition [1]:We will symbolize $l^{p}=l_{\mathbb{N}}^{p}(\mathbb{R}), 1 \leq p<\infty \quad$:the space of real numbers of p -summable sequence. Reworded that $u:=\left\{u_{k}\right\}_{k=1}^{\infty}$ forms a sequence of real numbers $\in l^{p}$, we defined $\|u\|_{p}:=\left(\sum_{k=1}^{\infty}\left|u_{k}\right|^{p}\right)^{1 / p}<\infty$. The dual space of l^{p} is $l^{p^{\prime}}$, $\frac{1}{p}+\frac{1}{p^{\prime}}=1$. There are several n-norms on l^{p} explained below

Vol. 6 Issue 12, December - 2022, Pages: 97-101
$\left\|\mathfrak{v}_{1}, \ldots, \mathfrak{v}_{\mathrm{m}}\right\|_{p}^{\mathbb{G}}:=\sup _{\mathfrak{s}_{i} \in l^{p^{\prime}},\left\|\mathfrak{s}_{i}\right\|_{p^{\prime}} \leq 1}\left|\begin{array}{ccc}\sum_{k=1}^{\infty} \mathfrak{p}_{1 k^{\prime} \mathfrak{s}_{1 k}} & \cdots & \sum_{k=1}^{\infty} \mathfrak{p}_{1 k} \mathfrak{s}_{\mathrm{m} k} \\ \vdots & \ddots & \vdots \\ \sum_{k=1}^{\infty} \mathfrak{v}_{\mathrm{m} k} \mathfrak{s}_{1 k} & \cdots & \sum_{k=1}^{\infty} \mathfrak{v}_{\mathrm{m} k} \mathfrak{s}_{\mathrm{m} k}\end{array}\right|$
$\left.\left\|\mathfrak{v}_{1}, \ldots, \mathfrak{v}_{\mathrm{m}}\right\|_{p}^{H}:=\left[\frac{1}{\mathrm{~m}!} \sum_{k=1}^{\infty} \cdots \sum_{k=1}^{\infty} a b s \left\lvert\, \begin{array}{ccc}\mathfrak{p}_{1 k_{1}} & \cdots & \mathfrak{v}_{1 k_{\mathrm{m}}} \\ \vdots & \ddots & \vdots \\ \mathfrak{v}_{\mathrm{m} k_{1}} & \cdots & \mathfrak{v}_{\mathrm{m} k_{\mathrm{m}}}\end{array}\right.\right]^{p}\right]^{\frac{1}{p}}$
$\left\|\mathfrak{p}_{1}, \ldots, \mathfrak{v}_{\mathrm{m}}\right\|_{p}^{I}:=\sup _{\mathfrak{s}_{i} \in l^{p^{\prime}},\left\|\mathfrak{s}_{1}, \ldots, \mathfrak{s}_{\mathrm{m}}\right\|_{p^{\prime}}^{H} \leq 1}\left|\begin{array}{ccc}\sum_{k=1}^{\infty} \mathfrak{p}_{1 k} \mathfrak{s}_{1 k} & \cdots & \sum_{k=1}^{\infty} \mathfrak{v}_{1 k} \mathfrak{s}_{\mathrm{m} k} \\ \vdots & \ddots & \vdots \\ \sum_{k=1}^{\infty} \mathfrak{v}_{\mathrm{m} k} \mathfrak{s}_{1 k} & \cdots & \sum_{k=1}^{\infty} \mathfrak{v}_{\mathrm{m} k} \mathfrak{s}_{\mathrm{m} k}\end{array}\right|$
Also let $:=\left\{\mathfrak{s}_{1}, \ldots, \mathfrak{s}_{\mathrm{m}}\right\} \in l^{p \prime}$, we have
$\mathbb{f}_{\mathbb{Y}}\left(\mathfrak{v}_{1}, \ldots, \mathfrak{v}_{\mathrm{m}}\right): \left.=\frac{1}{\mathrm{~m}!} \sum_{k 1=1}^{\infty} \cdots \sum_{k \mathrm{~m}=1}^{\infty}\left|\begin{array}{ccc}\mathfrak{v}_{1 k_{1}} & \cdots & \mathfrak{p}_{1 k_{\mathrm{m}}} \\ \vdots & \ddots & \vdots \\ \mathfrak{v}_{\mathrm{m} k_{1}} & \cdots & \mathfrak{v}_{\mathrm{m} k_{\mathrm{m}}}\end{array}\right| \begin{array}{ccc}\mathfrak{s}_{1 k_{1}} & \cdots & \mathfrak{s}_{1 k_{\mathrm{m}}} \\ \vdots & \ddots & \vdots \\ \mathfrak{s}_{\mathrm{m} k_{1}} & \cdots & \mathfrak{s}_{\mathrm{m} k_{\mathrm{m}}}\end{array} \right\rvert\, \quad$,for $\left(\mathfrak{p}_{1}, \ldots, \mathfrak{v}_{\mathrm{m}}\right) \in l^{p}$. Further, we have $\left|\mathbb{f}_{\mathbb{Y}}\left(\mathfrak{p}_{1}, \ldots, \mathfrak{v}_{\mathrm{m}}\right)\right| \leq$ $\left\|\mathfrak{v}_{1}, \ldots, \mathfrak{v}_{\mathrm{m}}\right\|_{p}^{H}\left\|\mathfrak{s}_{1}, \ldots, \mathfrak{s}_{\mathrm{m}}\right\|_{p}^{H}$, and $\mathbb{f}_{\mathbb{Y}}$ is bounded on $\left(l^{p},\|., \ldots, .\|_{p}^{H}\right)$ for $\left\|\mathbb{f}_{\mathbb{Y}}\right\| \leq\left\|\mathfrak{s}_{1}, \ldots, \mathfrak{s}_{\mathrm{m}}\right\|_{p^{\prime}}^{H}$.
1.19 Definition [1]: The system \mathcal{X}^{*} of all multilinear functionals on $(\mathbb{X},\|., \ldots,\|$.$) in \mathbb{m}$ - times which it is bounded. Defined by $\|\mathbb{f}\|:=\inf \{\mathcal{C}>0\}$ or equivalently $\|\mathbb{f}\|:=\sup \left\{\left|\mathbb{f}\left(\mathfrak{p}_{1}, \ldots, \mathfrak{v}_{\mathrm{m}}\right)\right|:\left\|\mathfrak{v}_{1}, \ldots, \mathfrak{v}_{\mathrm{m}}\right\| \leq 1\right\}$, determines a norm on \mathcal{X}^{*}.
2. Linear Operators and Functionals which are Bounded on Normed Sets in 2-times and on Normed Spaces in \mathbb{m} - times
2. 1 Theorem [10]: Suppose that \mathcal{T} linear operator in 2 - times which it is bounded. Then we have
a. $\|\mathcal{T}\| \leq \mathcal{C}$ for $\mathcal{C} \in \mathcal{P}^{(\mathcal{T})}=\left\{\mathcal{C}^{\prime}>0 ;\|\mathcal{T}(\mathfrak{p}, \mathfrak{s})\| \leq \mathcal{C}^{\prime} .\|\mathfrak{v}, \mathfrak{s}\|\right.$ for $\left.(\mathfrak{v}, \mathfrak{s}) \in G\right\}$;
b. $\|\mathcal{T}(\mathfrak{p}, \mathfrak{s})\| \leq\|\mathcal{T}\| .\|\mathfrak{v}, \mathfrak{s}\|$ for each $(\mathfrak{p}, \mathfrak{s}) \in G$;
c. $\|\mathcal{T}\|=\sup \{\|\mathcal{T}(\mathfrak{v}, \mathfrak{s})\| ;(\mathfrak{p}, \mathfrak{s}) \in G,\|\mathfrak{v}, \mathfrak{s}\|=1\}$

$$
\begin{aligned}
& =\sup \{\|\mathcal{T}(\mathfrak{v}, \mathfrak{s})\| ;(\mathfrak{p}, \mathfrak{s}) \in G,\|\mathfrak{p}, \mathfrak{s}\| \leq 1\} \\
& =\sup \left\{\frac{\|\mathcal{T}(\mathfrak{v}, \mathfrak{s})\|}{\|\mathfrak{v}, \mathfrak{s}\|} ;(\mathfrak{y}, \mathfrak{s}) \in G,\|\mathfrak{v}, \mathfrak{s}\| \neq 0\right\}
\end{aligned}
$$

2.2 Theorem [10]: Suppose that G is a normed system in 2-times with \mathbb{Y} which is normed space , then $\left(\mathcal{J}_{2}(G, \mathbb{Y}),\|\|.\right)$ is the space of norm.
2.3 Theorem [10]:Suppose that \mathbb{Y} is a space of Banach with G is system of norm in 2-times ,then $\mathcal{T}_{2}(G, \mathbb{Y})$ defines a space of Banach.
2.4 Corollary [10]: Suppose that \mathbb{Y} is a space of Banach with $\mathcal{\varkappa}$ is a symmetric system of norm in 2-times, then $\mathcal{T}_{2}(\mathcal{\varkappa}, \mathbb{Y})$ is a space of norm which is symmetric sequentially complete in 2-times and take the property: $\|\mathbb{L}, \mathbb{K}\|=\|\mathbb{L}\| .\|\mathbb{K}\|$ for $\mathbb{L}, \mathbb{K} \in$ $\mathcal{T}_{2}(\mathcal{\varkappa}, \mathbb{Y})$.
2.5 Proposition [10]: If G be a system of norm in 2-times, the set $\left\{\left\|\mathbb{F}_{\mathfrak{m}}\right\| ; \mathbb{m} \in N\right\}$ which is bounded, \mathbb{Y} a space of norm and the set $\left\{\mathbb{F}_{\mathfrak{m}} ; \mathbb{m} \in N\right\} \subset \mathcal{T}_{2}(G, \mathbb{Y})$, then $\forall(\mathfrak{v}, \mathfrak{s}) \in G$ the system $\left\{\left\|\mathbb{F}_{\mathfrak{m}}(\mathfrak{v}, \mathfrak{s})\right\| ; \mathbb{m} \in N\right\}$ is- bounded.
2.6 Theorem [10]: Let \mathbb{Y} a space of norm and \mathbb{X} is a generalized space of norm in 2-times . When $\left\{\mathbb{F}_{\mathrm{m}} ; \mathbb{m} \in N\right\}$ is bounded set and $\subset \mathcal{T}_{2}(\mathbb{X}, \mathbb{Y})$ which is pointwise- convergent to \mathcal{F}, then $\mathbb{F} \in \mathcal{T}_{2}(\mathbb{X}, \mathbb{Y})$.
2.7 Theorem [1]: The three \mathbb{m} - norms on l^{p}, viz
$\|., \ldots,\|_{p}^{I},\|., \ldots, .\|_{p}^{H}$, and $\|., \ldots, .\|_{p}^{\mathbb{G}}$, are equivalent.
2.8 Proposition [1]: Suppose that \mathbb{f} is a multi-linear- functional in \mathbb{m}-times on $(\mathbb{X},\|., \ldots\|$,$) Which is bounded, then \mathbb{f}$ is antisymmetric , in order to $\mathbb{f}\left(\mathfrak{p}_{1}, \ldots, \mathfrak{v}_{\mathrm{m}}\right)=\operatorname{sign}(\sigma) \mathbb{f}\left(\mathfrak{p}_{\sigma(1)}, \ldots, \mathfrak{v}_{\sigma(\mathbb{m})}\right)$, where $\mathfrak{p}_{1}, \ldots, \mathfrak{v}_{\mathrm{m}} \in \mathbb{X}$.
2.9 Fact [1]: Let $\left(l^{2},\|, \ldots, .\|_{2}^{H}\right)$ be normed space in \mathbb{m}-times. For fixed linearly independent $\mathbb{Y}:=\left\{\mathfrak{s}_{1}, \ldots, \mathfrak{s}_{\mathbb{m}}\right\} \in l^{2}$, the set $\mathbb{f}_{\mathbb{Y}}$ is the multi-linear- functional in \mathbb{m}-times explained in definition 1.18. Then $\mathbb{T}_{\mathbb{Y}}$ is bounded on $\left(l^{2},\|., \ldots,\|_{2}^{H}\right)$ with $\left\|\mathbb{f}_{\mathbb{Y}}\right\|=$ $\left\|\mathfrak{s}_{1}, \ldots, \mathfrak{s}_{\mathrm{m}}\right\|_{2}^{H}$.
2.10 Proposition $[7]$: Suppose that $(\mathbb{X},\|\|$.$) is a space of norm for real numbers, where \mathbb{d} \geq \mathfrak{m}, \mathbb{f}$ is a multi-linear- functional in \mathbb{m}-times which is bounded .Then $\exists w_{\mathbb{T}} \in \mathcal{T}\left(\mathbb{X}, \mathbb{X}^{\mathrm{m}-1}\right)$, s.t. for $\left(\mathfrak{v}_{1}, \ldots, \mathfrak{v}_{\mathrm{m}-1}, \mathfrak{v}\right) \in \mathbb{X}$.
$\mathbb{f}\left(\mathfrak{p}_{1}, \ldots, \mathfrak{v}_{\mathfrak{m}-1}, \mathfrak{v}\right)=\left(w_{\mathfrak{f}}(\mathfrak{p})\right)\left(\mathfrak{v}_{1}, \ldots, \mathfrak{v}_{\mathfrak{m}-1}\right)$. Moreover,$\|\mathbb{f}\|_{\mathfrak{m}, 1}=\left|w_{\mathbb{f}}\right|_{o p}$.
2.11 Theorem [7]: Suppose that \mathbb{X} is a space of norm for real numbers, where $\mathbb{d} \geq \mathfrak{m}$. Then the $(\mathbb{X},\|\|$.$) space of dual in \mathfrak{m}$ - times is $\mathcal{T}\left(\mathbb{X}, \mathbb{X}^{\mathrm{m}-1}\right)$.
2.12 Theorem [7]: Suppose that \mathbb{X} is a space of norm for real numbers, where $\mathbb{d} \geq \mathfrak{m}$. Then the $(\mathbb{X},\|\cdot\|)$ space of dual in \mathbb{m}-times is - space of Banach.

3. REFERENCES

[1] H. Batkunde, H. Gunawan, and Y.E.P. Pangalela, Bounded linear functionals on the \mathfrak{m} - normed space of p-summable sequences, Acta Univ. M. Belii Ser. Math. 21 (2013),66-75.
[2] S. G"ahler, Lineare 2-normierte r"aume, Math. Nachr. 28 (1964), 1-43.
[3]S. G"ahler, Untersuchungen "uber verallgemeinerte m-metrische r"aume I, Math. Nachr. 40 (1969), 165-189.
[4] S. G"ahler, Untersuchungen "uber verallgemeinerte m-metrische r"aume II, Math. Nachr. 40 (1969), 229-264.
[5] S. G"ahler, Untersuchungen "uber verallgemeinerte m-metrische r"aume III, Math. Nachr. 41 (1969), 23-36.
[6] S.M. Gozali, H. Gunawan and O. Neswan, On m-norms and n-bounded linear functionals in a Hilbert space, Ann. Funct. Anal. 1 (2010), 72-79.
[7] Y.E.P. Pangalela, m-Dual Spaces Associated to a normed space, Khayyam J. Math .1(2015),no.2,219-229
[8] Y.E.P. Pangalela and H. Gunawan, The \mathbb{m}-dual space of the space of p-summable sequences, Math. Bohem. 138 (2013), 439-448.
[9] Z. Lewandowska, Linear operators on generalized 2-normed spaces, Bull. Math. Soc. Sc. Math. Roumanie 42 (1999), 353368.
[10] Z. Lewandowska, Bounded 2-linear operators on 2-normed sets, Glas. Mat. Ser. III 39 (2004), 301-312.

Authors

Author's Name, Rehab Amer Kamel

Author's Name, Ahmed Hadi Hussain

