Review of Bounded Linear Functionals and Dual Spaces

Rehab Amer Kamel¹ and Ahmed Hadi Hussain²

1Department of Mathematics ,University of Babylon, Babil, Iraq pure.rehab.amer@uobabylon.edu.iq 2Department of Automobile Engineering / College of Engineering Al-Musayab/ University of Babylon, Babil, Iraq met.ahmed.hadi@uobabylon.edu.iq

Abstract— This article is review about bounded linear operator and functionals. We study some facts about them.

Keywords— bounded linear functional and operator , Banach space , normed linear spaces in $\mathbb{X} \times \mathbb{X}$, normed linear spaces \mathbb{m} -times in $\mathbb{X} \times \mathbb{X} \times ... \times \mathbb{X}$, the dual space.

1. Introduction and Primilinaries:

S.Gahler was studied the concepts of normed space in $\mathbb{X} \times \mathbb{X}$ and normed spaces m times $\mathbb{X} \times \mathbb{X} \times ... \times \mathbb{X}$ in about 1964 ,see [2] .Gahler offered that \mathbb{X} in m-times with $\mathbb{Z} \geq \mathbb{Z}$ be able to showed as normed space in m-times by taking the Gahler norm in m-times , which is symbolize by $\|.,...,\|_{\mathbb{G}}$. Many scientists have investigated the operators and functionals on spaces of norms in 2- and m-times ,see [2,6,7] . Pangalela and Gunawan showed in [7,8] the idea of m-dual spaces. We need the following definitions.

- **1.1 Definition** [9] :For a linear space of real numbers \mathbb{X} of $\mathbb{d} > 1$ with $\|.,.\|$ is a real -valued -function in $\mathbb{X} \times \mathbb{X}$ times having 4 properties:
- $||\mathfrak{v},\mathfrak{s}|| = 0$ if f $\mathfrak{v},\mathfrak{s}$ are linearly independent;

The $\|...\|$ defined a norm on $\mathbb{X} \times \mathbb{X}$ (2-times) with $(\mathbb{X}, \|...\|)$ a linear space of norm in 2-times.

- **1.2 Definition** [9]: When \mathbb{X} and \mathbb{Y} are linear spaces of real numbers. Symbolize by $G \neq \emptyset \subset \mathbb{X} \times \mathbb{Y}$, $s.t. \forall v \in \mathbb{X}$, $s \in \mathbb{Y}$, the sets $G_v = \{s \in \mathbb{Y}; (v, s) \in G\}$ and $G^s = \{v \in \mathbb{X}; (v, s) \in G\}$ are linear subspace of \mathbb{Y} and \mathbb{X} , in the order. For a mapping $\|.,.\|: G \to [0, \infty)$ defines a generalized norm in 2- times on G if it is accept the 3 conditions:

The system G is defined a 2-normed set.

- **1.3 Definition** [9]: When a linear space \mathbb{X} of real numbers . Symbolize by $\varkappa \neq \emptyset \subset \mathbb{X} \times \mathbb{X}$ with the assets $\varkappa = \varkappa^{-1}$ and s.t. the linear system $\varkappa^{\mathfrak{s}} = \{\mathfrak{v} \in \mathbb{X}; (\mathfrak{v}, \mathfrak{s}) \in \varkappa\}$ is a subspace of $\mathbb{X}, \forall \mathfrak{s} \in \mathbb{X}$. Let $\|., ... \| : \varkappa \to [0, \infty)$ be a function accept 3 conditions:

defines a generalized symmetric norm on \varkappa in 2-times. For the system \varkappa is defined a symmetric normed set in 2-times.

- **1.4 Definition [10]:** Assume a space \mathbb{X} which satisfy the condition for all Cauchy sequence lie in the space \mathbb{X} which is convergent to a point in \mathbb{X} then is defined sequentially complete.
- **1.5 Theorem [10]:** Banach space is said the space of norm $(X, \|.\|)$ *if f* the symmetric space of norm in 2-times with norm in 2-times defined by $\|v, s\| = \|v\|.\|s\|$, $\forall v, s \in X$ is sequentially complete.
- **1.6 Definition [3,4,5] :** A mapping $\|.,...,\|:\mathbb{X}^m\to\mathbb{R}$, satisfying the following 4 properties with m>0 and a vector space \mathbb{X} of real numbers with $\mathbb{d}\geq m$,
 - 1. $\|\mathfrak{v}_1, \dots, \mathfrak{v}_m\| = 0 \leftrightarrow \mathfrak{v}_1, \mathfrak{v}_2, \dots, \mathfrak{v}_m$ not all equal zero;

Vol. 6 Issue 12, December - 2022, Pages: 97-101

- 2. $\|\mathfrak{v}_1, \dots, \mathfrak{v}_m\|$ is invariant under permutation;
- 3. $\|\alpha v_1, ..., v_m\| = |\alpha| \|v_1, ..., v_m\|$ for any $\alpha \in \mathbb{R}$;
- $4. \| v + s, v_2, \dots, v_m \| \le \| v, v_2, \dots, v_m \| + \| s, v_2, \dots, v_m \|,$

the space with 4 conditions is defined a norm on X in m -times, whereas the symbol (X, ||., ..., . ||) is defined a space of norm in m -times.

 $\|\mathfrak{v}_1,\ldots,\mathfrak{v}_{\mathbb{m}}\|_{\mathbb{G}}\coloneqq\sup_{\mathfrak{f}_{i\in\mathbb{X}^{(1)},\|\mathbb{f}_i\|\leq 1}}abs\left(\det\big[\mathbb{f}_j(\mathfrak{v}_i)\big]_{i,j}\right)\,,\,\forall\mathfrak{v}_1,\ldots,\mathfrak{v}_{\mathbb{m}}\in\mathbb{X}\,,\,\text{is defined on }\mathbb{X}\,\text{in }\mathbb{m}-\text{times, where }\mathbb{X}^{(1)}\text{ the dual space of }\mathbb{X}.$

- **1.8 Definition** [7]: A functional f is multi-linear in m times if it is satisfies 2 conditions:
 - $\qquad \qquad \bullet \quad \mathbb{f}(\mathfrak{v}_1+\mathfrak{s}_1,\ldots,\mathfrak{v}_{\mathbb{m}}+\mathfrak{s}_{\mathbb{m}}) = \sum_{\mathcal{Z}_{i \in \{n_i,m_i\},1 \leq i \leq \mathbb{m}}} \mathbb{f}(\mathcal{Z}_1,\ldots,\mathcal{Z}_{\mathbb{m}})$
 - $\bullet \quad f(\alpha_1 \mathfrak{v}_1, \dots, \alpha_m \mathfrak{v}_m) = \alpha_1 \dots \alpha_{m-1} f(\mathfrak{v}_1, \dots, \mathfrak{v}_m)$

for all $v_1, ..., v_m, s_1, ..., s_m \in \mathbb{X}$ and $\alpha_1 ... \alpha_m \in \mathbb{R}$.

- **1.9 Definition** [7]: Assume that f, j are multi-linear- functionals on X in m times defined by the formula f + j as shown below $(f+\mathring{\mathbb{J}})(n_1,\ldots,n_m) := f(\mathfrak{v}_1,\ldots,\mathfrak{v}_m) + \mathring{\mathbb{J}}(\mathfrak{v},\ldots,\mathfrak{v}_m) for \mathfrak{v}_1,\ldots,\mathfrak{v}_m \in \mathbb{X}$. Then $f+\mathring{\mathbb{J}}$ is again multilinear.
- **1.10** Definition [7]: We say a functional f in m times bounded on $(X, \|., ..., \|)$ if $\exists \mathcal{C} > 0$, s.t. $|f(v_1, ..., v_m)| \le 1$ $\mathcal{C} \| \mathfrak{v}_1, \dots, \mathfrak{v}_m \|, \forall \mathfrak{v}_1, \dots, \mathfrak{v}_m \in \mathbb{X},$

also in space of norm $(X, \|.\|)$ in \mathbb{m} - times which is a bounded if $\exists \mathcal{C} > 0$, s.t. $|f(v_1, ..., v_m)| \leq \mathcal{C} ||v_1|| ... ||v_m||$.

- **1.11 Definition** [7]: The collection of per-mutations f(1, ..., m) denoted by \mathcal{G}_m . Reworded from that every multi-linear-functional f on $(X, \|., ..., \|)$ which is bounded in m-times is anti-symmetric means that: $f(v_1, ..., v_m) = sign(\sigma) f(v_{\sigma(1)}, ..., v_{\sigma(m)})$, for $v_1, ..., v_m \in \mathbb{X}$ and $\sigma \in \mathcal{G}_m$. Now $sign(\sigma) = 1$ if σ is 2,4,... (even per-mutation) and $sign(\sigma) = -1$ if σ is 1,3,... (odd permutation). If the condition $f(v_1, ..., v_m) = 0$ hold for any linearly dependent $v_1, ..., v_m \in X$, then f is anti-symmetric.
- **1.12 Definition** [7]: The space of dual $(X, \|.\|)$ in m –times denoted by $X^{(m)}$ is called the space of multi-linear functionals which is bounded on $(X, \|.\|)$ in \mathbb{m} —times .When $\mathbb{m}=0$, we set $X^{(0)}$ as \mathbb{R} . The norm $\|.\|_{\mathbb{m},1}$ on $X^{(\mathbb{m})}$, where $\|f\|_{\mathbb{m},1} \coloneqq \sup_{v_1,\dots,v_n\neq 0} \frac{|f(v_1,\dots,v_n)|}{\|v_1\|..\|v_n\|}$, for $f \in X^{(m)}$, sets a norm on $X^{(m)}$. Whereas, the space of all multi-linear-functional f on $(X, \|., ..., .\|)$ which is bounded in m-times

is known the dual of $(X, \|., ..., .\|)$ in m –times .It is again space of norm with $\|f\|_{m,m} \coloneqq \sup_{\|v_1, ..., v_m\| \neq 0} \frac{|f(v_1, ..., v_m)|}{\|v_1, ..., v_m\|}$

- **1.13 Definition**[7]: Assume that \mathbb{X} , \mathbb{Y} are spaces of norms for real numbers. The symbol $\mathcal{T}(\mathbb{X},\mathbb{Y})$ is define the set linear of operators which is bounded from \mathbb{X} into \mathbb{Y} . The map $\|.\|_{op}$ where $\|w\|_{op} \coloneqq \sup_{n \neq 0} \frac{\|w(v)\|}{\|v\|}$, $\forall w \in \mathcal{T}(\mathbb{X}, \mathbb{Y})$, is a usual norm on $\mathcal{T}(\mathbb{X}, \mathbb{Y})$.
- **1.14 Definition** [10]: Let $\mathcal{T}: G \to \mathbb{Y}$, $G \neq \emptyset \subseteq \mathbb{X} \times \mathbb{Y}$ is operator defined to be linear in 2-times if it is accept the two condition below:
 - $\mathcal{T}(\mathfrak{v}+\mathfrak{s},\mathfrak{f}+\mathfrak{g}) = \mathcal{T}(\mathfrak{v},\mathfrak{s}) + \mathcal{T}(\mathfrak{f},\mathfrak{g}) \text{ for } \mathfrak{v},\mathfrak{s},\mathfrak{f},\mathfrak{g} \in \mathbb{X}, s.t.\mathfrak{v},\mathfrak{f} \in G^{\mathfrak{s}} \cap G^{\mathfrak{g}}$
 - \bullet $\mathcal{T}(\alpha \mathfrak{v}, \beta \mathfrak{s}) = \alpha.\beta.\mathcal{T}(\mathfrak{v}, \mathfrak{s}) for \alpha, \beta \in \mathbb{R}, (\mathfrak{v}, \mathfrak{s}) \in G.$
- **1.15 Definition[10]:** A normed operator T in 2- times is defined to become bounded if there exists a number C > 0, s.t. $\|\mathcal{T}(\mathfrak{v},\mathfrak{s})\| \leq \mathcal{C}.\,\|\mathfrak{v},\mathfrak{s}\|\ for\ all\ (\mathfrak{v},\mathfrak{s}) \in G.$
- **1.16 Definition** [10]: Suppose that T is an operator which is bounded subsequently the numeral $||T|| = \inf\{ \mathcal{C} > 0 : ||T(\mathfrak{p},\mathfrak{s})|| \le$ $\mathcal{C}. \| \mathfrak{v}, \mathfrak{s} \|$ for $(\mathfrak{v}, \mathfrak{s}) \in G \}$ is defined the linear operator of norm in 2-times \mathcal{T} .
- **1.17 Definition**[10]: Suppose that \mathbb{Y} a space of norm and $G \subseteq \mathbb{X} \times \mathbb{X}$ is a set of norm in 2-times. The Symbol by $\mathcal{T}_2(G,\mathbb{Y})$ is denoted the system of all linear operators which is bounded in 2-times form G at \mathbb{Y} . Specially, the system $\mathcal{T}_2(\mathbb{X}, \mathbb{Y})$, whether \mathbb{X} is a generalized space of norm in 2-times and $G = \mathbb{X} \times \mathbb{X}$. See $\mathbb{L}, \mathbb{K} \in \mathcal{T}_2(G, \mathbb{Y})$ and satisfy two conditions:
 - $(\mathbb{L} + \mathbb{K})(\mathfrak{v}, \mathfrak{s}) = \mathbb{L}(\mathfrak{v}, \mathfrak{s}) + \mathbb{K}(\mathfrak{v}, \mathfrak{s}), \forall (\mathfrak{v}, \mathfrak{s}) \in G;$
 - \bullet $(\alpha, \mathbb{L})(\mathfrak{v}, \mathfrak{s}) = \alpha, \mathbb{L}(\mathfrak{v}, \mathfrak{s}) \text{ for } \alpha \in \mathbb{R}, (\mathfrak{v}, \mathfrak{s}) \in G.$
- **1.18 Definition** [1]: We will symbolize $l^p = l^p_{\mathbb{N}}(\mathbb{R})$, $1 \le p < \infty$: the space of real numbers of p-summable sequence. Reworded that $u\coloneqq\{u_k\}_{k=1}^\infty$ forms a sequence of real numbers $\in l^p$, we defined $\|u\|_p\coloneqq(\sum_{k=1}^\infty|u_k|^p)^{1/p}<\infty$. The dual space of l^p is $l^{p'}$, $\frac{1}{n} + \frac{1}{n'} = 1$. There are several n-norms on l^p explained below

$$\|v_{1},...,v_{m}\|_{p}^{G} := \sup_{s_{i} \in l^{p'}, \|s_{i}\|_{p'} \le 1} \begin{vmatrix} \sum_{k=1}^{\infty} v_{1k} s_{1k} & \cdots & \sum_{k=1}^{\infty} v_{1k} s_{mk} \\ \vdots & \ddots & \vdots \\ \sum_{k=1}^{\infty} v_{mk} s_{1k} & \cdots & \sum_{k=1}^{\infty} v_{mk} s_{mk} \end{vmatrix}$$

$$\|v_{1},...,v_{m}\|_{p}^{H} := \begin{bmatrix} \frac{1}{m!} \sum_{k=1}^{\infty} ... \sum_{k=1}^{\infty} abs \begin{vmatrix} v_{1k} & \cdots & v_{1k_{m}} \\ \vdots & \ddots & \vdots \\ v_{mk_{1}} & \cdots & v_{mk_{m}} \end{vmatrix}^{p} \end{vmatrix}^{\frac{1}{p}}$$

$$\|v_{1},...,v_{m}\|_{p}^{I} := \sup_{s_{i} \in l^{p'}, \|s_{1},...,s_{m}\|_{p'}^{H} \le 1} \begin{vmatrix} \sum_{k=1}^{\infty} v_{1k} s_{1k} & \cdots & \sum_{k=1}^{\infty} v_{1k} s_{mk} \\ \vdots & \ddots & \vdots \\ v_{mk_{1}} & \cdots & v_{mk_{m}} \end{vmatrix}^{p} \end{vmatrix}^{\frac{1}{p}}$$

$$\|v_{1},...,v_{m}\|_{p}^{I} := \sup_{s_{i} \in l^{p'}, \|s_{1},...,s_{m}\|_{p'}^{H} \le 1} \begin{vmatrix} \sum_{k=1}^{\infty} v_{1k} s_{1k} & \cdots & \sum_{k=1}^{\infty} v_{1k} s_{mk} \\ \vdots & \ddots & \vdots \\ \sum_{k=1}^{\infty} v_{mk} s_{1k} & \cdots & \sum_{k=1}^{\infty} v_{mk} s_{mk} \end{vmatrix}$$

$$\|s_{1},...,s_{m}\|_{p}^{H} := \sum_{k=1}^{\infty} \sum_{k=1}^{\infty} v_{1k} s_{1k} & \cdots & \sum_{k=1}^{\infty} v_{mk} s_{mk} \end{vmatrix}$$

$$\|v_{1},...,v_{m}\|_{p}^{H} \|s_{1},...,s_{m}\|_{p}^{H}, \text{ and } f_{\mathbb{Y}} \text{ is bounded on } (l^{p}, \|..., \dots, \|_{p}^{H}) \text{ for } \|f_{\mathbb{Y}}\| \le \|s_{1},...,s_{m}\|_{p'}^{H}.$$

$$1.19 \text{ Definition } [1]: \text{ The system } \mathcal{X}^{*} \text{ of all multilinear functionals on } (X, \|..., ..., \|) \text{ in } m\text{- times which it is bounded. Defined by }$$

$$\mathbb{f}_{\mathbb{Y}}(\mathfrak{v}_{1},\ldots,\mathfrak{v}_{\mathbb{m}}) := \frac{1}{\mathfrak{m}!} \sum_{k=1}^{\infty} \ldots \sum_{k=1}^{\infty} \begin{vmatrix} \mathfrak{v}_{1k_{1}} & \ldots & \mathfrak{v}_{1k_{\mathbb{m}}} \\ \vdots & \ddots & \vdots \\ \mathfrak{v}_{\mathbb{m}k_{1}} & \ldots & \mathfrak{v}_{\mathbb{m}k_{\mathbb{m}}} \end{vmatrix} \begin{vmatrix} \mathfrak{s}_{1k_{1}} & \ldots & \mathfrak{s}_{1k_{\mathbb{m}}} \\ \vdots & \ddots & \vdots \\ \mathfrak{s}_{\mathbb{m}k_{1}} & \ldots & \mathfrak{s}_{\mathbb{m}k_{\mathbb{m}}} \end{vmatrix} , \text{for } (\mathfrak{v}_{1},\ldots,\mathfrak{v}_{\mathbb{m}}) \in l^{p} \text{ .Further, we have } |\mathbb{f}_{\mathbb{Y}}(\mathfrak{v}_{1},\ldots,\mathfrak{v}_{\mathbb{m}})| \leq$$

- **1.19 Definition** [1]: The system \mathcal{X}^* of all multilinear functionals on $(\mathbb{X}, \|., ..., \|)$ in \mathbb{m} -times which it is bounded. Defined by $\|\mathbf{f}\| \coloneqq \inf\{\mathcal{C} > 0\}$ or equivalently $\|\mathbf{f}\| \coloneqq \sup\{\|\mathbf{f}(\mathbf{v}_1, \dots, \mathbf{v}_m)\| : \|\mathbf{v}_1, \dots, \mathbf{v}_m\| \le 1\}$, determines a norm on \mathcal{X}^* .
- 2. Linear Operators and Functionals which are Bounded on Normed Sets in 2-times and on Normed Spaces in m times
- **2. 1 Theorem** [10]: Suppose that \mathcal{T} linear operator in 2- times which it is bounded. Then we have
 - a. $||T|| \le \mathcal{C}$ for $\mathcal{C} \in \mathcal{P}^{(T)} = {\mathcal{C}' > 0; ||T(\mathfrak{v},\mathfrak{s})|| \le \mathcal{C}'. ||\mathfrak{v},\mathfrak{s}|| for (\mathfrak{v},\mathfrak{s}) \in G};$
 - b. $||T(\mathfrak{v},\mathfrak{s})|| \leq ||T||$. $||\mathfrak{v},\mathfrak{s}||$ for each $(\mathfrak{v},\mathfrak{s}) \in G$;
 - c. $||T|| = \sup\{ ||T(v,s)||; (v,s) \in G, ||v,s|| = 1 \}$
 - $= \sup\{ \|\mathcal{T}(\mathfrak{v},\mathfrak{s})\|; (\mathfrak{v},\mathfrak{s}) \in G, \|\mathfrak{v},\mathfrak{s}\| \le 1 \}$
 - $= \sup \{ \frac{\|\mathcal{T}(\mathfrak{v},\mathfrak{s})\|}{\|\mathfrak{v},\mathfrak{s}\|}; (\mathfrak{v},\mathfrak{s}) \in G, \|\mathfrak{v},\mathfrak{s}\| \neq 0 \}$
 - **2.2 Theorem** [10]: Suppose that G is a normed system in 2-times with \mathbb{Y} which is normed space, then $(\mathcal{T}_2(G, \mathbb{Y}), ||.||)$ is the space of norm.
 - **2.3 Theorem** [10]: Suppose that \mathbb{Y} is a space of Banach with G is system of norm in 2-times , then $\mathcal{T}_2(G, \mathbb{Y})$ defines a space of Banach.
 - **2.4 Corollary** [10] : Suppose that \mathbb{Y} is a space of Banach with \varkappa is a symmetric system of norm in 2-times, then $\mathcal{T}_2(\varkappa, \mathbb{Y})$ is a space of norm which is symmetric sequentially complete in 2-times and take the property: $\|\mathbb{L}, \mathbb{K}\| = \|\mathbb{L}\|$, $\|\mathbb{K}\|$ for $\mathbb{L}, \mathbb{K} \in$ $\mathcal{T}_2(\varkappa, \mathbb{Y}).$
 - **2.5 Proposition** [10]: If G be a system of norm in 2-times, the set { $\|\mathbb{F}_{\mathbb{m}}\|$; $\mathbb{m} \in N$ } which is bounded, \mathbb{Y} a space of norm and the set $\{\mathbb{F}_{\mathbb{m}}; \mathbb{m} \in N\} \subset \mathcal{T}_2(G, \mathbb{Y})$, then $\forall (\mathfrak{v}, \mathfrak{s}) \in G$ the system $\{\|\mathbb{F}_{\mathbb{m}}(\mathfrak{v}, \mathfrak{s})\|; \mathbb{m} \in N\}$ is-bounded.
 - 2.6 Theorem [10]: Let Y a space of norm and X is a generalized space of norm in 2-times . When $\{\mathbb{F}_m; m \in N\}$ is bounded set and $\subset T_2(\mathbb{X}, \mathbb{Y})$ which is pointwise-convergent to \mathcal{F} , then $\mathbb{F} \in T_2(\mathbb{X}, \mathbb{Y})$.
 - **2.7 Theorem** [1]: The three m- norms on l^p , viz
 - $\|., ..., ... \|_{p}^{I}, \|., ..., ... \|_{p}^{H}, and \|., ..., ... \|_{p}^{\mathbb{G}}$, are equivalent.
 - **2.8 Proposition** [1]: Suppose that f is a multi-linear-functional in m -times on $(X, \|., ..., \|)$ Which is bounded, then f is antisymmetric, in order to $f(\mathfrak{v}_1, ..., \mathfrak{v}_m) = sign(\sigma) f(\mathfrak{v}_{\sigma(1)}, ..., \mathfrak{v}_{\sigma(m)})$, where $\mathfrak{v}_1, ..., \mathfrak{v}_m \in \mathbb{X}$.
 - **2.9 Fact** [1]: Let $(l^2, \|., ..., s_m\} \in l^2$, the set $f_{\mathbb{Y}}$ is the multi-linear- functional in \mathbb{m} -times explained in definition 1.18 .Then $\mathbb{f}_{\mathbb{Y}}$ is bounded on $(l^2, \|., ..., \|_2^H)$ with $\|\mathbb{f}_{\mathbb{Y}}\| = 1$ $\|\mathbf{s}_1, \dots, \mathbf{s}_{\mathbf{m}}\|_2^H$.
 - **2.10 Proposition**[7]: Suppose that $(X, \|.\|)$ is a space of norm for real numbers, where $\mathbb{d} \geq \mathbb{m}$, f is a multi-linear-functional in m-times which is bounded . Then $\exists w_{\mathbb{f}} \in \mathcal{T}(\mathbb{X}, \mathbb{X}^{m-1}), s.t. \ for \ (v_1, ..., v_{m-1}, v) \in \mathbb{X}.$
 - $f(\mathfrak{v}_1, ..., \mathfrak{v}_{m-1}, \mathfrak{v}) = (w_f(\mathfrak{v}))(\mathfrak{v}_1, ..., \mathfrak{v}_{m-1}).$ Moreover, $\|f\|_{m,1} = |w_f|_{op}$.
- **2.11 Theorem** [7]: Suppose that X is a space of norm for real numbers ,where $d \ge m$. Then the $(X, \|.\|)$ space of dual in m times is $\mathcal{T}(X, X^{m-1})$.
- **2.12 Theorem** [7]: Suppose that X is a space of norm for real numbers where $\mathbb{d} \geq \mathbb{m}$. Then the $(X, \|.\|)$ space of dual in \mathbb{m} -times is – space of Banach.

International Journal of Engineering and Information Systems (IJEAIS) ISSN: 2643-640X

Vol. 6 Issue 12, December - 2022, Pages: 97-101

3. REFERENCES

- [1] H. Batkunde, H. Gunawan, and Y.E.P. Pangalela, Bounded linear functionals on the mormed space of p-summable sequences, Acta Univ. M. Belii Ser. Math. 21 (2013),66-75.
- [2] S. G"ahler, Lineare 2-normierte r"aume, Math. Nachr. 28 (1964), 1-43.
- [3]S. G"ahler, Untersuchungen "uber verallgemeinerte m-metrische r"aume I, Math. Nachr. 40 (1969), 165–189.
- [4] S. G"ahler, Untersuchungen "uber verallgemeinerte m-metrische r"aume II, Math. Nachr. 40 (1969), 229–264.
- [5] S. G'ahler, Untersuchungen "uber verallgemeinerte m-metrische r"aume III, Math. Nachr. 41 (1969), 23–36.
- [6] S.M. Gozali, H. Gunawan and O. Neswan, On m-norms and n-bounded linear functionals in a Hilbert space, Ann. Funct. Anal. 1 (2010),72-79.
- [7] Y.E.P. Pangalela, m-Dual Spaces Associated to a normed space, Khayyam J. Math .1(2015),no.2,219-229
- [8] Y.E.P. Pangalela and H. Gunawan, The m-dual space of the space of p-summable sequences, Math. Bohem. 138 (2013), 439-448.
- [9] Z. Lewandowska, Linear operators on generalized 2-normed spaces, Bull. Math. Soc. Sc. Math. Roumanie 42 (1999), 353–368.
- [10] Z. Lewandowska, Bounded 2-linear operators on 2-normed sets, Glas. Mat. Ser. III 39 (2004), 301–312.

Authors

Author's Name, Ahmed Hadi Hussain