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Abstract: Multilevel models can solve problems that arise from data with a hierarchical structure. One application of the use of the 

multilevel model that has been previously studied in the field of education is the value of the National Examination. The sample size 

of each district or city is different, causing the Maximum Likelihood estimation method to be appropriate. In addition, there is a 

tendency that the National Examination scores do not follow a parametric pattern so the truncated spline estimator approach is 

used. This research examines the application of the multilevel linear spline truncated model. The results obtained are when the 

number of students is below 76 people, the tendency of the average national exam score to increase, and when the number of students 

has reached 76 people, the average national exam score can decrease.      
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1. INTRODUCTION 

Spline is one of the estimators in nonparametric regression 

that can effectively adjust the data pattern [1]. The spline 

estimator gets a data estimate based on the movement of the 

data pattern, so the spline is called an estimator which has 

flexible estimation properties [2]. Spline estimators that have 

been developed by many researchers include truncated splines 

which are piecewise polynomial, which are polynomial pieces 

that have segmented properties in the intervals formed at knot 

knot points [3]. 

The development of the regression analysis method has 

experienced rapid progress, both in the aspect of the 

estimation method and the variation of the data used. One of 

the developments of simple linear regression analysis is the 

multilevel model. The multilevel model was introduced by 

Goldstein (1995) which states that the multilevel model can 

overcome problems that arise from data with a hierarchical 

structure. In a hierarchical structure, individuals in the same 

group have characteristics that tend to be similar, in other 

words between observations at lower levels are not 

independent of each other, if the violation of this assumption 

is ignored it will result in a violation of the assumption of 

freedom in conventional statistical approaches [4]. 

The most basic multilevel model is a two-level model, 

with individual data on the first level and group data on the 

second [5]. This study measures up to 2 levels. Nonparametric 

regression has also been developed in multilevel cases, 

including linear multilevel spline models [6], multivariate 

multilevel spline models [7], and kernel multilevel modeling 

[8]. The Maximum Likelihood (MLE) method is one of 

several parameters estimates that can be used in a multilevel 

model [4]. MLE produces an efficient and consistent 

regression coefficient estimator if the sample used is large so 

that the assumption violation can be ignored. [5].  

Individuals and cities/districts are both tiered or 

hierarchical structures in general. A tiered population 

indicates that there are levels or levels in the data. One form 

of tiered data structure in education data is the average score 

of the National Examination [9]. The government always tries 

to make various innovations every year to realize the hope of 

improving the quality of education. One way to do this is to 

analyze information for the tiered data structure of the 

implementation of the National Examination at each level 

from different districts or cities so that the multilevel model is 

appropriate. The sample size of each district or city is 

different, causing the Maximum Likelihood estimation 

method to be appropriate.  

Based on this description, the authors examine the 

estimation of the multilevel spline truncated regression model 

using the Maximum Likelihood method. The method was 

applied to the average data for the SMP UN scores for each 

school by taking into account the variance between 

districts/cities in South Sulawesi Province. The choice of data 

on the average UN score in this study was due to changes in 

values that varied at the district/city level in South Sulawesi 

Province. The diversity of data is getting more and more in 

the real world. The trend of increasingly large data at this time 

is a challenge for researchers to analyze big data into a 

decision reference. The problem, which is almost always 

unavoidable, is that the more data there is, the more likely 

there is to be an irregular pattern. Fluctuations up and down, 

data is spread unevenly, outliers are getting bigger, and there 
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are still many data problems that will be encountered in real 

data. The parametric approach can only be used when the 

form of the function follows a parametric form causing 

limitations of the method. Therefore, a nonparametric 

regression approach has been developed that can be used for 

any data conditions.  

2. LITERATUR REVIEW 

2.1 Estimator Spline Truncated 

Nonparametric regression models can be presented in the 

following way in general [10]. 

𝑦𝑖 = 𝑓(𝑥𝑖) + 𝜀𝑖 , (1) 

where 𝑦𝑖 is the response variable on the 𝑖𝑡ℎ observation, 𝑥𝑖 is 

the predictor variable on the 𝑖𝑡ℎ observation, 𝑓(𝑥𝑖) is a 

nonparametric regression function containing predictor 

variables, 𝜀𝑖 is a disturbance factor that cannot be explained 

by a model that can be called an error, which is assumed to be 

a random variable with a mean of zero and a variance of 𝜎2, 

and 𝑖 = 1,2, … , 𝑛. 

 Spline in nonparametric regression has the ability to 

estimate the behavior of the data that tends to differ at 

different intervals [11]. The ability to estimate the behavior of 

this data is shown by the truncated (pieces) attached to the 

estimator, these pieces are called knot points. Suppose there 

is one predictor variable 𝑥𝑖, then the knot point is taken at 

intervals 𝑎 < 𝑘𝑟 < 𝑏, where a is the minimum value and b is 

the maximum value for the predictor 𝑥𝑖 [12]. 

A spline truncated function of order q with knot points 

at𝑘1, 𝑘2, … , 𝑘𝑟, in general, can be expressed as follows [13]: 

𝑓(𝑥𝑖) = ∑𝛽𝑙𝑥𝑖
𝑙

𝑞

𝑙=0

+ ∑ 𝛽𝑞+ℎ(𝑥𝑖 − 𝑘ℎ)+
𝑞

𝑟

ℎ=1

, (2) 

 

where 𝛽0, 𝛽1, … , 𝛽𝑞 , 𝛽𝑞+1, … , 𝛽𝑞+𝑟 is the regression 

parameter, 𝑘ℎ is the ℎ𝑡ℎ knot point, (ℎ = 1,2, … , 𝑟). 

(𝑥𝑖 − 𝑘ℎ)+
𝑞

 is a truncated polynomial function which is 

described as follows: 

 

(𝑥𝑖 − 𝑘ℎ)+
𝑞

= {
(𝑥𝑖 − 𝑘ℎ)𝑞;  𝑥𝑖 ≥ 𝑘ℎ

0,                ;   𝑥𝑖 < 𝑘ℎ
 .  

 

If the spline function 𝑓(𝑥𝑖) in equation (2) is a function that 

expresses the relationship between p predictors and a single 

response, then it can be written as follows: 

 

        𝑦𝑖 = 𝑓(𝑥1𝑖) + 𝑓(𝑥2𝑖) + ⋯ + 𝑓(𝑥𝑝𝑖) + 𝜀𝑖 (3) 

= ∑𝑓(𝑥𝑗𝑖)

𝑝

𝑗=1

+ 𝜀𝑖; 𝑖 = 1,2, … , 𝑛,  

where 

𝑓(𝑥𝑗𝑖) = 𝛽0𝑗 + ∑𝛽𝑗𝑙𝑥𝑗𝑖
𝑙

𝑞

𝑙=1

+ ∑ 𝛽𝑗(𝑞+ℎ)(𝑥𝑗𝑖 − 𝑘𝑗ℎ)+
𝑞

𝑟

ℎ=1

 

 

where 𝑦𝑖 is the response variable on the 𝑖𝑡ℎ observation, 𝑥𝑗𝑖  is 

the 𝑗𝑡ℎ   predictor variable on the 𝑖𝑡ℎ observation, 𝛽0𝑗 is the 𝑗𝑡ℎ 

predictor intercept, 𝛽𝑗𝑙  is the polynomial parameter on the 𝑗𝑡ℎ 

and 𝑙𝑡ℎ order predictor, 𝑘𝑗ℎ is the value knot points on the 𝑗𝑡ℎ 

predictor and ℎ𝑡ℎ knot points, 𝑟 is the number of knot points, 

𝑞 is the order of the spline truncated polynomial, 𝑝 is the 

number of predictor variables, 𝛽𝑗(𝑞+ℎ) is the parameter 

truncated on the 𝑗𝑡ℎ predictor and knot points (𝑞 + ℎ)𝑡ℎ, and 

𝜀𝑖 is the error in the i-th observation which is assumed to be 

independent and normally distributed with mean 0 and 

variance 𝜎2 . 

Equation (3) for n observational data can be expressed in the 

form of a matrix as follows: 

 

𝒚 = 𝑿𝜷 + 𝜺  

 

where 𝑦 is a vector that has size 𝑛 × 1, matrix 𝑋 has size 𝑛 ×
(1 + 𝑞 + 𝑟), vector size (1 + 𝑞 + 𝑟) × 1, and vector size 𝑛 ×
1 [14]. 

2.2 Model Multilevel Spline Linier Truncated 

The multilevel regression model is part of the mixed 

linear model because there are two parameters, namely the 

fixed effect parameters and random effects which are 

combined into one equation [15]. 

In simple form, the equations for the mixed linear model are 

[16]: 

 

𝑦 = 𝑿𝛽 + 𝒁𝑢 + 𝜀 (4) 

where 

𝑦 : response variable vector  

𝑿  : predictor variable matrix for fixed parameters 

𝛽   : fixed effect parameter vector 

𝒁  : predictor variable matrix for random parameters 

𝑢  : random effect vector 

𝜀 : random error vector 

Assume that the errors 𝜀 and 𝑢 are not independent of one 

another and are normally distributed with a variance of: 

 

[
𝒖
𝜺
] ~ 𝑁 ([

𝟎
𝟎
] , 𝜎2 [

𝑮 𝟎
𝟎 𝑹

]) (5) 

 

with 𝑮 = 𝑮(𝛾) and 𝑹 =  𝚺 with 𝚺 =  𝚺(ϕ). and are vectors 

of the variance parameters bound to 𝑢 and 𝜀 while 𝜎2 is the 

variance scale parameter. The variance parameters are 𝜎2,  ϕ 

𝛾. 𝑮,𝑹 and 𝚺 are variance matrices which are assumed to be 

positive definite.  

 

𝒚 ~ 𝑁(𝑿𝛽,𝑯) (6) 

where 

𝑯 = 𝒁𝑮𝒁′ + 𝑹  

  

 The definition of a level 1 model is a model that is 

compiled without taking into account the influence of the 

group level. For each group, multilevel modeling can be 

written as follows [9]: 

 

𝒚𝑗 = 𝑿𝑗𝜷𝑗 + 𝜺𝑗,  with 𝜺𝑗~𝑁(0, 𝜎2𝐼) (7) 
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where 

 

𝒚𝑗 = [𝑦1𝑗 𝑦2𝑗 ⋯ 𝑦𝑛𝑗𝑗]′,   

𝑿𝑗 =

[
 
 
 
 
 
 
1
⋮
1

𝑥11𝑗 

⋮
𝑥1𝑛𝑗

 

1 (𝑥11 − 𝑘11)+
𝑞
 

𝑥21𝑗  

⋮
𝑥2𝑛𝑗

…
⋮
…

(𝑥21 − 𝑘21)+
𝑞

…

𝑥𝑘1𝑗  

⋮
𝑥𝑘𝑛𝑗

(𝑥𝑘1 − 𝑘𝑘1)+
𝑞

⋮ ⋮
1 (𝑥1𝑛 − 𝑘1𝑟)+

𝑞
⋮ ⋮

(𝑥2𝑛 − 𝑘2𝑟)+
𝑞

…
⋮

(𝑥𝑘𝑛 − 𝑘𝑘𝑟)+
𝑞
]
 
 
 
 
 
 

,  

𝜷𝑗 = [𝛽0𝑗 ⋯ 𝛽𝑘𝑗 𝛽(𝑘+1)𝑗 ⋯ 𝛽(𝑘+𝑟)𝑗]
′
, 

𝜺𝑗 = [𝜀1𝑗 𝜀2𝑗 ⋯ 𝜀𝑛𝑗𝑗]′  

 

 The regression coefficient at level-1, 𝛽𝑝𝑗 with 𝑝 =

0,1,2, … , 𝑘 in the level-1 model has different values between 

groups. Variations in the value of 𝛽𝑝𝑗 will be explained by 

forming a level 2 model. The formation of a level 2 model is 

carried out for each regression coefficient as the p-th response 

using predictor variables at level-2. The form of modeling at 

level-2 can be written as follows [9]: 

 

𝜷𝑝 = 𝒁𝜸𝑝 + 𝒖𝑝  (8) 

where 

 

𝜷𝑝 = [𝛽𝑝1 𝛽𝑝2 ⋯ 𝛽𝑝𝑚]′ ,  

𝑿𝑗 =

[
 
 
 
1 𝑍11  
1 𝑍12  

𝑍21  …
𝑍22  …

𝑍𝑙1 

𝑍𝑙2 

⋮ ⋮
1 𝑍1𝑚

⋮ ⋮
𝑍2𝑚 …

⋮
𝑍𝑙𝑚 ]

 
 
 

,  

𝜸𝑝 = [𝛾0𝑝 𝛾1𝑝 ⋯ 𝛾𝑙𝑝]′, 

𝒖𝑝 = [𝑢𝑝1 𝑢𝑝2 ⋯ 𝑢𝑝𝑚]′  

 

As a matrix, it looks like this: 

 

𝒚𝑗 = 𝑿𝑗𝒁𝑗𝜸 + 𝑿𝑗𝒖𝑗 + 𝜺𝑗  (9) 

 

where 𝑿𝑗𝒁𝑗𝜸 is a fixed effect and [𝑿𝑗𝒖𝑗 + 𝜺𝑗] is a random 

effect. 

3. MATERIAL AND METHOD 

3.1 Data Sources and Research Variables 

Data on the level-1 predictor variable or individual level, 

namely schools, was obtained from the Primary Education 

Data with a total sample of 1584 schools and the level-2 

predictor variable data or the group level, namely 24 districts. 

The variables used in this study consisted of the average value 

of the Junior High School National Examination as a response 

variable. Number of Junior High School Students as a variable 

in all South Sulawesi provinces in 2019 

3.2 Steps Of Analysis 

In this study, data analysis was carried out by making a 

multilevel regression model on the scores of the Junior High 

School National Examination between schools and 

districts/cities in South Sulawesi Province by estimating the 

parameters and u using the Maximum Likelihood method 

with a truncated spline estimator. Then choose the optimal 

knot point based on the minimum GCV value 

4. RESULT AND DISCUSSION 

4.1 Description Data 

The data distribution pattern between the predictor 

variable and the response variable will be identified first 

before being analyzed using the multilevel linear spline 

truncated model. A boxplot is used to identify the subjects. 

 

 
Fig 1: Boxplot number of students 

Figure 1 shows that the data on the number of dominant 

students are spread between Q1 (63) and Q2 (132) so that 

changes in data patterns are likely to be in the range of Q1 to 

Q2, so the knot points chosen are in the vicinity of Q1 to Q2. 

4.2 Application Of The Truncated Multilevel Spline 

Model 

The estimation of the multilevel spline linear truncated 

regression model was carried out using a one-knot point 

approach. The optimal knot point selection is done by looking 

at the GCV value of each knot point on the predictor of the 

number of students. The following is a truncated linear spline 

multilevel regression model which is expressed in logit form 

with the one-knot point. 

 

𝑌𝑖𝑗 = 𝛽11𝑥1𝑖𝑗 + 𝛽12(𝑥1𝑖 − 𝑘11)++𝜀𝑖𝑗  

𝛽01 = 𝛾00+𝑢0𝑗  

 

The method that can be used to select the optimal knot point 

of the multilevel spline linear truncated regression model is 

the GCV (Generalized Cross Validation) method. The optimal 

knot point is obtained from the minimum GCV value. The 

GCV value from modeling using one-knot point is shown in 

Table 1 below: 

 



International Journal of Academic and Applied Research (IJAAR) 

ISSN: 2643-9603 

Vol. 6 Issue 2, February - 2022, Pages:77-81 

www.ijeais.org/ijaar 

80 

Table 1: GCV with one knot point for predictor of Number 

of Students 

Knot 

point 

(𝑘11) 

GCV Value 

Knot 

point 

(𝑘11) 

GCV Value 

61 75.61805009 77 75.51721187 

62 75.61214413 78 75.51994253 

63 75.60299917 94 75.67268404 

64 75.59023501 95 75.68535235 

65 75.57420349 96 75.69762123 

66 75.55705725 97 75.70801046 

67 75.54841858 98 75.71791092 

74 75.5217016 99 75.72739127 

75 75.51719392 100 75.73717023 

76 75.51508827 101 75.74610758 

 

In Table 1, the minimum GCV value is 75.51508827 which is 

at the knot point 𝑘11 = 76. The estimation results of the 

multilevel spline linear truncated regression model 

parameters are shown in Table 2 below: 

 

Table 2: The results of the estimation of model parameters  

Fixed Effect 

Parameter Estimate Std. Error t value Pr(>|t|) 

𝛽01 46.5878 1.2258 38.0075 0.0000 

𝛽11 0.0278 0.0132 2.1057 0.0354 

𝛽12 -0.0266 0.0136 -1.9623 0.0499 

Random Effect  

Group Level Variance 
Std. 

Dev 
 

𝜎𝑢0
2  Level 2 18.0016 4.24282  

𝜎𝜀𝑖𝑗
2  Level 1 59.4353 7.70943  

 

According to Table 2, the multilevel spline linear truncated 

regression model with a one-knot point for the number of 

junior high school students is: 

 

Level-1: 

𝑌𝑖𝑗 = 0.0278𝑥1𝑖𝑗 − 0.0266(𝑥1𝑖 − 76)+  

Level-2: 

𝛽20 = 46.5878  

Mixed model: 

𝑌𝑖𝑗 = 46.5878 + 0.0278𝑥1𝑖𝑗 − 0.0266(𝑥1𝑖 − 76)+  

 

 Figure 2 shows the graph of the multilevel spline 

truncated model on the predictor: 

 

Fig 2: Graph of the multilevel spline truncated model 

5. CONCLUSION 

The multilevel linear spline truncated model on the data 

on the number of junior high school students has optimal 

knots located at 76 people, according to the results obtained, 

so the model formed is as follows: 

 

𝑌𝑖𝑗 = 46.5878 + 0.0278𝑥1𝑖𝑗 − 0.0266(𝑥1𝑖 − 76)+ 

 

Based on the estimation results of the model, it can be 

concluded that through the multilevel spline truncated model 

the results are that when the number of students is below 76 

people, the tendency of the average national exam score to 

increase, and when the number of students has reached 76 

people, the average national exam score can be decrease. 
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