
International Journal of Engineering and Information Systems (IJEAIS)

ISSN: 2643-640X

Vol. 6 Issue 2, February - 2022, Pages:75-77

www.ijeais.org/ijeais

75

MS Windows Misconfiguration and Vulnerabilities

Remedial For an APT Detection
Mourad M.H Henchiri1 and Sharyar Wani2

1KICT, IIUM, Malaysia

mourad@unizwa.edu.om
2KICT, IIUM, Malaysia

sharyarwani@iium.edu.my

Abstracts: Risks start from a computer OS misconfiguration, then a vulnerability which system users want to trespass

the risks towards their private data. It is required to scan as much code as possible in order to approximate the perfect

control flow graph. It is then necessary to overcome on the one hand the incompleteness of a recursive route due to the

presence of dynamic jumps and on the other hand the lack of precision of a linear route. One of the challenges is code

overlap obfuscation. In this research we start by providing a state of the art of some static analysis techniques and

their approach to code overlap, then we will propose a characterization of binaries using this technique. and this

research considers only non-self-modifying programs.

Keywords: Data at rest, APT, Malware, hybrid analysis, obfuscation, code overlap.

I- INTRODUCTION

Although the code overlap problem is not a recent

obfuscation technique and is well documented [1], the

disassembly literature often assumes that a byte at a

specific address can only be present in only one

instruction [19]. This constraint prevents detection of

any overlap but allows more precise disassembly on a

binary that does not use this protection technique.

From the other side, and in order to analyze self-

modifying programs, we propose to divide any

execution into a trace and a series of execution

snapshots: each snapshot represents a non-self-

modifying part of the program. Such implemented

solution of this slicing might be an emulation with the

Binary Analysis Platform (BAP) and by

instrumentation with Pin. The main concern of this

research is devoted to the static analysis of the code

overlap problem. Besides, and as a perspective, there

will be a focus on the analysis of a self-modifying

program: we will focus and stress on the concepts

discussed, in order to reconstruct the waves

corresponding to each level of execution as well as a

global control flow graph for the binary studied.

Speculative route: Since the recursive path is less

sensitive to very simple obscurations such as the

injection of dead code, it is often taken as a starting

point in research on static disassembly. After an initial

code search with a recursive scan is performed, the

remaining bytes can undergo a linear scan that will

seek to determine whether they are code or data using

heuristics. One of these approaches assesses the

likelihood that a string of bytes is actually code by first

learning about strings of bytes actually encoding

instructions issued during program execution [2, 13].

This sequence of the two routes is called a speculative

route.

From the famous proven theories, discussing the

speculative routes, and after a first recursive

disassembly [3], and when to try to identify the starting

addresses of assembler functions using the push then

mov instruction suite, characteristic of compiled

functions: they start by stacking the pointer of base

stack with push ebp to replace it with stack pointer with

mov ebp, esp. Also, all the addresses are being

identified where a valid instruction is encoded. From

these addresses they recursively walk again to an

unconditional jump instruction (ret out jmp), believing

that the identified code sequence stops on that jump.

The risk being great that the paths traversed in this way

are not valid, they then eliminate the paths which lead

to invalid code or to addresses known to be data.

Code overlap

In tElock disassembler: The code in figure 1 is taken

from a program protected by tElock and disassembled

using a recursive scan from address 0x01006e7a. There

is a jmp +1 instruction at the address 0x01006e7d and

encoded on the two eb ff bytes, which jumps to the

address 0x01006e7d+1 where the dec ecx instruction is

present, encoded on ff c9 and which therefore shares

the byte ff at address 0x01006e7d+1 with the jmp

instruction.

Bytes to disassemble: fe 04 0b eb ff c9 7f e6 8b c1

mailto:mourad@unizwa.edu.om
mailto:sharyarwani@iium.edu.my

International Journal of Engineering and Information Systems (IJEAIS)

ISSN: 2643-640X

Vol. 6 Issue 2, February - 2022, Pages:75-77

www.ijeais.org/ijeais

2

01006e7a fe 04 0b inc byte [ebx+ecx]

01006e7d eb ff jmp +1

01006e7e ff c9 dec ecx

01006e80 7f e6 jg 01006e68

01006e82 8b c1 mov eax , ecx

Figure 1 - Recursive disassembly of tElock

Disassemblers available: Existing disassemblers, whether using a linear or recursive path, assume that the code cannot

overlap and fail to show consistent disassembly otherwise. The recursive disassembly of the example of tElock (figure

1) with IDA Pro (version 6.3) [4] is as follows:

01006E7A inc byte ptr [ebx+ecx]

01006E7D jmp short near ptr loc_1006E7D+1

; The following bytes have not been disassembled

01006E7F db 0C9h

01006E80 db 7Fh

01006E81 db 0E6h

01006E82 db 8Bh

01006E83 db 0C1h

Radare [5] performs the following linear disassembly:

01006 e7a f e 04 0b inc byte [ebx+ecx]

01006 e7d eb f f jmp 6 e7e

01006 e 7f c9 leave

01006 e80 7 f e6 jg 6 e68

01006 e82 8b c1 mov eax , ecx

Neither is able to follow the jump from the jmp

instruction: the target of the jump has already been

counted as part of another instruction.

Approaches taking into account overlap: The

authors of the overlap technique detailed, allowing to

encode a hidden code sequence in a sequence [6],

propose to detect the protection they expose. The idea

is that a long sequence of bytes is unlikely to represent

a valid sequence of code. If such a sequence exists, it

must be code. So if two long valid strings of code

overlap, it is a deliberate obfuscation and one of the

two strings contains hidden code. This approach works

for the protection they expose but is not applicable to

cases of UPX for example because the byte sequences

on which instructions overlap are very short and it is

plausible that the overlap is accidental and that the

overlapping code is not reachable.

II- STATICALY ANALYSED OVERLAPPED

CODE

We propose a formalization of the code overlap

problem. From a disassembly perspective, a program

that has a single instruction that overlaps another can

be seen as consisting of a primary disassembly path and

a secondary path in which the overlapping instruction

fits. Let's take the example of tElock: the segment of

bytes eb ff c9 7f e6 can be seen as composed of the two

layers of code given in figure 2: there are two layers,

the first contains the instructions jmp+1, leave and jg

0x1006e68 and the second contains the instruction dec

ecx, overlapping jmp+1. In fact, the eb ff c9 7f e6 byte

segment contains exactly the four preceding

instructions: there is at most one valid instruction at

each address and the last potential instruction, coded

on e6, is not valid.

Adresses 0x01006e7d 0x01006e7e 0x01006e7f 0x01006e80 0x01006e81

Bytes eb ff c9 7f e6

Layer 1 Jmp +1 leave jg 0x1006e68

Layer 2 dec ecx

Figure 2 - Consistent cutting into layers of tElock extract

International Journal of Engineering and Information Systems (IJEAIS)

ISSN: 2643-640X

Vol. 6 Issue 2, February - 2022, Pages:75-77

www.ijeais.org/ijeais

2

For an instruction I we denote the interval of memory

addresses on which it is coded C[I]. Formally we define a

layer as a set of instructions that do not overlap.

Consequently, during disassembly, an attempt is made to

perform a coherent division of the instructions included in the

control flow graph into different layers. The previous

example for tElock is a consistent segregation [7, 8].

III- CONCLUSION

Due to its continuous update and change, the code overlap is

rarely discussed in the literature and, when it is, it is not

analyzed as a full-fledged [9, 10, 11] obfuscation technique

but rather bypassed by ignoring the range of addresses on

which are coded disassembled instructions. We have

proposed a notion of code layer, allowing to observe and

quantify the use of code overlap by a binary. We propose an

algorithm to count these overlaps during recursive

disassembly of a binary.

This approach will be taken up and implemented in a related

research, in continuation of the current research, to assess the

use of overlap by malware.

REFERENCES:

1. Michael Sikorski et Andrew Honig. Practical

Malware Analysis : The Hands-On Guide to Dissecting

Malicious Software. 1st. San Francisco, CA, USA : No

Starch Press, 2012 (pages 24, 27, 57).

2. Nithya Krishnamoorthy, Saumya K. Debray et

Keith Fligg. “Static Detection of Disassembly Errors.”

WCRE. IEEE Computer Society, 2009, pages 259–268

(page 57).

3. Manish Prasad et Tzi cker Chiueh. “A Binary

Rewriting Defense Against Stack based Buffer Overflow

Attacks.” USENIX Annual Technical Conference,

General Track. USENIX, 3 septembre 2003, pages 211–

224 (page 58).

4. Hex-Rays. IDA. https://www.hex-

rays.com/products/ida/index.shtml (pages 17, 58, 143).

5. radare. radare, the reverse engineering framework.

http://radare.org (pages 16, 59, 143).

6. Christopher Jämthagen, Patrik Lantz et Martin

Hell. “A new instruction overlapping technique for anti-

disassembly and obfuscation of x86 binaries”. 2013

(pages 29, 59, 62).

7. Bishop, C. M. (2006). Pattern recognition and

machine learning. Springer.

8. Brewer, R. (2014). Advanced persistent threats:

minimising the damage. Network Security, (pp. 5-9).

9. Brockwell, P. J., & Davis, R. A. (2013). Time

series: theory and methods. Springer Science & Business

Media.

10. Canali, C., Casolari, S., & Lancellotti, R. (2010). A

quantitative methodology to identify relevant users in

social networks. IEEE International Workshop on

Business Applications of Social Network Analysis

(BASNA), (pp. 1-8).

11. Intel. Intel 64 and IA-32 Architectures Software

Developer’s Manual (Volume 2).

http://www.intel.com/content/dam/www/public/us/en/doc

uments/manuals/64-ia-32-architectures-software-

developerinstruction-set-reference-manual-325383.pdf

(pages 12, 27, 44)

 Chari, S., Habeck, T., Molloy, I., Park, Y., & Teiken, W.

(2013). A bigData platform for analytics on access

control policies and logs. Proceedings of the 18th ACM

symposium on Access control models and technologies

(SACMAT ‘13).

12. Data Breaches. (2020, July). Retrieved from World

most popular data breaches, Information is beautiful:

http://www.informationisbeautiful.net/visualizations/worl

ds-biggest-data-breaches-hacks.

13. De Vries, J., Hoogstraaten, H., van den Berg, J., &

Daskapan, S. (2012). Systems for Detecting Advanced

Persistent Threats: A Development Roadmap Using

Intelligent Data Analysis. IEEE International Conference

on Cyber Security (CyberSecurity), (pp. 54-61).

14. Denning, D. E. (1987). An intrusion-detection

model. Software Engineering, IEEE Transactions on, (pp.

222-232).

15. Duffield, N. G., & Lo Presti, F. (2009). Multicast

inference of packet delay variance at interior network

links. IEEE Computer and Communications Societies.,

(pp. 280-285).

16. CAPEC – Common Attack Pattern Enumeration

and Classification online Mechanism of Attack at

http://capec.mitre.org/data/definitions/1000.html

[accessed 1 Jan 2014]

17. Friedberg, I., Skopik, F., Settanni, G., & Fiedler,

R. (2015). Combating advanced persistent threats: from

network event correlation to incident detection.

Computers & Security, (pp. 35-57).

18. Christopher Krügel, William K. Robertson, Fredrik

Valeur et Giovanni Vigna. “Static Disassembly of

Obfuscated Binaries.” USENIX Security Symposium.

USENIX, September 18, 2006, pages 255–270.

