\mathcal{G} –Common Fixed Points

May A.A. AL-Yaseen , Zainab Zuhair Knaish AL-Ghurabiu, Noor Razak Jafar Majed

Mathematics Department, University of Babylon, Hilla, Babylon, Iraq E-mail: <u>pure.may.alaa@uobabylon.edu.iq</u> E-mail<u>:zainabzuhair1982@gmail.com</u> E-mail<u>:noorrazak1993@gmail.com</u>

Abstract This a review's paper is about common fixed points in G –spaces. We see the conditions where the map has common fixed points in G –spaces.

Keywords : common fixed point, unique common fixed point, \mathcal{G} -space.

1. Introduction

Let $(\mathfrak{N}, \mathcal{G})$ be a metric space and let Ξ , Θ be two self mappings of \mathfrak{N} . let $\mathcal{G} : \mathfrak{N} \times \mathfrak{N} \times \mathfrak{N} \to \mathbb{R}^+$ be a mapping with : $(\mathcal{G}(\varsigma, \xi, z) = 0 \text{ if } \varsigma = \xi = \zeta, \& 0 < \mathcal{G}(\varsigma, \varsigma, \xi) \text{ for all } \varsigma, \xi \in \mathfrak{N} \text{ with } \varsigma \neq \xi \& \mathcal{G}(\varsigma, \varsigma, \xi) \leq \mathcal{G}(\varsigma, \xi, \zeta) \text{ for all } \varsigma, \xi, \zeta \in \mathfrak{N} \text{ with } z \neq \xi \& \mathcal{G}(\varsigma, \xi, \zeta) = \mathcal{G}(\varsigma, \zeta, \xi) \leq \mathcal{G}(\varsigma, \zeta, \zeta) \& \mathcal{G}(\varsigma, \xi, \zeta) \leq \mathcal{G}(\varsigma, z, \zeta) \leq \mathcal{G}(\varsigma, \zeta, \xi) \text{ for all } \varsigma, \xi, \zeta \in \mathfrak{N} \text{ with } z \neq \xi \& \mathcal{G}(\varsigma, \xi, \zeta) = \mathcal{G}(\varsigma, \zeta, \xi) \otimes \mathcal{G}(\varsigma, \xi, \zeta) \leq \mathcal{G}(\varsigma, z, \zeta) \leq \mathcal{G}(\varsigma, \zeta) \leq \mathcal{G}(\varsigma, z, \zeta) \leq \mathcal{G}(\varsigma, z, \zeta) \leq \mathcal{G}(\varsigma, z, \zeta) \leq$

Mappings Ξ and Θ on a metric space $(\mathfrak{N}, \mathcal{G})$ are said to be compatible (CM.)if $\lim_{n \to \infty} \mathcal{G} (\Xi \Theta \varsigma_n, \Theta \Xi \varsigma_n) = 0$ Whenever ς_n is a sequence in \mathfrak{N} such that $\lim_{n \to \infty} \Xi \varsigma_n = \lim_{n \to \infty} \Theta \varsigma_n = t$ for some $t \in \mathfrak{N}$. Let Ξ and Θ be two self mappings of a metric space $(\mathfrak{N}, \mathcal{G})$. We say that Ξ and Θ satisfy (E: A) – property if there exists a sequence (ς_n) in \mathfrak{N} such that $\lim_{n \to \infty} \Xi \varsigma_n = \lim_{n \to \infty} \Theta \varsigma_n = t$ for some $t \in \mathfrak{N}$. Two self mappings Ξ and Θ on a metric space $(\mathfrak{N}, \mathcal{G})$ are said to be weakly CM. if they commute at coincidence points. CM. maps are weakly CM. but the converse is not true.

Let (\mathfrak{N}, \leq) be a partially ordered set and A, B be two nonempty subsets of \mathfrak{N} with $\mathfrak{N} = A \cup B$. Let $\Xi, \Theta : \mathfrak{N} \to \mathfrak{N}$ be two mappings. Then the pair (Ξ, Θ) is said to be (A, B) –weakly increasing if $\Xi \varsigma \leq \Theta \Xi \varsigma$ for all $\varsigma \in A$ and $\Theta \varsigma \leq \Xi \Theta \varsigma$ for all $\varsigma \in B$. [3] [4]. [5].

2.Review

Proposition2.1 [1] [5][3]

Let $(\mathfrak{N}, \mathcal{G})$ be a complete \mathcal{G} -metric space, and let Ξ, Θ be mappings from \mathfrak{N} into itself have a common fixed point in \mathfrak{N} if one of the following satisfying :

1. $\max\{\mathcal{G}(\Xi(\varsigma), \Theta(\Xi(\varsigma)), \Theta(\Xi(\varsigma))), \mathcal{G}(\Theta(\varsigma), \Xi(\Theta(\varsigma)), \Xi(\Theta(\varsigma)))\} \le r \min\{\mathcal{G}(\varsigma, \Xi(\varsigma), \Xi(\varsigma)), \mathcal{G}(\varsigma, \Theta(\varsigma), \Theta(\varsigma))\}\$ for every $\varsigma \in \mathfrak{N}$, where $0 \le r < 1$ and that $\inf[\mathcal{G}(\varsigma, \xi, \xi) + \min\{\mathcal{G}(\varsigma, \Xi(\varsigma), \Xi(\varsigma)), \mathcal{G}(\varsigma, \Theta(\varsigma), \Theta(\varsigma))\}: \varsigma \in \mathfrak{N}] > 0$ for every $\xi \in \mathfrak{N}$ with y is not a common fixed point of Ξ and Θ .

2. $\max\{\mathcal{G}(\Xi(\varsigma), \Xi(\varsigma), \Theta(\Xi(\varsigma))), \mathcal{G}(\Theta(\varsigma), \Theta(\varsigma), \Xi(\Theta(\varsigma)))\}$

 $\leq r \min\{\mathcal{G}(\varsigma, \varsigma, \Xi(\varsigma)), \mathcal{G}(\varsigma, \varsigma, \Theta(\varsigma))\}\$ for every $\varsigma \in \mathfrak{N}$, where $0 \leq r < 1$ and that

 $\inf \left[\mathcal{G}(\varsigma,\varsigma,\xi) + \min \left\{ \mathcal{G}(\varsigma,\varsigma,\Xi(\varsigma)), \mathcal{G}(\varsigma,\varsigma,\Theta(\varsigma)) \right\} \colon \varsigma \in \mathfrak{N} \right] > 0 \text{ for every } \xi \in \mathfrak{N} \text{ with } \xi \text{ is not a common fixed point of } \Xi \text{ and } \Theta.$

3. $\max\{\mathcal{G}(\Xi(\varsigma), \Theta(\Xi(\varsigma)), \Theta(\Xi(\varsigma))), \mathcal{G}(\Theta(\varsigma), \Xi(\Theta(\varsigma)), \Xi(\Theta(\varsigma)))\}\$ $\leq r \min\{\mathcal{G}(\varsigma, \Xi(\varsigma), \Xi(\varsigma)), \mathcal{G}(\varsigma, \Theta(\varsigma), \Theta(\varsigma))\}\$ for every $\varsigma \in \mathfrak{N}$, where $0 \leq r < 1$ and that $\inf[\mathcal{G}(\varsigma, \xi, \xi) + \min\{\mathcal{G}(\varsigma, \Xi(\varsigma), \Xi(\varsigma)), \mathcal{G}(\varsigma, \Theta(\varsigma), \Theta(\varsigma))\}\$; $\varsigma \in \mathfrak{N}] > 0$ for every $\xi \in \mathfrak{N}$ with ξ is not a common fixed point of Ξ and Θ . Or $\max\{\mathcal{G}(\Xi(\varsigma), \Xi(\varsigma), \Theta(\Xi(\varsigma))), \mathcal{G}(\Theta(\varsigma), \Theta(\varsigma), \Xi(\Theta(\varsigma)))\}\$ $\leq r \min\{\mathcal{G}(\varsigma, \varsigma, \Xi(\varsigma)), \mathcal{G}(\varsigma, \varsigma, \Theta(\varsigma))\}\$ for every $\varsigma \in \mathfrak{N}$, where $0 \leq r < 1$ and that $\inf[\mathcal{G}(\varsigma, \varsigma, \xi) + \min\{\mathcal{G}(\varsigma, \varsigma, \Xi(\varsigma)), \mathcal{G}(\varsigma, \varsigma, \Theta(\varsigma))\}\$; $\varsigma \in \mathfrak{N}] > 0$ for every $\xi \in \mathfrak{N}$ with ξ is not a common fixed point of Ξ and Θ .

4. $\mathcal{G}(\Theta \Xi \varsigma, \Xi \varsigma) \ge a\mathcal{G}(\Xi \varsigma, \varsigma) \mathcal{G}(\Xi \Theta \varsigma, \Theta \varsigma) \ge b\mathcal{G}(\Theta \varsigma, \varsigma)$ for all ς in \mathfrak{N} , where a, b > 1. If either Ξ or Θ is continuous.

5. $\varpi(\mathcal{G}(\Theta\Xi\varsigma,\Xi\varsigma,\Xi\varsigma) \ge \mathcal{G}(\Xi\varsigma,\varsigma,\varsigma)$ and $\varpi(\mathcal{G}(\Xi\Theta\varsigma,\Theta\varsigma,\Theta\varsigma) \ge \mathcal{G}(\Xi\varsigma,\varsigma,\varsigma)$

for all $\varsigma \in \mathfrak{N}$, where $\varpi \in \vartheta$. If either Ξ or Θ is continuous.

- 6. The pair (Ξ, Θ) is (A, B) –weakly increasing. $\mathfrak{N} = A \cup B$., $\& \Xi(A) \subseteq B$ and $\Theta(B) \subseteq A$. &. There exist two altering distance functions ϑ and ψ such that $\vartheta G(\Xi \varsigma, \Theta \Xi \varsigma, \Theta \xi) \leq \vartheta G(\varsigma, \Xi \varsigma, \xi) - \psi G(\varsigma, \Xi \varsigma, \xi)$ holds for all comparative elements $\varsigma, \xi \in \mathfrak{N}$ with $\varsigma \in A$ and $\xi \in B$ and $\vartheta G(\Theta \varsigma, \Xi \Theta \varsigma, \Xi \xi) \leq \vartheta G(\varsigma, \Theta \varsigma, \xi) - \psi G(\varsigma, \Theta \varsigma, \xi)$ holds for all comparative elements $\varsigma, \xi \in \mathfrak{N}$ with $\varsigma \in B$ and $\xi \in A \& \Xi$ or Θ is continuous.
- 7. The pair (Ξ, Θ) is (A, B) –weakly increasing. & $\Xi(A) \subseteq B$ and $\Theta(B) \subseteq A$. There exists $r \in [0, 1)$ such that $G(\Xi \varsigma, \Theta \Xi \varsigma, \Theta \xi) \leq rG(\varsigma, \Xi \varsigma, \xi)$ holds for all comparative elements $\varsigma, \xi \in \mathfrak{N}$ with $\varsigma \in A, \xi \in B$, and $G(\Theta \varsigma, \Xi \Theta \varsigma, \Xi \xi) \leq G(\varepsilon, \Xi \Theta, \xi)$ $r G(\varsigma, \Theta \varsigma, \xi)$

holds for all comparative elements $\varsigma, \xi \in \mathfrak{N}$ with $\varsigma \in B, \xi \in A$. & $\Xi \text{ or } \Theta$ is continuous.

8. $G(\Theta \equiv \varsigma, \Xi \varsigma, \Xi \varsigma) \ge aG(\Xi \varsigma, \varsigma, \varsigma) \& G(\Xi \Theta \varsigma, \Theta \varsigma, \Theta \varsigma) \ge bG(\Theta \varsigma, \varsigma, \varsigma)$ for all ς in , where a, b > 1. If either Ξ or Θ is continuous.

Proposition 2.2 [4][1] [5]

Let $(\mathfrak{N}, \mathcal{G})$ be a \mathcal{G} -metric space and suppose mappings $\Xi, \Theta : \mathfrak{N} \to \mathfrak{N}$ have a unique common fixed point. If one satisfy one of the following conditions:

1. Ξ and Θ are \mathcal{G} – weakly commuting of type \mathcal{G}_{Ξ} , & $\Xi(\mathfrak{N}) \subseteq \Theta(\mathfrak{N})$, & $\Theta(\mathfrak{N})$ is a \mathcal{G} –complete subspace of \mathfrak{N} , & $\mathcal{G}(\Xi(\varsigma), \Xi(\xi), \Xi(\zeta)) \leq \vartheta(M(\varsigma, \xi, \zeta))$, for all $\varsigma, \xi, \zeta \in \mathfrak{N}$, where, $M(\varsigma,\xi,\zeta) = \max \begin{cases} \mathcal{G}(\Theta(\varsigma),\Theta(\xi),\Theta(\zeta)), \mathcal{G}(\Theta(\varsigma),\Xi(\xi),\Theta(\varsigma)), \mathcal{G}(\Theta(\xi),\Xi(\varsigma),\Theta(\xi)), \mathcal{G}(\Theta(\zeta),\Xi(\varsigma),\Theta(\zeta)), \mathcal{G}(\Theta(\zeta),\Xi(\varsigma),\Theta(\zeta)), \mathcal{G}(\Theta(\zeta),\Xi(\zeta),\Theta(\zeta)), \mathcal{G}(\Theta(\varsigma),\Xi(\zeta),\Theta(\varsigma)), \mathcal{G}(\Theta(\varsigma),\Xi(\varsigma),\Theta(\varsigma)), \mathcal{G}(\Theta(\varsigma),\Xi(\varsigma),\Theta(\varsigma)), \mathcal{G}(\Theta(\varsigma),\Xi(\varsigma)), \mathcal{G}(\Theta(\varsigma)), \mathcal{G}(\Theta(\varsigma),\Xi(\varsigma)), \mathcal{G}(\Theta(\varsigma)), \mathcal{G}(\Theta(\varsigma),\Xi(\varsigma)), \mathcal{G}(\Theta(\varsigma)), \mathcal{G}(\Theta(\varsigma)$

- 2. $\Xi(\mathfrak{N}) \subseteq \Theta(\mathfrak{N}), \& \Xi \text{ or } \Theta \text{ is continuous, } \& \mathcal{G}(\Xi(\varsigma), \Xi(\xi), \Xi(\zeta)) \le \alpha \mathcal{G}(\Xi(\varsigma), \Theta(\xi), \Theta(\zeta)) + \beta \mathcal{G}(\Theta(\varsigma), \Xi(\xi), \Theta(\zeta)) = 0$ $\gamma \mathcal{G}(\Theta(\varsigma), \Theta(\xi), \Xi(\zeta))$, for every $\varsigma, \xi, \zeta \in \mathfrak{N}$ and $\alpha, \beta, \gamma \ge 0$ with $0 \le \alpha + 3\beta + 3\gamma < 1$. provided Ξ and Θ are CM. maps.
- 3. the pairs $\{\Xi, \Theta\}$ and $\{\Lambda, U\}$ are CM. mappings. If there exists $\varpi \in \vartheta$ such that the inequality $\varpi (\mathcal{G}(\Xi\varsigma, \Lambda\xi, \alpha) \geq \varepsilon)$ $\mathcal{G}(\Theta\varsigma,\Lambda\xi,a)$ holds.
- 4. the pairs $\{\Xi, \Theta\}$ and $\{\Lambda, \Lambda\}$ are weakly CM. mappings. If there exists $\varpi \in \vartheta$ such that the inequality (2) holds.
- 5. the pairs $\{\Xi, \Theta\}$ and $\{\Lambda, \Lambda\}$ are weakly CM. mappings. Assume that there exists h > 1 such that $\mathcal{G}(\Xi \varsigma, \Lambda\xi, \Lambda\xi) \geq 1$ $h\mathcal{G}(\Theta\varsigma, \Lambda\xi, \Lambda\xi)$ for all $\varsigma, \xi \in \mathfrak{N}$. Then Ξ, Λ, Θ and Λ .
- 6. If there exists $\varpi \in \vartheta$ such that the inequality $\varpi (G(\Xi \varsigma, B\xi, \Lambda\xi)) \ge G(\varsigma, \xi, \xi)$ Holds.
- 7. Assume that there exists h > 1 s.t $\mathcal{G}(\Xi \varsigma, \Lambda\xi, \Lambda\xi) \ge h\mathcal{G}(\varsigma, \xi, \xi) \forall \varsigma, \xi \in \mathfrak{N}$ Then.

Proposition 2.3 [1]

Let $(\mathfrak{N}, \mathcal{G})$ be a complete \mathcal{G} -metric space and Ξ , Θ be two CM. self mappings on $(\mathfrak{N}, \mathcal{G})$ have a unique common fixed point in \mathfrak{N} If satisfies one of the following :

1. $\Xi(\mathfrak{N}) \subseteq \Theta(\mathfrak{N}), \& \Xi \text{ or } \Theta \text{ is continuous, } \& \mathcal{G}(\Xi(\varsigma), \Xi(\xi), \Xi(\zeta)) \leq q \mathcal{G}(\varsigma, \xi, \zeta)$ for every $\zeta, \xi, \zeta \in \mathfrak{N}$ and 0 < q < 1.

2. $\Xi(\mathfrak{N}) \subseteq \Theta(\mathfrak{N}), \quad \& \quad G(\Xi(\varsigma), \Xi(\xi), \Xi(\zeta)) \le \alpha G(\Xi(\varsigma), \Theta(\xi), \Theta(\zeta)) + \beta G(\Theta(\varsigma), \Xi(\xi), \Theta(\zeta)) + \gamma G(\Theta(\varsigma), \Theta(\xi), \Xi(\zeta)),$ and any one of the subspace $\Xi(\mathfrak{N})$ or $\Theta(\mathfrak{N})$ is complete.

Proposition 2.4 [1][2] [4]

Let $(\mathfrak{N}, \mathcal{G})$ be a complete \mathcal{G} -metric space and Ξ , Θ be two self mappings on $(\mathfrak{N}, \mathcal{G})$ satisfy property (E.A.), Then Ξ and Θ have a unique common fixed point in \mathfrak{N} *if* satisfying one of the following :

1. $\mathcal{G}(\Xi(\varsigma), \Xi(\xi), \Xi(\zeta)) \leq \alpha \mathcal{G}(\Xi(\varsigma), \Theta(\xi), \Theta(\zeta)) + \beta \mathcal{G}(\Theta(\varsigma), \Xi(\xi), \Theta(\zeta)) + \gamma \mathcal{G}(\Theta(\varsigma), \Theta(\xi), \Xi(\zeta)), \& \Theta(\mathfrak{N}) \text{ is a closed subspace of } \mathfrak{N}, \text{ provided } \Xi \text{ and } \Theta \text{ are weakly CM. self maps.}$

2. $\Theta(\mathfrak{N})$ is a closed subspace of \mathfrak{N} . $\&\mathcal{G}(\Xi(\varsigma), \Xi(\xi), \Xi(\zeta)) \le q\mathcal{G}(\Theta(\varsigma), \Theta(\xi), \Theta(\zeta))$ for every $\varsigma, \xi, \zeta \in \mathfrak{N}$ and 0 < q < 1. provided Ξ and Θ are weakly CM. self maps.

- 3. $\mathcal{G}(\Xi(\varsigma), \Xi(\xi), \Xi(\zeta)) \leq \alpha \mathcal{G}(\Xi(\varsigma), \Theta(\xi), \Theta(\zeta)) + \beta \mathcal{G}(\Theta(\varsigma), \Xi(\xi), \Theta(\zeta)) + \gamma \mathcal{G}(\Theta(\varsigma), \Theta(\xi), \Xi(\zeta))$ for every $\varsigma, \xi, z \in \mathfrak{N}$ and $\alpha, \beta, \gamma \geq 0$ with $\alpha + 3\beta + 3\gamma < 1$,
- & $\Xi(\mathfrak{N})$ is a closed subspace of .
 - 4. $\Theta(\mathfrak{N})$ is a closed subspace of \mathfrak{N} , & $\mathcal{G}(\Xi(\varsigma), \Xi(\xi), \Xi(\zeta)) \leq \vartheta(M(\varsigma, \xi, \zeta))$, where,

$$M(\varsigma,\xi,\zeta) = \max \begin{cases} \mathcal{G}(\Theta(\varsigma),\Xi(\xi),\Xi(\xi)), \mathcal{G}(\Theta(\varsigma),\Xi(\zeta),\Xi(\zeta)), \mathcal{G}(\Theta(\xi),\Xi(\varsigma),\Xi(\varsigma)), \mathcal{G}(\Theta(\zeta),\Xi(\varsigma),\Xi(\varsigma)), \mathcal{G}(\Theta(\zeta),\Xi(\varsigma),\Xi(\varsigma)), \mathcal{G}(\Theta(\zeta),\Xi(\zeta),\Xi(\varsigma)), \mathcal{G}(\Theta(\zeta),\Xi(\zeta),\Xi(\zeta)) \end{cases}$$

for all $\varsigma, y, \zeta \in \mathfrak{N}$.

5. $\Theta(\mathfrak{N})$ is a closed subspace of \mathfrak{N} , & $\mathcal{G}(\Xi(\varsigma), \Xi(\xi), \Xi(\zeta))$ $\leq \vartheta \left(\max\{\mathcal{G}(\Theta(\varsigma), \Theta(\xi), \Theta(\zeta)), \mathcal{G}(\Theta(\varsigma), \Xi(\varsigma), \Theta(\zeta)), \mathcal{G}(\Theta(\zeta), \Xi(\zeta), \Theta(\zeta)), \mathcal{G}(\Theta(\xi), \Xi(\xi), \Theta(\zeta))\} \right)$ for all $\varsigma, \xi, \zeta \in \mathfrak{N}$..

6. Θ(𝔅) is a closed subspace of 𝔅, & there exist nonnegative real constants α and β with 0 ≤ α + 2β < 1 such that for all ς, ξ, ζ ∈ 𝔅, *G*(Ξ (ς),Ξ (ξ),Ξ (ζ)) ≤ α*G*(Θ(ς),Θ(ξ),Θ(ζ)) + β*G*(Θ(ξ),Ξ (ξ),Ξ (ξ)) + *G*(Θ(ζ),Ξ (ζ),Ξ (ζ)) + *G*(Θ(ς),Ξ (ς),Ξ (ς))

References

[1] S. C. Binayak, K. Sanjay, Asha and D. Krishnapada, 2012, Some fixed point theorems in G -metric spaces, Mathematical Sciences Letters . An International Journal, 1, No. 1, 25-31.

[2] S.K.Mohanta and M. Srikanta, 2012, A Common Fixed Point Theorem in G-Metric Spaces, CUBO A Mathematical Journal, Vol.14, No. 03, (85–101).

- [3] W. Shatanawi and K. Abodayeh, 2020, Some Fixed and Common Fixed Point Results in G-Metric Spaces Which Can't be Obtained From Metric Spaces, Bol. Soc. Paran. Mat., 38, 6,43–51.
- [4] V. Popa and A. M. Patriciu, 2015, On Some Common Fixed Point Theorems in G-Metric Spaces Using G-(E.A)-Property, Palestine Journal of Mathematics, 4, 65-72.
- [5] S. Priya, K. Jatinderdeep and S. S. Bhatia, 2014, Common Fixed Points of Expansive Mappings in Generalized Metric Spaces, Journal of Applied Research and Technology, 12, 607-614.