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Abstract: The condition in which the unknown number parameter to be estimated, p, is much larger than the number of observations, 

n, is termed high-dimensional. Traditional statistical methods cannot solve high-dimensional problems because they assume many 

observations and few unknown variables. For high-dimensional modeling, multicollinearity is a frequent phenomenon, causing 

serious problems with parameter estimation and associated inference and interpretation.. As this reason, Belloni and Chernozhukov 

in 2011 developed combined methods from Quantile Regression (QR) that is useful for robust regression, and also LASSO that is 

popular choice for shrinkage estimation and variable selection, becoming LASSO QR. Extensive simulation studies demonstrate 

satisfactory using LASSO QR in high dimensional datasets that lies outliers better than using LASSO. 

Keywords—high dimensional data; LASSO quantile regression; outliers; robust regression 

 

1. INTRODUCTION 

The classical multiple linear regression problem follows 

the model 𝒚𝑖 = 𝑥𝑖
′𝜷 + 𝜺𝑖;  𝑖 = 1,2, … , 𝑛, with 𝒙𝑖 =

(𝑥𝑖1 , 𝑥𝑖2, … , 𝑥𝑖𝑝)
′
 p-dimensional regression covariates, a 

response 𝒚𝑖, and 𝜷 = (𝛽1, 𝛽2, … , 𝛽𝑝)
′
 the associated 

regression coefficients where assumes errors 𝜺𝑖~𝑁(0, 𝜎2). 

Estimation of regression parameter, 𝜷 could be using ordinary 

least squre (OLS) that minimize the sum square of error. The 

formula follows �̂� = (𝑿′𝑿)−1𝑿′𝒚, implies assume 𝑿′𝑿 is a 

nonsingular matrix, with matrix covariates 𝑿𝑛×𝑝 and response 

vector 𝒚𝑛×1. 

Common issues in the certain background, there are a lot 

of regression cases in the condition number of predictor 

variables more than number of observations (p»n). When 𝑿 is 

full rank (p ≤ n), the exploration of causal relationship could 

be accomplished using classical multiple regression above. 

But when the number of predictors is large compared to the 

number of observations, 𝑿 is likely not full rank, that means 

𝑿′𝑿 become singular and the regression approach is no longer 

feasible (i.e., because of multicolinearity) [1]. LASSO (Least 

Absolute Shrinkage and Selection Operator)  regression [2], 

is a penalized regression method that is so popular choice for 

handling this conditions. It is so useful for shrinkage 

estimation and variable selection. 

The worst condition of datasets for regression problem is 

when they subject to heavy-tailed errors or outliers that may 

appear in the responses and/or the predictors. In such a 

situation, it is well known that the traditional OLS may fail to 

produce a reliable estimator, and the quantile regression (QR) 

estimator can be very useful. Belloni and Chernozhukov 

(2011) [3] developed the combined method from QR and 

LASSO regression. The basic idea is to combine the usual QR 

criterion and the LASSO-type penalty together to produce the 

LASSO QR method. 

Simulation study have been developed to see the LASSO 

and LASSO QR processes for handling high-dimensional data 

containts outliers in a lot of scenarios. The simulation using R 

software and some of R packages. 

2. METHODOLOGY 

2.1 Linear Regression 

Linear regression is an approach to model the relationship 

between a scalar response or dependent variable Y and one or 

more explanatory or independent variables denoted X. In 

linear regression, data are modeled using linear predictor 

functions, and unknown model parameters are estimated from 

the data. A linear regression model involving p independent 

variables can be expressed as  

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖1 + ⋯ + 𝛽𝑝𝑋𝑖𝑝 + 𝜀𝑖 (1) 

where 𝑖 = 1,2, … , 𝑛. 𝑌𝑖 is the response variable on the i-th 

observation, 𝛽0, 𝛽1, … , 𝛽𝑝 are parameters, 𝑋𝑖 is the value of 

the independent variable on the i-th observation, and 𝜀𝑖 is a 

normally distributed random variable. The error 𝜀𝑖~𝑁(0, 𝜎2) 

is not mutually correlated [4]. 

The most commonly used regression method is the 

method of ordinary least squares (OLS). The OLS estimate is 

obtained as the solution of the problem 

min 𝐽 = min ∑ 𝜀𝑖
2

𝑛

𝑖=1

 (2) 

Taking the partial derivatives of J with respect to 

𝛽𝑗 , 𝑗 = 0,1, ⋯ , 𝑝 and setting them equal to zero yields the 

normal equations and obtains the estimated regression model 
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�̂�𝑖 = �̂�0 + �̂�1𝑋𝑖1 + ⋯ + �̂�𝑝𝑋𝑖𝑝 (3) 

To judge how well the estimated regression model fits the 

data, we can look at the size of the residuals 

𝑒𝑖 = 𝑦𝑖 − (�̂�0 + �̂�1𝑋𝑖1 + ⋯ + �̂�𝑝𝑋𝑖𝑝) (4) 

A point which lies far from the line (and thus has a large 

residual value) is known as an outlier. Such points may 

represent erroneous data, or may indicate a poorly fitting 

regression line. The ordinary or simple residuals (observed - 

predicted values) are the most commonly used measures for 

detecting outliers. Standardized residuals are the residuals 

divided by the estimates of their standard errors. They have 

mean 0 and standard deviation 1. 

2.2 Robust Regression 

Robust regression is a regression method that is used when 

the distribution of residual is not normal or there are some 

outliers that affect the model. This method is an important tool 

for analyzing the data which is affected by outliers so that the 

resulting models are stout against outliers [5]. When 

researchers set of regression models and to test the common 

assumption that the regression assumptions are violated, the 

transformation seemed unlikely to eliminate or weaken the 

influence of outliers which eventually became biased 

predictions. Under these circumstances, robust regression is 

resistant to the influence of outliers is the best method. Robust 

regression is used to detect outliers and provide results that 

are resistant to the outliers [6]. 

2.3 LASSO Regression 

Recent years, the LASSO has become one of the main 

practical and theoretical tools for sparse high-dimensional 

variable selection problems . LASSO is a penalized least 

squares technique which puts L1 constraint on the estimated 

regression coefficients The LASSO estimator, �̂�, for the 

linear regression model (1) is given as follows 

�̂� ≔ �̂�(𝜆) = arg min
𝛽𝜖ℝ𝑝

{
1

𝑛
‖𝐘 − 𝐗𝛽‖2

2 + 𝜆‖𝛽‖1} (5) 

where 𝜆 ≥ 0 is the regularization parameter that controls the 

amount of shrinkage. Due to the geometry of the L1-norm 

penalty the LASSO shrinks some of the regression coefficients 

to exactly zero (to elaborate later). Thus it serves as a variable 

selection method also. 

The lasso gives rise to a convex optimization problem and 

thus is computationally tractable even for moderately large 

problems. Indeed, the LARS (Least Angle Regression and 

Shrinkage) algorithm [7] can compute the entire solution path 

as a function of 𝜆 in 𝑂(𝑝3 + 𝑛𝑝2) operations 

2.4 Quantile Regression 

The setting of interest corresponds to a parametric quantile 

regression model, where the dimension p of the underlying 

model increases with the sample size n. Namely, we consider 

a response variable y and p-dimensional covariates x such that 

the u-th conditional quantile function of y given x is given by 

𝐹𝑦𝑖|𝑥𝑖

−1 (𝑢|𝑥𝑖) = 𝑥′𝛽(𝑢),   𝛽(𝑢) ϵ ℝ𝑝,   for all 𝑢 ϵ 𝒰 (6) 

where 𝒰 ⊂ (0,1) is a compact set of quantile indexes. The 𝑢-

th conditional quantile 𝐹𝑦𝑖|𝑥𝑖

−1 (𝑢|𝑥𝑖) is the inverse of the 

conditional distribution function 𝐹𝑦𝑖|𝑥𝑖
(𝑦|𝑥𝑖) of 𝑦𝑖  given 𝑥𝑖. 

We consider the case where the dimension p of the model is 

large, possibly much larger than the available sample size n, 

but the true model 𝛽(𝑢) has a sparse support 

𝑇𝑢 = support(𝛽(𝑢))

= {𝑗 ∈ {1, … , 𝑝}: |𝛽𝑗(𝑢)| > 0} 
(7) 

having only 𝑠𝑢 ≤ 𝑠 ≤ 𝑛/log(𝑛 ∨ 𝑝) non-zero components for 

all 𝑢 ϵ 𝒰. 

The population coefficient 𝛽(𝑢) is known to minimize the 

criterion function 

𝑄𝑢(𝛽) = E[𝜌𝑢(𝑦 − 𝑥′𝛽)] (8) 

where 𝜌𝑢(𝑡) = (𝑢 − 1{𝑡 ≤ 0})𝑡 is the asymmetric absolute 

deviation function [8]. Given a random sample 

(𝑦1, 𝑥1), ⋯ , (𝑦𝑛 , 𝑥𝑛), the quantile regression estimator of 

𝛽(𝑢) is defined as a minimizer of the empirical analog of (5): 

�̂�𝑢(𝛽) = 𝔼[𝜌𝑢(𝑦 − 𝑥′𝛽)] (9) 

2.5 LASSO Quantile Regression 

In high-dimensional settings, particularly when p ≥ n, 

ordinary quantile regression is generally inconsistent, which 

motivates the use of penalization in order to remove all, or at 

least nearly all, regressors whose population coefficients are 

zero, thereby possibly restoring consistency. A penalization 

that has proven quite useful in least squares settings is the L1-

penalty leading to the Lasso estimator. 

The L1-penalized quantile regression estimator �̂�(𝑢) is a 

solution to the following optimization problem: 

min
𝛽𝜖ℝ𝑝

�̂�𝑢(𝛽) +
𝜆√𝑢(1 − 𝑢)

𝑛
∑ �̂�𝑗|𝛽𝑗|

𝑝

𝑗=1

 (10) 

where �̂�𝑗
2 = 𝔼[𝑥𝑖𝑗

2 ]. The criterion function in (10) is the sum 

of the criterion function (9) and a penalty function given by a 

scaled L1-norm of the parameter vector. The overall penalty 

level 𝜆√𝑢(1 − 𝑢) depend on each quantile index 𝑢, while 𝜆 

will depend on the set 𝒰 of quantile indeces of interest. 

LASSO QR has been considered in [9] under small (fixed) 𝑝 

asymptotics. Therefore, the problem (10) can be solved in 

polynomial time, avoiding the computational curse of 

dimensionality. In order to describe our choice of the penalty 

level 𝜆, we introduce the random variable 
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Λ = 𝑛 sup
𝑢ϵ𝒰

max
1≤𝑗≤𝑝

|𝔼𝑛 [
𝑥𝑖𝑗(𝑢 − 1{𝑢𝑖 ≤ 𝑢})

�̂�𝑗√𝑢(1 − 𝑢)
]| (11) 

where 𝑢𝑖, ⋯ , 𝑢𝑛 are i.i.d uniform (0,1) random variables, 

independently distributed from the regressors, variable 

𝑥1, ⋯ , 𝑥𝑛. The random variable Λ has a known, that is, pivotal, 

distribution conditional on 𝑋 = [𝑥1, ⋯ , 𝑥𝑛]′. We then set 

𝜆 = 𝑐 ⋅ Λ(1 − 𝛼|𝑋) (12) 

where Λ(1 − 𝛼|𝑋) ≔ (1 − 𝛼)-quantile of Λ conditional 

on 𝑋, and the constant 𝑐 > 1 depends on the design [3]. 

3. SIMULATION STUDY 

The simulation in this research using R software that would 

evaluate mean squared errors performance. It will be repeated 

1000 times to get the average of mean squared errors. Using R 

package, glmnet and quantreg for LASSO and LASSO 

quantile regression, the simulation set in = 200, and vary from 

500 to 3000 as shown in Table 1. The datasets generated 

independently with each row of the design matrix from a p-

dimensional normal distribution N (5, 1). Then the response 

vector generated follows 

𝑦 = 5𝑥𝑖1 + 4𝑥𝑖2 + 3.5𝑥𝑖3 + 𝜀𝑖, where 𝜀 is independently 

generated from N (0, 1). The scenario before generated without 

effects of outliers. 

Next scenarios generated using the effects of outliers by 

replacing the distributions of errors that generated from vector 

of error components obtained from a combination of sampling 

data N (0, 1) as much 0.7 × n and data N (30, 1) as much as 0.3 

× n. For comparison purpose, all of scenarios to be evaluated 

using LASSO and LASSO Quantile Regression. 

Table 1. Average of Mean Squared Errors 

Scenario 1 : Dataset without outliers 

Method p = 500 p = 1000 p = 1500 p = 3000 

LASSO 1.0526 1.1067 1.0638 1.2295 

LASSO QR 0.0490 0.1845 0.0502 0.0931 

Scenario 2 : Dataset with outliers 

Method p = 500 p = 1000 p = 1500 p = 3000 

LASSO 14.7597 15.3537 17.7238 14.7763 

LASSO QR 0.0459 0.5184 0.2536 0.4928 

Table 1 presents the average of mean squared errors for 

LASSO and LASSO QR estimator. It is shown that in the 

datasets without outliers, the better performance is from 

LASSO QR that have lowest average of mean squared errors 

compared to LASSO. It is also happen almost in the datasets 

with outliers, the performance of LASSO QR is better than 

LASSO This is indicated by the low the average mean squared 

errors value of LASO QR method. 

4. ACTUAL DATA ANALYSIS 

This study also uses actual data as an application to 

examine the performance of the estimators. The actual data 

used is poverty levels data (in percent) as a response variable. 

The explanatory variables used are data on human 

development index in percent (𝑋1), data on the open 

unemployment rate in percent (𝑋2), data on the labor force 

participation rate in percent (𝑋3), and data on the district/city 

minimum wage in in million rupiahs (𝑋4), data on the mean 

years school in years (𝑋5), data on the gross regional domestic 

product in billion rupiahs (𝑋6), data on the expected years of 

schooling  in years (𝑋7), data on the government consumption 

in million rupiahs (𝑋8), and data on the school enrollment rate 

in percent (𝑋9). The actual data used were obtained from the 

Jawa Tengah Province in Figures by the Badan Pusat Statistik 

in 2018 [10]. Here is the link for data download: 

https://jateng.bps.go.id. The data contains of 35 observations 

which are district/city poverty levels in Indonesia 

4.1 Outliers detection 

Outlier data detection using the difference of fits (DFFITS) 

method. Observations are declared as outliers if |DFFITS| >

2√𝑝/𝑛 = 1.0142. 

Table 2 Outliers detected by DFFITS 

District/City |DFFITS| 

Demak 2.5726 

Tegal 1.7639 

Based on Table 2, it can be seen that there are two 

district/city declared as outliers, namely Demak District and 

Tegal District. 

4.2 Multicollinearity detection 

Multicollinearity refers to the significant correlation 

among the independent variables in the regression model. To 

measure the amount of multicollinearity in dataset, variance 

inflation factor (VIF) is examined. Table 3 shows the value of 

vif for each predictor variable Three predictor variables suffer 

from multicollinearity problem that is variables X1, X5, and X9 

with variance inflation factor (VIF) value higher than 10. 

Therefore, this dataset has both outlier and multicollinearity 

problems that is 

Table 3 Variance Inflaion Factor of Poverty Level Datset 

Variable VIF Variable VIF 

X1 21.551387 X6 4.581551 

X2 3.052960 X7 15.206586 

X3 2.929930 X8 5.121319 

X4 2.738633 X9 2.338255 

X5 21.929398   

 

4.3 Regression Analysis 

The results of the parameter estimates or regression 

coefficients estimates obtained from each of the methods used 

https://jateng.bps.go.id/
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in this study are presented in Table 4. These results indicate 

that the factors that can explain the poverty levels in Central 

Java Province according to the LASSO QR analysis are all 

explanatory variables. Meanwhile, from the LASSO model 

that has been obtained, it is known that the factors that can 

explain the poverty levels in Central Java Province according 

to the LASSO analysis are X1, X4 and X8. 

Table 4 Regression coefficients of each methods 

Estimate LASSO QR LASSO 

�̂�1 -0.2313 -0.3549 

�̂�2 0.3675 0.0000 

�̂�3 -0.09745 0.0000 

�̂�4 -6.6546 -.3.6296 

�̂�5 0.1983 0.0000 

�̂�6 -0.00003 0.0000 

�̂�7 -0.4528 0.0000 

�̂�8 1.9878 0.1215 

�̂�9 -0.3832 0.0000 

 

4.4 Evaluation Model Goodness of Fit 

RMSE and R2 values as the criteria for the goodness of the 

model are used in this study to examine the performance 

between methods in the actual data regression analysis. The 

method that produces the smallest values of RMSE and high 

R2 is the best method. The RMSE and 𝑅2 values of each 

method in estimating the poverty levels data regression model 

are presented in Table 5. The smallest RMSE and 𝑅2 values 

were produced by the LASSO QR method, namely 38.81 and 

0.9978, respectively. Meanwhile, LASSO produced the 

largest RMSE value and the lowest 𝑅2. Therefore, the LASSO 

QR method is the best method in high-dimensional datasets 

analysis to determine the effect of several explanatory 

variables used on poverty levels in Central Java Provinces in 

2018. 

Table 5 RMSE and R2 value of actual data regression 

Method RMSE R2 

LASSO QR 2.31254 61.5452% 

LASSO 2.8039 39.68135% 

 

5. CONCLUSION 

LASSO QR has good performance on high-dimensional 

datasets without outliers based on the results shown from the 

simulation studies carried out. LASSO QR is also robust for 

high-dimensional datasets containing outliers, this is indicated 

by average the mean squared errors of the low values. The 

application of LASSO QR and LASSO on the actual data of 

poverty levels in Central Java Province in 2018 which has 35 

data sizes and the conclusion that the LASSO QR method is 

the best method. This is indicated by the lowest RMSE values 

and the highest R2. There are 2 observations that were detected 

as outliers based on the DFFITS method, namely the 21st 

observation, Demak District and the 28th observation, Tegal 

District. This means that the conclusions obtained from 

estimating parameters of the actual data on poverty levels in 

2018 are in line with the results of estimating multiple 

regression parameters on high-dimensional data that 

containing outliers through simulation LASSO QR has best 

performance. 

. 
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