Zariski Topology of fuzzy prime complete ρ -filter on ρ -algebra

¹Habeeb Kareem Abdullah

Department of Mathematics , Faculty of Education for Girls , University of Kufa, Najaf, Iraq E-mail : habeebk.abdullah@uokufa.edu.iq

²Akeel Kareem Mohammad

Department of Mathematics ,Faculty of computer science and Mathematics ,University of Kufa, Najaf, Iraq E-mail: akeelk.alateejawi@student.uokufa.edu.iq

Abstract: fuzzy $c-\rho$ -filter and prime radical of fuzzy complete ρ -filter in ρ -algebra. Also, we study some topological properties of its spectrum.

Keywords: fuzzy $c-\rho$ -filter, fuzzy prime $c-\rho$ -filter, spectrum of fuzzy $c-\rho$ -filter, Prime radical of fuzzy complete ρ -filter.

1. Introduction

In 2000 a topology on the set of all fuzzy prime ideal of a commutative BCK-algebra Y was defined by A. Hasan khanin [1]. In 1999 [4] J. Naggers Y. B. Jun and H. S. Kim introduce the notion of d-ideal in d-algebra. in 2017 [8] S. M. Khalil and M. Alradha, introduced the notion of characterizations of ρ -algebra and generation permutation topological ρ -algebra using permutation in symmetric group. [6] In 2018 Sarinya Sripaeng, Kanlaya Tanamoon & Aiyared Iampan introduced On anti Q-fuzzy UP-ideals and anti Q-fuzzy UP-subalgebras of UP-algebras, Journal of Information and Optimization Sciences, In 2019 [3] H.K. Abdullah and A.K Mohammad, introduced "Some Types filter of ρ -algebra", [11] In 2019 Theeyarat Klinseesook, Sukhontha Bukok & Aiyared Iampan, introduction, Rough set theory applied to UP-algebras. [5] In 2020 Korawit Taboon, Phatchara Butsri & Aiyared Iampan A cubic set theory approach to UP-algebras, Journal of Interdisciplinary Mathematics. [4] in 2020 H.K. Abdullah and A.K Mohammad, introduced, Fuzzy ρ -filter and fuzzy c- ρ -filter in ρ -algebra, The aim of this paper is to introduce fuzzy prime c- ρ -filter, spectrum of fuzzy c- ρ -filter.

2. Preliminaries of ρ -algebra

In this part, we're introducing definition ρ -filter, c- ρ -filter and fuzzy c- ρ -filter in ρ -algebra.

Definition (2.1) [8]:

A ρ -algebra is a set X with a binary operation " * " and constant "0" which satisfies the following axioms :

- 1. x * x = 0
- 2. 0 * x = 0
- 3. x * y = 0 and y * x = 0 imply x = y, For all $x, y \in X$
- 4. For all $x \neq y, x, y \in X \{0\}$, imply $x * y = y * x \neq 0$

Remark : (2.2)

In ρ -algebra X, we denoted x * 0 by x^* for every $x \in X$

Definition (2.3)[3]

A nonempty subset F of a ρ -algebra X is said to be ρ -filter if

- 1. $0 \in F$
- 2. $(x^* * y^*)^* \in F$, $y \in F$ implies $x \in F$.

Definition (2.4)[3]

A subset of a ρ -algebra X is called complete ρ -filter (c- ρ -filter) if,

1. $0 \in F$

2.
$$(x^* * y^*)^* \in F$$
, $\forall y \in F$, implies $x \in F$

Definition (2.5):[9]

Let X be a non-empty set. A fuzzy set on X is a function $\mu: X \to [0,1]$. If μ and η be two fuzzy subsets of X, then by $\mu \subseteq \eta$ we mean $\mu(x) \le \eta(x)$ for all $x \in X$.

Definition (2.6[4])

A fuzzy set μ on -algebra X is said to be fuzzy ρ -filter of X, if

- $\mu(0) \ge \mu(x)$, $\forall x \in X$
- $\mu(x) \ge \min\{\mu((x^* * y^*)^*), \mu(y)\}\ , \ \forall \ x, y \in X$ 2.

Definition (2.7)[4]

Let F be c- ρ -filter of ρ -algebra X. A fuzzy subset μ_F of X is said to be fuzzy complete ρ -filter (fuzzy c- ρ -filter) at F if,

- 1) $\mu_F(0) \ge \mu_F(x)$, $\forall x \in X$
- 2) $\mu_F(x) \ge \min \{\mu_F((x^* * y^*)^*), \mu_F(y)\}, \forall y \in F$

Remark (2. 8)[4]:

- The intersection family of fuzzy $c-\rho$ -filters at F is fuzzy $c-\rho$ -filters.
- The union of two fuzzy $c-\rho$ -filters it is not necessarily fuzzy $c-\rho$ -filter.

3. The Prime radical of fuzzy complete ρ -filter

In this part, we define prime, prime radical and introduce some it is properties also we study topological properties of spectrum of prime fuzzy complete ρ -filter in ρ -algebra.

Definition (3.1):

A non-constant fuzzy $c-\rho$ -filter μ_F at a $c-\rho$ -filter F of α ρ -algebra X is called prime if, for all fuzzy $c-\rho$ -filters α_F , β_F at F such that $\alpha_{F} \cap \beta_{F} \subseteq \mu_{F}$, than either $\alpha_{F}(x) \subseteq \mu_{F}(x)$, or $\beta_{F}(x) \subseteq \mu_{F}(x)$, for all $x \in F$.

Example (3.2):

Let $X = \{0, a, b\}$ and a binary operation * is defined by the following table.

*	0	а	b
0	0	0	0
а	а	0	а
b	b	а	0

It is clear that (X, *, 0) is a ρ -algebra and $F = \{0, b\}$ is c- ρ -filter in X. Let μ_F be the fuzzy set defined as the following.

1.
$$\mu_{E}(x) = \begin{cases} r & \text{if } x = 0, k \\ \vdots & \text{if } x = 0, k \end{cases}$$

1.
$$\mu_F(x) = \begin{cases} r & \text{if } x = 0, b \\ s & \text{if } x = a \end{cases}$$
2.
$$\mu_F(x) = \begin{cases} 1 & \text{if } x = 0, a \\ s & \text{if } x = b \end{cases}$$

3. $\mu_F(x) = \begin{cases} 1 & \text{if } x = 0 \\ s & \text{if } x = b, a \end{cases}$ where $r, s \in [0,1]$ such that $s < r \le 1$.

if α_{F} , β_{F} are two fuzzy c- ρ -filter at F in X such that $\alpha_{F} \cap \beta_{F} \subseteq \mu_{F}$, Then μ_{F} is prime

- 1. $(\alpha_F \cap \beta_F)(0) \leq \mu_F(0)$, so we have two cases:
 - i. If $\alpha_F(0) < \beta_F(0)$ then $\alpha_F(0) \le \mu_F(0)$ Since $\alpha_F(b) \le \mu_F(0)$ and $\mu_F(0) = \mu_F(b)$

Then $\alpha_{_F}(b) \leq \mu_{_F}(b)$ imply $\alpha_{_F}(x) \subseteq \mu_{_F}(x), \forall x \in F$

- ii. Similarity if $\beta_F(0) < \alpha_F(0)$ then $\beta_F(x) \subseteq \mu_F(x)$, $\forall x \in F$ Hence μ_F is prime.
- 2. Since $\mu_F(0) = \mu_F(a) = 1$

Then $\beta_F(0) \leq \mu_F(0)$ and $\alpha_F(0) \leq \mu_F(0)$

Also $\beta_F(a) \le \mu_F(a)$ and $\alpha_F(a) \le \mu_F(a)$

Since $(\alpha_F \cap \beta_F)(b) \leq \mu_F(b)$

Then either $(\beta_F)(b) \le \mu_F(b)$ or $\alpha_F(b) \le \mu_F(b)$

- i. If $(\beta_F)(b) \le \mu_F(b)$ then $\beta_F(x) \subseteq \mu_F(x), \forall x \in F$
- ii. If $\alpha_F(b) \le \mu_F(b)$ then $\alpha_F(x) \subseteq \mu_F(x)$, $\forall x \in F$ Hence μ_F is prime.
- 3. Since $\alpha_F(0) \le \mu_F(0)$ and $(\beta_F)(0) \le \mu_F(0)$ either $\alpha_F(b) \le \mu_F(b)$ or $(\beta_F)(b) \le \mu_F(b)$

Since $(\alpha_F \cap \beta_F)(0) \le \mu_F(0)$ and $(\alpha_F \cap \beta_F)(b) \le \mu_F(b)$

 $\alpha_{_F}(x) \subseteq \mu_F(x) \text{ or } \beta_F(x) \subseteq \mu_F(x), \forall x \in F$

Example (3.3):

In Example (3.2)

1.
$$\mu_F(x) = \begin{cases} 0.7 & \text{if } x = 0, a \\ 0.1 & \text{if } x = b \end{cases}$$
2. $\mu_F(x) = \begin{cases} 0.6 & \text{if } x = 0 \\ 0.1 & \text{if } x = a, b \end{cases}$

$$\beta_F(x) = \begin{cases} 0.6 & \text{if } x = 0 \\ 0.2 & \text{if } x = a, b \end{cases}$$

$$\alpha_F(x) = \begin{cases} 0.8 & \text{if } x = 0 \\ 0.1 & \text{if } x = a, b \end{cases}$$

are fuzzy c- $\boldsymbol{\rho}$ -filter at F and $\alpha_{_F} \cap \beta_{_F} \subseteq \mu_{_F}$, but

1. μ_F not prime since

$$\alpha_{_F}(0) = 0.8 \le \mu_F(0) = 0.7$$
 and $\beta_F(b) = 0.2 \le \mu_F(b) = 0.1$

2. Similarity μ_F is not prime.

Remark (3.4)

In Example (3, 2), every fuzzy prime $c-\rho$ -filter at $F = \{0, b\}$, takes one the following.

$$\mu_F(x) = \left\{ \begin{array}{ll} r & \text{if } x = 0, b \\ s & \text{if } x = a \end{array} \right. \quad \text{where } r, s \in [0,1] \text{ and } s < r.$$

1.
$$\mu_F(x) = \begin{cases} 1 & \text{if } x = 0, b \\ s & \text{if } x = a \end{cases}$$
 where $s < 1$.
2. $\mu_F(x) = \begin{cases} 1 & \text{if } x = 0 \\ s & \text{if } x = b, a \end{cases}$ where $s < 1$

2.
$$\mu_F(x) = \begin{cases} 1 & \text{if } x = 0 \\ s & \text{if } x = h, a \end{cases}$$
 where $s < 1$

Definition (3.5):

Let F be a c- ρ -filter of a ρ -algebra X and μ_F be a fuzzy c- ρ -filter at F. The prime radical $rad(\mu_F)$ of fuzzy c- ρ -filter μ_F at F is the intersection of all fuzzy prime c- ρ -filters at F of X containing μ_F . In case there is no such fuzzy prime c- ρ -filter containing α_F then $rad(\alpha_F) = 1$.

Example (3.6)

From Remark (3.4), $\mu_F(x) = \{ \begin{array}{cc} r \ if & x = 0, b \\ s \ if & x = a \end{array} \}$ are all fuzzy prime c- ρ -filter at F (where $0.7 \le s < r$) containing the fuzzy $c-\rho$ -filter

$$\alpha_F(x) = \begin{cases} 0.7 & if \ x = 0, a \\ 0.6 & if \ x = b \end{cases}$$

So $rad(\alpha_E) = \bigcap \mu_E = 0.7$

Proposition (3.7):

Let X be a ρ -algebra and μ_F , α_F be two fuzzy c- ρ -filters at a c- ρ -filter of X. Then

- $\mu_F \subseteq rad(\mu_F)$. 1.
- $rad(rad(\mu_F)) = rad(\mu_F).$ 2.
- If μ_F is a fuzzy prime c- $\boldsymbol{\rho}$ -filter, then $rad(\mu_F) = \mu_F$.
- If $\alpha_F \subseteq \mu_F$ then $rad(\alpha_F) \subseteq rad(\mu_F)$.

Proof:

- 1. By Definition (3.5)
- 2. Let α_F be fuzzy prime c- ρ -filters at F such that $\mu_F \subseteq \alpha_F$ then $rad \mu_F \subseteq \alpha_F$ so $rad (rad(\mu_F) \subseteq rad \mu_F)$ but $rad \mu_F \subseteq \alpha_F$ then $rad \mu_F \subseteq \alpha_F$ so $rad (rad(\mu_F) \subseteq rad \mu_F)$ but $rad \mu_F \subseteq \alpha_F$ $rad(rad(\mu_F) by (1)$

Thus $rad(rad(\mu_F)) = rad(\mu_F)$.

- 3. Since μ_F is a fuzzy prime c- ρ -filter then $rad(\mu_F) \subseteq \mu_F$, this means $\mu_F = rad(\mu_F)$ (by 1).
- 4. Since $\mu_F \subseteq rad(\mu_F)$ by (1) and $\alpha_F \subseteq \mu_F$, then $\alpha_F \subseteq rad(\mu_F)$, thus $rad(\alpha_F) \subseteq rad(rad(\mu_F)) = rad(\mu_F)$ by (2), then $rad(\alpha_F) \subseteq rad(\mu_F)$.

Proposition (3.8)

Let X be a ρ -algebra, then for every fuzzy c- ρ -filters α_F and β_F at a c- ρ -filter F of X, the following are held:

- 1. $V(\alpha_F) = V(rad(\alpha_F))$.
- 2. $V(\alpha_F) = V(\beta_F)$ if and only if $rad(\alpha_F) = rad(\beta_F)$.

Proof:

1. Since $\alpha_{_F} \subseteq rad(\alpha_{_F})$ then $V(rad(\alpha_{_F})) \subseteq V(\alpha_{_F})$. Now, let $\mu_F \in V(\alpha_{_F})$, then $\alpha_{_F} \subseteq \mu_F$, so $rad(\alpha_{_F}) \subseteq \mu_F$. Thus $\mu_F \in V(rad(\alpha_{_F}))$, therefore $V(\alpha_{_F}) \subseteq V(rad(\alpha_{_F}))$, then

$$V(\alpha_F) = V(rad(\alpha_F)).$$

2. By Definition (3.5). Conversely by (1).

4. Spectrum of a fuzzy ρ-algebra

In this part, we provide the notion of spectrum of fuzzy $c-\rho$ -filter and we introduce some of its properties.

Definition (4.1):

Let μ be a fuzzy subset of ρ -algebra X and F be c- ρ -filter of X. The intersection of all fuzzy c- ρ -filter at F conation μ is called the fuzzy set generated by μ at F and denoted by $< \mu >$.

Then by remark ((2,8), 1) then $< \mu >$ is fuzzy c- ρ -filter at F.

Definition (4.2):

Let X be a -algebra and F be c- ρ -filter, define

- 1. $spec_F(X) = \{ \mu_F : \mu_F \text{ is fuzzy prime c-} \boldsymbol{\rho}\text{-filter at } F \text{ of } X \}$, it is called the spectrum of fuzzy prime c- $\boldsymbol{\rho}$ -filter at F.
- 2. $V\left(\alpha_{F}\right)=\{\mu_{F}\in spec_{F}(X): \alpha_{F}\subseteq \mu_{F}\}, \text{ it is called the variety of the fuzzy c-} \rho\text{-filter }\alpha_{F} \text{ at } F.$
- 3. $X(\alpha_F) = spec_F(X) \setminus V((\alpha_F))$, the complement of $V(\alpha_F)$ in $spec_F(X)$.

Proposition (4.3):

Let X be a ρ -algebra and F be c- ρ -filter, then

- 1. $X(0) = \emptyset, X(1) = spec_F(X)$.
- 2. If μ_F , α_F , are fuzzy c- ρ -filters at F, such that $\mu_F \subseteq \alpha_F$

then
$$V(\alpha_F) \subseteq V(\mu_F)$$
 so $X(\mu_F) \subseteq X(\alpha_F)$.

- 3. If μ_F , α_F are fuzzy c- $\boldsymbol{\rho}$ -filter at F then $X(\mu_F) \cup X(\alpha_F) = X(<\mu_F \cup \alpha_F>)$.
- 4. If μ_F , α_F are fuzzy c- ρ -filter at F then $X(\mu_F) \cap X(\alpha_F) = X(\mu_F \cap \alpha_F)$

Proof:

- 1. Since $0 \subseteq \mu_F$, $1 \nsubseteq \mu_F$ for every fuzzy prime c- ρ -filter μ_F of X then $X(1) = spec_F(X)$, $X(0) = \emptyset$
- 2. Let $\beta_F \in V(\alpha_F)$, then $\alpha_F \subseteq \beta_F$, since $\mu_F \subseteq \alpha_F$, then $\mu_F \subseteq \beta_F$, thus $\beta_F \in V(\mu_F)$, then $V(\alpha_F) \subseteq V(\mu_F)$.
- 3. Let $\sigma_F \in X(\mu_F) \cup X(\alpha_F)$, then $\sigma_F \in X(\mu_F)$ or $\sigma_F \in X(\alpha_F)$, thus $\mu_F \nsubseteq \sigma_F$ or $\alpha_F \nsubseteq \sigma_F$, then $\mu_F \cup \alpha_F \nsubseteq \sigma_F$, so $<\mu_F \cup \alpha_F > \varphi \cap \sigma_F$

$$\begin{split} &\sigma_F \in X \left(<\mu_F \cup \alpha_{_F} > \right) \text{, then } X(\mu_F) \cup X \left(\alpha_{_F}\right) \subseteq X \left(<\mu_F \cup \alpha_{_F} > \right). \\ &X \left(<\mu_F \cup \alpha_{_F} > \right) \text{, then } \mu_F \cup \alpha_{_F} \not\subseteq \sigma_F \text{, thus } \mu_F \not\subseteq \sigma_F \text{ or } \alpha_{_F} \not\subseteq \sigma_F \text{, then } \sigma_F \in X(\mu_F) \text{ or } \sigma_F \in X \left(\alpha_{_F}\right) \text{, thus } \sigma_F \in X(\mu_F) \cup X \left(\alpha_{_F}\right) \text{, thus } \sigma_F \in X(\mu_F) \cup X \left(\alpha_{_F}\right) \text{.} \\ &\text{then } X \left(<\mu_F \cup \alpha_{_F} > \right) \subseteq X(\mu_F) \cup X \left(\alpha_{_F}\right). \end{split}$$

4. If $\sigma_F \in X(\mu_F) \cap X(\alpha_F)$ then $\sigma_F \in X(\mu_F) \cap \sigma_F \in X(\alpha_F)$

so $\mu_F \not\subseteq \sigma_F$ and $\alpha_F \not\subseteq \sigma_F$, then $\mu_F \cap \alpha_F \not\subseteq \sigma_F$ imply $\sigma_F \in X \left(\mu_F \cap \alpha_F\right)$

then
$$X(\mu_F) \cap X(\alpha_F) \subseteq X(\mu_F \cap \alpha_F)$$
.

Conversely let $\sigma_F \in X\left(\mu_F \cap \alpha_F\right)$, then $\mu_F \cap \alpha_F \not\subseteq \sigma_F$, thus $\mu_F \not\subseteq \sigma_F$ & $\alpha_F \not\subseteq \sigma_F$, then $\sigma_F \in X\left(\alpha_F\right)$ and $\sigma_F \in X\left(\alpha_F\right)$, so $\sigma_F \in X\left(\mu_F\right) \cap X\left(\alpha_F\right)$

then
$$X\left(\mu_F \cap \alpha_F\right) \subseteq X(\mu_F) \cap X\left(\alpha_F\right)$$
 Hence $X(\mu_F) \cap X\left(\alpha_F\right) = X\left(\mu_F \cap \alpha_F\right)$.

Proposition (4.4):

Let X be a $\boldsymbol{\rho}$ -algebra, such that μ_F , α_F , and α_F^i , $i \in \Delta$, are fuzzy c- $\boldsymbol{\rho}$ -filter at c- $\boldsymbol{\rho}$ -filter F Then.

- 1. $V(\alpha_E) = V(<\alpha_E>)$.
- 2. $V(\mu_F) \cap V(\alpha_F) \subseteq V(\mu_F \cap \alpha_F)$.
- 3. $\bigcap_{i \in \Delta} V\left(\alpha_F^i\right) = V(\langle \cup_{i \in \Delta} \alpha_F^i \rangle).$

Proof:

1. Let
$$\mu_F \in V(\alpha_F)$$
, Then $\alpha_F \subseteq \mu_F$, thus $<\alpha_F > \subseteq \mu_F$, then $\mu_F \in V(<\alpha_F >)$.

Conversely, let
$$\mu_F \in V(<\alpha_{\scriptscriptstyle E}>)$$
, then $<\alpha_{\scriptscriptstyle E}>\subseteq\mu_F$, note that $\alpha_{\scriptscriptstyle E}\subseteq$

$$<\alpha_{\scriptscriptstyle F}>\subseteq\mu_{\scriptscriptstyle F}$$
, then $\mu_{\scriptscriptstyle F}\in V\left(\alpha_{\scriptscriptstyle F}\right)$, thus $V\left(\alpha_{\scriptscriptstyle F}\right)=V\left(<\alpha_{\scriptscriptstyle F}>\right)$.

- 2. Let $\beta_F \in V(\mu_F) \cap V\left(\alpha_F\right)$. Then $\beta_F \in V(\mu_F)$ and $\beta_F \in V(\alpha_F)$, thus $\mu_F \subseteq \beta_F$ and $\alpha_F \subseteq \beta_F$, then $\mu_F \cap \alpha_F \subseteq \beta_F$, $V(\mu_F) \cap V\left(\alpha_F\right) \subseteq V(\mu_F \cap \alpha_F)$.
- 3. Let $\mu_F \in \bigcap_{i \in \Delta} V\left(\alpha_F^i\right)$, then $\mu_F \in V\left(\alpha_F^i\right)$, $\forall i \in \Delta$, thus $\alpha_F^i \subseteq \mu_F$, $\forall i \in \Delta$, then $\bigcup_{i \in \Delta} \alpha_F^i \subseteq \mu_F$, so $\mu_F \in V(<\bigcup_{i \in \Delta} \alpha_F^i >)$.

 Now, let $\sigma_F \in V(<\bigcup_{i \in \Delta} \alpha_F^i >)$,

 then $\bigcup_{i \in \Delta} \alpha_F^i \subseteq \sigma_F$, thus $\forall i \in \Delta$, $\alpha_{Fi}^i \subseteq \bigcup_{i \in \Delta} \alpha_F \subseteq \sigma_F$, then $\sigma_F \in V\left(\alpha_F^i\right)$, $\forall i \in \Delta$. Thus $\sigma_F \in \bigcap_{i \in \Delta} V\left(\alpha_F^i\right)$, then $\bigcap_{i \in \Delta} V\left(\alpha_F^i\right) = V(<\bigcup_{i \in \Delta} \alpha_F^i >)$.

Proposition (4.5):

Let *F* be a fixed c- ρ -filter of a ρ -algebra *X* and let $\tau = \{X(\mu_F) : \mu_F \text{ is fuzzy c-}\rho\text{-filter at F of } X\}$ then the pair (τ , $spec_F(X)$) is topological space, and it is called Zariski topology on *X*.

Proof:

1. $since X(0) = \emptyset$, $X(1) = spec_F(X)$ (by Proposition.((4.3), 1)

then \emptyset , $spec_F(X) \in \tau$.

2. Let $X(\mu_F)$, $X(\alpha_F) \in \tau$, such that μ_F , α_F are fuzzy c- ρ -filter at F.

then by Proposition ((4.3),4) , $X(\mu_F)\cap X\left(\alpha_{_F}\right)\in\tau$

3.Let $\left\{X\left(\alpha_F^i\right), i \in \Delta\right\} \subseteq \tau$, where α_F^i are fuzzy c- $\boldsymbol{\rho}$ -filters at F in a $\boldsymbol{\rho}$ -algebra X. Then $\bigcup_{i \in \Delta} X\left(\alpha_F^i\right) \in \tau$ (by Proposition.(4.3), 3) Thus τ is topology space .

5. Some Topological Properties of $Spec_{F}(X)$

In this section, we will introduce some topological properties of $spec_F(X)$.

Definition (5.1)[10]:

A topological space X is said to be disconnected if X can be expressed as the union of two disjoint non-empty open subsets of X, otherwise X is said to be connected.

Proposition(5.2):

Let X be a ρ -algebra, and F be a c- ρ -filter. If $spec_F(X)$ is disconnected, then there exist two proper fuzzy c- ρ -filters α_F , σ_F at F such that $rad\left(\alpha_F \cup \beta_F\right) = 1$ and $rad\left(\alpha_F \cap \beta_F\right) = rad(0)$.

Proof:

Let X be a -algebra, and let $spec_F(X)$ be disconnected. Then there exist two proper fuzzy c- $\boldsymbol{\rho}$ -filters, α_F , β_F in X such that $X\left(\alpha_F\right) \neq \emptyset$, $X(\beta_F) \neq \emptyset$, $X\left(\alpha_F\right) \cap X(\beta_F) = X(0)$, $X\left(\alpha_F\right) \cup X(\beta_F) = X(1)$. Thus $X\left(\alpha_F \cap \beta_F\right) = X(0)$ and $X\left(<\alpha_F \cup \beta_F>\right) = X(1) = spec_F(X)$, so by (Proposition (3.8) ,2) we have $rad\left(\alpha_F \cap \beta_F\right) = rad(0)$ and $rad\left(\alpha_F \cup \beta_F\right) = 1$.

Definition (5.3):

A -algebra X is said to be prime ρ -algebra if every proper fuzzy c- ρ -filter contained in a fuzzy prime c- ρ -filter.

Theorem (5.4):

Let X be a prime ρ -algebra. Then $spec_F(X)$ is disconnected if and only if there exist two proper fuzzy c- ρ -filters α_F , β_F such that $rad\left(\alpha_F \cup \beta_F\right) = 1$ and $rad\left(\alpha_F \cap \beta_F\right) = rad(0)$.

Proof: Let $spec_F(X)$ be disconnected, by Proposition (5.2) there exist two proper fuzzy c- ρ -filters α_F, β_F in X such that $rad(\alpha_F \cap \beta_F) = rad(0)$ and $rad(\alpha_F \cup \beta_F) = 1$.

Conversely, let β_F , α_F be two proper fuzzy c- $\boldsymbol{\rho}$ -filters at F in X such that $rad(\alpha_F \cup \beta_F) = 1$ and $rad(\alpha_F \cap \beta_F) = rad(0)$, then by Definition (4.3). we have $V(\alpha_F) \neq \emptyset$ and $V(\beta_F) \neq \emptyset$. Now $\emptyset = V(1) = V(\alpha_F) \cap V(\beta_F)$ and $spec_F(X) = V(0) = V(rad(0))$ (by Proposition (3.8),1) thens $pec_F(X) = V\left(\alpha_F \cap \beta_F\right) = V\left(\alpha_F \cap \beta_F\right) = V\left(\alpha_F \cap \beta_F\right)$ thus $spec_F(X)$ is a disconnected.

Definition (5.5)[10]:

A topological space X is said to be a T_0 – space if given any two distinct points x_1 and x_2 of X, there exists an open subset of X which contains at least one of the points but does not contain the other.

Theorem (5.6):

Let X be a ρ -algebra and F be a c- ρ -filters on X. Then $spec_F(X)$ is a T_0 – space.

Proof:

Let μ_F , $\beta_F \in spec_F(X)$ and $\mu_F \neq \beta_F$. Then $\mu_F \nsubseteq \beta_F$ or $\beta_F \nsubseteq \mu_F$. If $\mu_F \nsubseteq \beta_F$, then $\beta_F \notin V(\mu_F)$, but $\mu_F \in V(\mu_F)$, Then $\beta_F \in X(\mu_F)$, and $\mu_F \notin X(\mu_F)$. If $\beta_F \nsubseteq \mu_F$, similarly we have $\mu_F \in X(\beta_F)$ but $\beta_F \notin X(\beta_F)$ then $spec_F(X)$ is a $T_0 - space$.

<u>Definition (5.7):[10]</u>

A topological space (X, T) is said to be a T_1 – space if for any two distinct points x_1 and x_2 of X, there exist two open subsets Y_1 and Y_2 of X such that $x_1 \in Y_1$, $x_2 \notin Y_1$ and $x_2 \in Y_2$, $x_1 \notin Y_2$.

Proposition (5.8):[10]

A topological space X is a T_1 – space if and only if every singleton set of X is closed.

Proposition (5.9):

Let X be a ρ -algebra and F c- ρ -filter. Then $spec_F(X)$ is a $T_1-space$ if and only if for every fuzzy prime c- ρ -filter μ_F at F of X, there exists a fuzzy c- ρ -filter α_F such that $\alpha_F \subseteq \mu_F$, and $\alpha_F \not\subseteq \sigma_F$ for every $\sigma_F \in spec_F(X)$, such that $\mu_F \neq \sigma_F$.

Proof: Let $spec_F(X)$ be a T_1 – space and $\mu_F \in spec_F(X)$ there exist a fuzzy c- $\boldsymbol{\rho}$ -filter α_F at F in X such that $\{\mu_F\} = V\left(\alpha_F\right)$. Hence, $\alpha_F \subseteq \mu_F$, and $\alpha_F \not\subseteq \sigma_F \forall \sigma_F \in spec_F(X)$.

Vol. 6 Issue 4, April - 2022, Pages:53-61

Conversely let $\mu_F \in spec_F(X)$, then there exists a fuzzy c- ρ -filter $\alpha_F \subseteq \mu_F$ and $\alpha_F \nsubseteq \sigma_F$, $\forall \sigma_F \in spec_F(X)$, and $\mu_F \nsubseteq \sigma_F$. Hence $V\left(\alpha_F\right) = \{\mu_F\}$. Thus spec(X) is a $T_1 - space$.

References

- [1] A. Hasan khani,. 2000.F-spectrum of a BCK-algebra. J. Fuzzy Math.
- 8(1): pp.1-11,
- [2] D. Dubois and H. Prade, Fuzzy Sets and Systems: Theory and Application, Academic Press. INC. (London) LTD., Academic Press. INC. fifth Avenue, New York, 1980.
- [3]] H .K . Abdullah and A .K Mohammad, 2020. Some Types filter of ρ -algebra, Journal of Discrete Mathematical Sciences and Cryptography . Vo 23, 1391-1394
- [4] H .K . Abdullah and A .K Mohammad, Fuzzy ρ -filter and fuzzy c- ρ -filter in ρ -algebra, International Journal of Engineering and Information Systems (IJEAIS).
- Vol. 4,p 32-41 ,2020 . .
- [5] Korawit Taboon, Phatchara Butsri & Aiyared Iampan (2020) A cubic set theory approach to UP-algebras, Journal of Interdisciplinary Mathematics, 23:8, 1449-1486, DOI: 10.1080/09720502.2020.1744815
- [6]Sarinya Sripaeng, Kanlaya Tanamoon & Aiyared Iampan ,2018. On anti Q-fuzzy UP-ideals and anti Q-fuzzy UP-subalgebras of UP-algebras, Journal of Information and Optimization Sciences, 39:5, 1095-1127, DOI: 10.1080/02522667.2017.1292654 [7] J. Neggers, and H. S. Kim, On d-algebra, Mathematica Slovaca, 49 (1), (1999)19-26.
- [8] S. M. Khalil and M. Alradha, 2017, Characterizations of ρ -algebra and generation Permutation topological ρ -algebra using permutation in symmetric group, american Journal of Mathematics and Statistics, 7(4).152-159
- [9] L. A. Zadeh, 1965. Fuzzy set, Inform. And Control. 8, pp. 338-353.
- [10] M.C. Gemignani, Elementary Topology, Addison Wesley publishing company, London, (1972).
- [11] Theeyarat Klinseesook, Sukhontha Bukok & Aiyared Iampan (2020) Rough set theory applied to UP-algebras, Journal of Information and Optimization Sciences, 41:3, 705-722.