Some Results on Ultrafilter in $C_{Rc}(\mathcal{W})$

Dr. Neeran Tahir Abd Alameer¹ and Anfal Abd Ulrazzaq Atiyah²

¹Mathematics Department, Education for Girls Faculty, Kufa University, Najaf, Iraq niram.abdulameer@uokufa.edu.iq ²Mathematics Department, Education for Girls Faculty, Kufa University, Najaf, Iraq anfal.abdulrazzaq.atiyah@gmail.com

Abstract. The primary goal of this research is to define a new class of ultrafilter with respect to the ring of real valued Rc-continuous functions $C_{Rc}(W)$. The fundamental features of on Filter and Ultrafilter in $C_{Rc}(W)$, as well as several essential theorems connected to this sort of Filter and Ultrafilter functions are introduced.

Keywords: Nearly compact space, Rc- continuous functions, Filter, Ideals, Ultrafilter

1. Introduction

Filters were introduced by H. Cartan in 1937[1], [2] and subsequently used by Bourbaki in their book Topologie Générale as an alternative to the similar notion of a net developed in 1922 by E. H. Moore and H. L. Smith.

N. T. AbdAlameer and A. A. Atiyah [3] introduced the definition of real valued Rc- continuous functions depending on the concept of regular open sets and nearly compact to present new types of super continuous functions that is called Rc – continuous functions. N. T. Abd Alameer and A. A. Atiyah [4] introduced the definition of Ideal and Filter in $C_{Rc}(W)$.

2. Preliminaries

we will represent by (\mathcal{W}, τ) and (\mathcal{V}, ρ) for topological spaces on which no separation axioms are assumed unless explicitly stated and they will simply be written as \mathcal{W} and \mathcal{N} . Also, we will denote by $Z(\mathcal{D})$ to the zero set of \mathcal{D} , where $\mathcal{D} \in C(\mathcal{W})$ and $Z(\mathcal{W})$ denotes to all zero sets $Z(\mathcal{D})$. Moreover, if $\delta \in C_{Rc}(\mathcal{W}), Z_{Rc}(\mathcal{W})$ denote to all zero set $Z_{Rc}(\delta)$.

Definition 2.1. [6] A topological space (\mathcal{W}, τ) is called compact if every open cover has a finite sup cover that covers (\mathcal{W}, τ) .

Definition 2.2.[5] An open cover $\{V_i \mid i \in \Omega\}$ of a space \mathcal{W} is said to be regular open if V_i is regular open sets for each $i \in \Omega$.

Definition 2.3.[5] A space (\mathcal{W}, τ) is defined to be nearly compact if every regular cover has a finite subcover, i.e., if $\{V_i \mid i \in \Omega\}$ is a regular open cover of \mathcal{W} , there exist a finite subset $\Omega \subset \Omega$ such that $\mathcal{W} = \bigcup \{V_i \mid i \in \Omega\}$.

Definition 2.4.[5] A subset \mathcal{D} is said to be nearly compact if it is nearly compact as a subspace of \mathcal{W} . **Definition 2.5.[5**] Let \mathcal{D} be asubspace of a topological space $(\mathcal{W}, \tau), \mathcal{D}$ is defined to be nearly compact relative to \mathcal{W} if for each cover $\{V_i \mid i \in \Omega\}$ of \mathcal{D} by regular open sets of (\mathcal{W}, τ) has a finite subcover, i.e., $\mathcal{D} \subset \bigcup V_i \mid i \in \Omega$.

Definition 2.6[4]

For $\wp \in C_{Rc}(\mathcal{W})$, the zero set of \wp , denoted by $Z(\wp) = Z_w(\wp) = \{ w \in \mathcal{W} : \wp(w) = 0 \}$ and denoted by $Z_{Rc}(\mathcal{W})$ to the set of all zero sets $Z(\wp)$.

Definition 2.7.[4]

A nonempty subfamily \mathfrak{F} of $Z_{Rc}(\mathcal{W})$ is called to be $Z_{Rc} - filter$ in \mathcal{W} if the following conditions hold.

- Ø∈F
- If $j, l \in \mathcal{F}$, then $j \cap l \in \mathcal{F}$, and
- If $j \in \mathfrak{F}$, $l \in Z_{Rc}(\mathcal{W})$ and $j \subseteq l$, then $l \in \mathfrak{F}$.

Theorem 2.8.[3]

For a function $\wp : \mathcal{W} \to \mathcal{V}$ the following are equivalent:

- (1) \wp is Rc continuous
- (2) If F is open in \mathcal{V} and $\mathcal{V} F$ is nearly compact relative to \mathcal{V} , then $\mathcal{P}^{-1}(F)$ is open in \mathbb{W} .
- (3) If H is closed in \mathcal{V} and nearly compact relative to \mathbb{W} , then $\wp^{-1}(H)$ is closed in \mathcal{W} .

Definitions 2.9.[4]

An ideal j in $C_{Rc}(\mathcal{W})$ is maximal ideal if $j \neq C_{Rc}(\mathcal{W})$ and $C_{Rc}(\mathcal{W})$ is the only ideal strictly containing j.

Definitions 2.10.[4] An ideal j in $C_{Rc}(W)$ is said to be a fixed ideal if $\cap Z_{Rc}[j] \neq \emptyset$. And if $\cap Z_{Rc}[j] = \emptyset$, then we call j is free ideal. It is easy to see that \emptyset , $W \in Z_{Rc}(W)$ [$Z_{Rc}(1) = \emptyset$, $Z_{Rc}(0) = W$] and from third part of above definition we can see that $W \in Z_{Rc}$ -filter.

Remarks 2.11.[4]

- (1) For a family of zero sets L of \mathcal{W} and they have the finite intersection property, in other hand, $L_j \in L \ni 1 \le j \le n, n \in \mathbb{N} \Rightarrow \bigcap_{1 \le j \le n} L_j \ne \emptyset$. Hence, there is a Z_{Rc} filter H on \mathcal{W} with $L \subseteq H$.
- (2) Clearly, if \aleph is the collection of all finite interaction of sets from L, and $H = \{B \in Z_{Rc}(\mathcal{W}) | E \subseteq B\}$ for some $E \subseteq \aleph$, so H is the smallest Z_{Rc} filter on \mathcal{W} containing L.
- (3) If L is regular open under finite intersection, then L is a base for H.
- (4) If W is any nonempty topological space and F be any filter on W, so H=F ∩ Z_{Rc}(W) is a Z_{Rc} -filter on W. On other hand, if H is a Z_{Rc} -filter on W, then F = {A ⊆ W |D⊆ A} for some D ∈ H is a filter on W and it is the smallest filter on W containing H and satisfies F ∩ Z_{Rc}(W)=H.

Definition 2.12.[3]

A function $\wp: \mathcal{W} \to \mathcal{V}$ is called Rc-continuous if for each $w \in \mathcal{W}$ and each open subset F of \mathcal{V} containing $\wp(w)$ having the complement nearly compact relative to \mathcal{V} , there exists an open subset H of \mathcal{W} contains $w \ni \wp(H) \subset F$. The function \wp is said to be Rc-continuous if it is Rc-continuous at each $w \in \mathcal{W}$.

Definition 2.13. [4]

A function $\wp \in C_{Rc}(\mathcal{W})$ is called to be unit in $C_{Rc}(\mathcal{W})$ if and only if, $\wp(w) \neq 0$ for all $w \in \mathcal{W}$ in this case $\wp^{-1}(w) = \frac{1}{\wp(w)}$ for all $w \in \mathcal{W}$.

In other words, we can say that $\wp \in C_{Rc}(\mathcal{W})$ is a unit $\Leftrightarrow Z_{Rc}(\mathcal{W}) = \emptyset$.

Remark 2.14. [4]

If j_1, j_2, j_3, \dots are non-empty family of ideals, then $j_1 \cap j_2 \cap j_3 \cap \dots$ is an ideal.

Definition 2.15. [4]

- An ideal j in $C_{Rc}(W)$ is maximal ideal if $j \neq C_{Rc}(W)$ and $C_{Rc}(W)$ is the only ideal strictly containing j.
- An ideal j in $C_{Rc}(W)$ is said to be a fixed ideal if $\cap Z_{Rc}[j] \neq \emptyset$. And if $\cap Z_{Rc}[j] = \emptyset$, then we call j is free ideal. It is easy to see that $\emptyset, W \in Z_{Rc}(W)$ $[Z_{Rc}(1) = \emptyset, Z_{Rc}(0) = W]$ and from third part of above definition we can see that $W \in Z_{Rc}$ -filter.

Remark 2.16. [4]

- (1) For a family of zero sets L of \mathcal{W} and they have the finite intersection property, in other hand, $L_j \in L \ni 1 \le j \le n, n \in \mathbb{N} \Rightarrow \bigcap_{1 \le j \le n} L_j \neq \emptyset$. Hence, there is a Z_{RC} filter H on \mathcal{W} with $L \subseteq H$.
- (2) Clearly, if \aleph is the collection of all finite interaction of sets from L, and $H = \{B \in Z_{Rc}(\mathcal{W}) | E \subseteq B\}$ for some $E \subseteq \aleph$, so H is the smallest Z_{Rc} -filter on \mathcal{W} containing L.
- (3) If L is regular open under finite intersection, then L is a base for H.
- (4) If W is any nonempty topological space and F be any filter on W, so H= F ∩ Z_{Rc}(W) is a Z_{Rc} -filter on W. On other hand, if H is a Z_{Rc} -filter on W, then F = {A ⊆ W |D⊆ A} for some D ∈ H is a filter on W and it is the smallest filter on W containing H and satisfies F ∩ Z_{Rc}(W)=H.

Theorem 2.17. [4]

For an ideal j in $C_{Rc}(\mathcal{W})$, $Z_{Rc}[j] = \{Z_{Rc}(g) | g \in j\}$ is a Z_{Rc} -filter on \mathcal{W} .

Theorem 2.118. [4]

If *H* is a Z_{Rc} -filter on j, then $Z_{Rc}^{-1}[H] = \{g \in C_{Rc}(\mathcal{W}) | Z_{Rc}(g) \in H\}$ is an ideal in $C_{Rc}(\mathcal{W})$.

Remark 2.19.

(1) For any two elements $g, L \in C_{Rc}(\mathcal{W})$ and let (g, L) denotes to the ideal generated by g, L in $C_{Rc}(\mathcal{W})$. If $j = (g, L) \neq C_{Rc}(\mathcal{W})$, then $Z_{Rc}[j]$ is a Z_{Rc} -filter.

(2) Suppose $Z_{Rc}: C_R(\mathcal{W}) \to Z_{Rc}(\mathcal{W})$ is a surjective map, then for any subset $H \in Z_{Rc}(\mathcal{W}), Z_{Rc}[Z_{Rc}^{-1}[H]] = H$ and $J \subset Z_{Rc}^{-1}[Z[j]]$.

3. Ultra-filter in $C_{Rc}(W)$

Definition 3.1.

 Z_{Rc} – ultrafilter H on \mathcal{W} is a maximal Z_{Rc} –filter on \mathcal{W} , in other words, it is not contained in any Z_{Rc} –filter on \mathcal{W} .

Proposition 3.2.

For a topological space (\mathcal{W}, τ) , any Z_{Rc} – filter on \mathcal{W} is contained in Z_{Rc} –ultrafilter.

Proof:

Obviously, same proof as filter condition.

Proposition 3.3.

For any Z_{Rc} –ultrafilter H on W, there is an ultrafilter $K \ni K \cap Z_{Rc}(W) = H$. Proof.

Suppose that *H* is Z_{Rc} –ultrafilter on \mathcal{W} .

Let $S = \{A \subseteq \mathcal{W} | H \subseteq A\}$ for some $H \in \mathcal{W}$ need not be an ultrafilter on \mathcal{W} . However, there is an ultrafilter $K \in \mathcal{W} \ni S \subseteq K$. Hence, $K \cap Z_{Rc}(\mathcal{W})$ is a Z_{Rc} -filter on \mathcal{W} satisfying $H = S \cap Z_{Rc}(\mathcal{W}) \subset K \cap Z_{Rc}(\mathcal{W})$. Therefore, $K \cap Z_{Rc}(\mathcal{W}) = H$ that because of H is Z_{Rc} -ultrafilter.

Theorem 3.4.

Whenever N is a maximal ideal in $C_{Rc}(W)$, then $Z_{Rc}[N]$ is a Z_{Rc} –ultrafilter. Proof.

 Z_{Rc} and Z_{Rc}^{-1} are both keep embed. We can see that $V \subseteq Z_{Rc}^{-1}[Z_{Rc}[V]]$ for any ideal V.

If V= P is a maximal ideal, $Z_{Rc}^{-1}[Z_R[P]] = P$.

If $Z_{Rc}[P]$ is not Z_{Rc} – filter, there exists a Z_{Rc} – ultrafilter $S \ni Z_{Rc}[P] \subset S$.

Because of $Z_{Rc}: C_{Rc}(\mathcal{W}) \to Z_{Rc}(\mathcal{W})$ is surjective, we have $Z_{Rc}^{-1}[Z_R[P]] \subset Z_{Rc}^{-1}[S]$.

But $Z_{Rc}^{-1}[Z_{Rc}[P]] = P$ is a maximal ideal, then there is no ideal in $C_{Rc}(W)$ properly contained P.

Therefore, this contradiction explains $Z_{Rc}[P]$ is Z_{Rc} – ultrafilter.

Theorem 3.5.

Whenever *H* is Z_{Rc} – ultrafilter, $Z_{Rc}^{-1}[H]$ is a maximal ideal of $C_{Rc}(W)$. Where the function *Z* is a bijection from the set of maximal ideal of $C_R(W)$ to the set of Z_{Rc} – ultrafilter on W.

Proof.

Let *H* is Z_{Rc} – ultrafilter and $Z_{Rc}^{-1}[H]$ is not maximal ideal in $C_{Rc}(W)$. Hence, there exists a maximal ideal *P* in $C_{Rc}(W) \ni Z_{Rc}^{-1}[H] \subset P$. Obviously, $Z_{Rc}^{-1}[H] \subset Z_{Rc}^{-1}[Z_{Rc}[P]]$(*) [since $Z_{Rc}^{-1}[Z_{Rc}[P]] = P$]. Therefore, $Z_{Rc}Z_{Rc}^{-1}[H] \subset Z_{Rc}Z_{Rc}^{-1}[Z_{Rc}[P]]$ and that leads to $H \subset Z_{Rc}[P]$. However, because of *H* is a Z_{Rc} – ultrafilter, then $Z_{Rc}^{-1}[H] = Z_{Rc}^{-1}[Z_{Rc}[P]]$, but this a contradiction to (*).

So, that implies to $Z_{Rc}^{-1}[H]$ is a maximal ideal. Because of $Z_{Rc}^{-1}[Z_{Rc}[P]] = P$ for all maximal ideal in $C_{Rc}(W)$ and $Z_{Rc}Z_{Rc}^{-1}[H] = H$ for all Z_{Rc} – ultrafilter, hence [from part 2 of 2.9.] the proof is completed.

Acknowledgment

The authors are grateful for the project's funding from Iraq's Ministry of Higher Education and Scientific Research.

Reference

[1] H. Cartan, "Théorie des filtres", CR Acad. Paris, 205, (1937), 595–598.

[2] H. Cartan, "Filtres et ultrafiltres", CR Acad. Paris, 205, (1937), 777-779.

- [3] N. T. AbdAlameer and A. A. Atiyah, Some Results on Rings Valued Rc-Continuous functions, journal of special education vol.37, No.3, (2022).
- [4] N. T. AbdAlameer and A. A. Atiyah, A Study on Ideal and Filter in $C_{Rc}(W)$, NeuroQuantology, vol. 20, (2022), p.p 335-337.
- [5] S. G. Hwang, A note on nearly compact spaces, J. Korean Math. Soc., VoL 15. No. I., 25 27, 1978.

[6] S. Willard, General Topology, Addison-Wesley Publishing Company, 1970.