The Cyclic Decomposition of The Factor Group $cf(Q_{2m}\times D_4,Z)/\overline{R}(Q_{2m}\times D_4)$ When m is an odd Number

Naba Hasoon Jabir

Department of Mathematics

University of Kufa, Faculty of Education for Girls

Iraq

Email:nabaah.al-saedi@uokufa.edu.iq

Abstract : The purpose of this paper is to find The Cyclic Decomposition of The Factor Group

 $cf(Q_{2m} \times D_4, Z)/\overline{R}(Q_{2m} \times D_4)$ when m is a prime number, where Q_{2m} is denoted to Quaternion group of order 4n, such that for each positive integer n, there are two generators x and y for Q_{2m} satisfies $Q_{2m} = \{x^h \ y^k, 0 \le h \le 2m - 1, k=0,1\}$ which has the following properties $\{x^{2m}=y^4=I, yx^my^{-1}=x^{-m}\}$ and D_4 is the Dihedral group of order 8 is generate by a rotation r of order 4 and reflection s of order 2 then 8 elements of D_4 can be written as: $\{I^*, r, r^2, r^3, s, sr, sr^2, sr^3\}$.

Keywords: Cyclic Decomposition ,Factor Group, Q_{2m} , D₄ ,odd number.

1.Introduction :

Let F be a field .The general linear group GL (*n*,F) is a multiplicative group of all non-singular $n \times n$ matrices over F [2].

Let F be a field .A matrix representation of G is homomorphism T: $Gr \rightarrow GL(n, F)$, n is called *the degree of representation* T. T is called a unit representation(principal) if T(g)=1 for all $g \in Gr[2]$.

Let T be a matrix representation of Gr over the field F. The *character* χ of a matrix representation T is the mapping χ : Gr \rightarrow F defined by $\chi(g)$ =tr(T (g)) for all $g \in$ Gr .The degree of T is called the degree of χ .Recall

that the trace of an $n \times n$ matrix A is the sum of main diagonal elements : $tr(A) = \sum_{i=1}^{n} a_{ii}$ [1].

Two elements of Gr are said to be Γ - *conjugate* if the cyclic subgroups they generate are conjugate in G; this defines an equivalence relation on Gr. These classes are called Γ - *classes*[4].

In this work we find The Cyclic Decomposition of The Factor Group $cf(Q_{2m} \times D_4, Z)/\overline{R}(Q_{2m} \times D_4)$ When m is a prime Number .

2. The Group $\overline{R}(Gr)$:

Definition (2.1):[9]

A class function f on the group Gr with values in C is called a **complex – valued class function on Gr**, the set of all complex - valued class functions will be denoted by cf(G,C). Definition (2.2):[6]

The group generated by all generalized characters on C is called the group of the generalized characters of G and it is denoted by R(Gr).

Definition (2.3):[10]

The intersection of cf (Gr , Z) with R (G) forms an abelian group which is called the group of Z-valued generalized characters of G, denoted by $\overline{R}(G)$ and the cf (G,Z)/ $\overline{R}(Gr)$ is a finite abelian factor group denoted by K(Gr).

Definition (2.4):[5]

Let K a subfield of a field F. The Galios group of F over K , denoted by Gal(F/K) , is the set of all those automorphisms of F that fix K. If $f(x) \in K[x]$, and if $F=K(Z_1,Z_2,...,Z_n)$ is a splitting field , then the Galois group of f(x) over K is defined to be Gal(F/K).

3. The Rational Valued Characters Table:

Definition (3.1):[8]

A rational valued character θ of Gr is a character whose values are in Z, which is $\theta(g) \in Z$, for all $g \in Gr$. Proposition (3.2):[9]

The rational valued characters $\theta_i = \sum_{\sigma \in Gal(Q(\chi_i)/Q)} \sigma(\chi_i)$ form basis for $\overline{R}(Gr)$, where χ_i are the

irreducible characters of G and their numbers are equal to the number of all distinct Γ - classes of Gr. Proposition (3.3):[6]

The number of all rational valued characters of a finite group Gr is equal to the number of all distinct Γ classes on Gr.

Definition (3.4):[9]

The information about rational valued characters of a finite group Gr is displayed in a table called **the** rational valued characters table of Gr.

We denote it by \equiv^* (Gr) which is 1×1 matrix whose columns are Γ -classes and rows are the values of all rational valued characters of G, where 1 is the number of Γ -classes.

Lemma (3.5):[8]

Let A, L and W be matrices with entries in the principal ideal domain R .Let L and W are invertible matrices, then :

 $D_k(L \land W) = D_k(A).$

Theorem (3.6):[3]

Let $M \in M_{n \times m}(A)$ be a matrix with entries in a principle ideal domain. Then there exist two invertible matrices $L \in GL_n(A)$, $W \in GL_m(A)$ and a quasi-diagonal matrix $D \in M_{n \times m}(A)$ (that is, $d_{ij} = 0$ for $i \neq j$) such that

1- M=LDW.

2- $d_1 \mid d_2, ..., d_i \mid d_{i+1}, ...,$ where the d_j are the diagonal entries of D.

And then, $D_k(LDW) = D_k(M)$ modulo the group of unites of A.

Theorem (3.7):[9]

 $\mathbf{K}(\mathbf{G}) = \bigoplus \sum C_{d_i}$

Such that $d_i = \pm D_i (\equiv^* (Gr)) / \pm D_{i-1} (\equiv^* (Gr)).$

Theorem (3.8):[4]

 $|\mathbf{K}(\mathbf{G})| = \det(\equiv^*(\mathbf{Gr})).$

Proposition(3.9):[9]

If A and B two matrices of the degree n and m respectively, then

 $det (A \bigotimes B) = (det(A))^m . (det(B))^n$

Proposition(3.10):[7]

Let A and B be two non-singular matrices of the rank n and m respectively ,over a principal domain R .

And let $L_1AW_1 = D(A) = diag\{d_1(A), d_2(A), \dots, d_n(A)\}$

 $L_2BW_2 = D(B) = diag\{d_1(B), d_2(B), \dots, d_m(B)\}$

be the invariant factor matrices of A and B , then

$$(L_1 \otimes L_2). (A \otimes B). (W_1 \otimes W_2) = D(A) \otimes D(B)$$

and from this we can write down the invariant factor matrix of $A \otimes B$.

Let H₁ and H₂ be P₁-group and P₂-group respectively ,where P₁ and P₂ are distinct primes .We know that

$$\equiv (\mathrm{H}_1 \times \mathrm{H}_2) = \equiv (\mathrm{H}_1) \otimes \equiv (\mathrm{H}_2)$$

 $(P_1, P_2) = 1$, so we have

$$\equiv^{*}(H_{1} \times H_{2}) = \equiv^{*}(H_{1}) \otimes \equiv^{*}(H_{2}).$$

Theorem(3.11):[6]

Let H_1 and H_2 be p_1 -group and p_2 -group respectively, where

 $(p_1, p_2) = 1$, let $\equiv^*(H_1)$ and $\equiv^*(H_2)$ be of the ranks n, m respectively.

 $\mathbf{K}(\mathbf{H}_{1}\times\mathbf{H}_{2})=\underbrace{K\left(\mathbf{H}_{1}\right)\oplus\cdots\cdots\oplus K\left(\mathbf{H}_{1}\right)}_{\mathbf{K}}\oplus\underbrace{K\left(\mathbf{H}_{2}\right)\oplus\cdots\cdots\oplus K\left(\mathbf{H}_{2}\right)}_{\mathbf{K}}$

m-times

n-times

Proposition(3.11):[9]

Let $n = \prod_{i=1}^{k} P_i^{a_i}$, where P_i are distinct primes, then : $K(C_n) = \bigoplus \sum_{i=1}^{k} \left(\bigoplus \sum K\left(C_{P_i^{a_i}}\right) \right) \left[\prod_{\substack{j \neq i \\ j=1}}^{k} \left(\alpha_j + 1\right) \right] time.$

Example(3.12) :

$$\mathbf{K}(\mathbf{C}_{165}) = \mathbf{K}(\mathbf{C}_{5.3.11}) = \bigoplus_{i=1}^{2} \mathbf{C}_{5} \bigoplus_{i=1}^{2} \mathbf{C}_{3} \bigoplus_{i=1}^{2} \mathbf{C}_{11}$$

Theorem(3.13): [11]

If m is an odd number, then

$$\mathbf{K}(\mathbf{Q}_{2m}) = \mathbf{K}(\mathbf{C}_{2m}) \oplus \mathbf{C}_4.$$

4 The Main Results

To calculate two matrices N and R.

First we will define two matrices n_1 and r_1 are the same degree of $\equiv^*(Q_{2m})$.

$$n_{1} = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix} \qquad r_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & -1 \\ 1 \end{bmatrix}$$

Second we will define two matrices n_2 and r_2 such that

$$n_{2} = \begin{bmatrix} 1 & 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \qquad r_{2} = \begin{bmatrix} (p-1) & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & (p-1) & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Third we will define two matrices D_1 and D_2 where

$$D_{1} = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 \\ 1 & -1 & -1 & 1 & 0 \end{bmatrix} \qquad D_{2} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ -1 & -1 & 1 & 1 & 1 \\ 0 & 1 & -1 & 1 & 2 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

From first, second and third we have

$$N = (n_2, n_1) D_1$$
$$R = (r_1, r_2) D_2.$$

Theorem(4.1):

If $m = p_1 \cdot p_2 \dots p_n$, such that p_i 's are distints primes, all i=1,2,...,n then the cyclic decomposition of $k(Q_{2m} \times D_4)$ is :

$$\mathbf{K}(\mathbf{Q}_{2m} \times \mathbf{D}_4) = \bigoplus_{i=1}^{3} \mathbf{K}(\mathbf{C}_{2m}) \bigoplus \mathbf{K}(\mathbf{C}_2^4) \bigoplus_{i=1}^{3} \mathbf{C}_4 \bigoplus_{i=1}^{3} \mathbf{C}_2 \bigoplus \mathbf{C}_3$$

Proof :

We use theorem (3.6) and theorem (3.7) to prove theorem .

If m is a prime number, we will define two matrices N and R such that

N(Q _{2m} ×D ₄)	=		0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 1 -1 -1 0 0 0 0 0 0 0 0 0 1 1 -1 -1 0 0 0 0 0 1 1 -1 -1 0 0 0 0 0 1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{c} 0 \\ 1 \\ 0 \\ -1 \\ 0 \\ 1 \\ 0 \\ -1 \\ 0 \\ 1 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$\begin{array}{c} 0 \\ 1 \\ -1 \\ -1 \\ 0 \\ 1 \\ -1 \\ -1 \\ 0 \\ 1 \\ -1 \\ -$	$\begin{array}{c} 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\$	1 -1 0 0 1 -1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ -1 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	0 0 0 0 0	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 0 \\ 1 \\ -1 \\ 0 \\ 1 \\ -1 \\ 0 \\ 1 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
$\equiv^*(Q_{2m} \times D_4) =$	1 1 1 2 m-1 m-1 m-1 2(m-1 1 1 1 1 1 1 1 1 1 1 1 1 1	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ -2 \\ m-1 \\ m-1 \\ m-1 \\ -2(n \\ 1) \\ -2(n \\ 1) \\ 1 \\ 1 \\ 1 \\ 1 \\ m-1 \\ m-1 \\ m-1 \\ -m \\ -1 \\ -2(2 \\ 2 \\ 2 \\ 2 \\ -4 \\ \end{array} $	$\begin{array}{c} 1 \\ -1 \\ 1 \\ -1 \\ 0 \\ 1 \\ m \\ m \\ m \\ 1 \\ 1 \\ 1 \\ -1 \\ 1 \\ -1 \\ 1 \\ m \\ m \\ 1 \\ m \\ m \\ 1 \\ m \\ m \\ $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 1 \\ 1 \\ -1 \\ -2 \\ -1 \\ -1 \\ -1 \\ -1 \\ -$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1 1 1 1 1 1 1 1 1 1 1 1 1	-1 -1 (0 -1 -1 -1 -1 -1 -1 -1 -1 -1) -1) -1) -1)	1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1 1 1 1 1 0	1 1 1 1 1 1 1 1 -(m-1) 1 -1 -1 1 -1 -1 -1 -1 -(m-1) -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	1 1 1 1 -2 -1 n-1 1 n-1 1 1 -2 -1 1 n-1 1 1 -2 -1 1 n-1 1 -1 -1 -1 -1 -1 -1 -1 -1 -	$\begin{array}{c} 1 \\ -1 \\ 1 \\ -1 \\ 0 \\ -1 \\ -1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	$\begin{array}{c} 1 \\ 1 \\ -1 \\ 0 \\ -1 \\ (m-1) \\ m-1) \\ 1 \\ 1 \\ 1 \\ -1 \\ 1 \\ 1 \\ -1 \\ -1 \\$	$ \begin{array}{c} 1 \\ -1 \\ 0 \\ -1 \\ 0 \\ -1 \\ -1 \\ 0 \\ 1 \\ -1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$\begin{array}{c} -1\\ -1 \\ -(m-1)\\ 0\\ 1 \\ -1\\ -1\\ 1\\ -1\\ 1\\ -1\\ 1\\ 0\\ 2\\ (\\ 2\\ (\\ 2\\ (\\ 2\\ (\\ 0$	1 1 1 2 	$\begin{array}{c}1\\1\\1\\2\\0\\(m-1)\\0\\1\\-1\\1\\2\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\$	$ \begin{array}{c} 1 \\ -1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$ \begin{array}{c} 1 \\ -1 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$ \begin{array}{c} 1 \\ -1 \\ -1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$

	(m-1)	(m-1)	0	0	0	0	0	0	0	0	0 (0 (0 0	0	0	0	0	0	0	0	0	0	0	ر ۱
	0	(m-1)	0	0	0	0	0	0	0	0	0 0	0	0	0 () () () ()	0	0	0	0	0 (0 0
	-(m-1)	-(m-1)	(m-1)	(m-1)	(m-	1)	0 0	0	0 0	0 0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0 0
	0	(m-1)	-(m-1)	(m-1)	2(m-	1) () 0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0 (0 (
	0	0	0	0 (m-1)	0	0	0	0	0	0 0	0	0	0 0	0	0	0	()	0	0	0	0 (0 0
	1	1	0	0	0	0	0	0	0	0	0 0	0	0	0 () () () ()	0 ()	0	0	0 0	0
	0	1	0	0	0	0	0	0	0 (0 0	0 (0	0 0	0 0	0	0	0	0	0		0	0	0 0	0
	-1	-1	1	1	1	0	0	0	0 () 0	0	0	0 0	0	0	0	0	0	0		0	0 (0 0	0
	0	1	-1	1	2	0	0	0	0 0	0 0	0	0	0 0	0	0	0	0	0	0		0 0	0 0	0 (0
	0	0	0	0	1	0	0 (0 (0 0	0	0	0	0 0	0	0	0	0	0	0	0	0 0	0 0	0 0	0
	-(m-1)) -(m-1) 0	0	0	0	0	0	0	0	(m-1)	(m	n-1) 0	0	0	0	0	0	0	0	0	0	0 (0 0
$R(Q_{2m} \times D_4) =$	0	-(m-1)	0	0	0 0	0	0	0	0	0	(m-1)	0	0	0 0) () ()) () (0 0) () () ()	0	0
	(m-1)	(m-1)	-(m-1)	-(m-1) -((m-1)	0 0	0 0	0 -0	(m-1)) -(m	-1) (r	n-1)	(m-1)	(m-1) 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0 0	0
	0 -	(m-1) (m-1) -((m-1) -2((m-1)	0 0	0	0 0	0 (m-1)	-(m-	-1)	(m-1)	2(m	-1)	0 (0 (0	0	0	0	0	0 0	0
	0	0 0	0 -((m-1) (0 0	0	0	0	0	0	0	0	(m-1)	0	0	0	0	C) 0) (0 0	0	0	0
	-1	-1 0	0	0 0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	-1 0	0	0 0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	1 -1	-1	-1 0	0	0	0	0	-1	-1	1	1	1	0	0	0	0	0	0	0	0	0	0	0
	0	-1 1	-1	-2 0	0	0	0	0	0	1	-1	1	2	0	0	0	0	0	0	0	0	0	0	0
	0	0 0	0	-1 0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
	0	0 0	0	0 0	0	0	0	0	-m	-m	0	0	0	0	0	0	0	0	1		1 1	1 0	0 0	0
	0	0 0	0	0 0	0	0	0	0	0	-m	0	0	0	0	0	0	0	0	0	0	1	0	0	0
	0	0 0	0	0 0	0	0	0	0	m	m	-m	-m	ı -m	0	0	0	0	0	-1	-1	-1	1	1	1
	0	0 0	0	0 0	0	0	0	0	0	-m	m	-m	-2(m-1	l) 0	0	0	0	0	0	0	1	-1	1	2
	\int_{0}	0 0	0	0 0	0	0	0	0	0	0	0	0	-m	0	0	0	0	0	0	0	0	0	0	1]

Then

 $N. \equiv^{*}(Q_{2m} \times D_{4}). R = diag\{84m, 44m, -24m, -20m, 26m, 4m, 2, -4m, 8m, -2, 42m, -6, 2m, 1, -1, -11, 12, 20, -20, -12, 6, -13, 11, 1, -1\}$

Example(4.2):

Find the cyclic decomposition to the group($Q_{22}\!\!\times\!\! D_4)$.

	(9	924	4	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0)
		0	48	84 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	-26	40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	-22	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	286	50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	44	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	-44	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	88	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	-2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0 -	462	20	0	0	0	0	0	0	0	0	0	0	0	0	0
$\mathbf{N}.\equiv^*(\mathbf{Q}_{22}\times\mathbf{D}_4).\ \mathbf{R}=$		0	0	0	0	0	C) () ()	() () () -6	60	0) () () () (0 (0) () ()	0	() ()
		0	0	0	0	0	0	0	0	0	0	0	0	22	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	-1	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-11	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12	20	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	20	00	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-20) () 10	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-12	20	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	-1:	11	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	11 0	1	0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		, U 1 0	0	0	0	0	1	-1
		U	U	0	0	0	U	0	U	0	0	U	U	U	0	0	0	0	U	, 0	, 0	0	0	0	0	<u> </u>

 $= diag\{924, 484, -264, -220, 286, 44, 2, -44, 88, -2, 462, -66, 22, 1, -1, -11, 12, 20, -12, 6, -13, 11, 1, -1\}.$

$$\mathbf{K}(\mathbf{Q}_{22} \times \mathbf{D}_4) = \bigoplus_{i=1}^{3} \mathbf{K}(\mathbf{C}_{22}) \bigoplus \mathbf{K}(\mathbf{C}_2^4) \bigoplus_{i=1}^{3} \mathbf{C}_4 \bigoplus_{i=1}^{3} \mathbf{C}_2 \bigoplus \mathbf{C}_3.$$

References:

- [1] C.Curits and I.Reiner ," Methods of Representation Theory with Application to Finite Groups and Order ", John wily& sons, New York, 1981.
- [2] C.W. Curits & I. Renier " Representation Theory of Finite Groups and Associative Algebra " ,AMS Chelsea publishing ,1962 , printed by the AMS ,2006 .
- [3] D. Serra " Matrices : Theory and Applications " Gradute Text in Mathematics 216, Springer – Verlag New York, Inc, 2002.
- [4] H.H. Abass," On The Factor Group of Class Functions Over The Group of Generalized Characters of D_n ", M.Sc thesis, Technology
- University,1994. [5] J. J. Rotman, " Introduction to The Theory of Groups ",prentice Hall ; 2nd printing 2003.
- [6] J. P. Serre, "Linear Representation of Finite Groups ", Translated from French by Leonard L. Scott, Gradute Texts in Mathematics 42, Springer-Verlag New York INC, 1977.
- [7] J. R. Nima " The Cyclic Decomposition of The Factor Group $\frac{1}{P}$ (Q) becomposition of The Factor Group

 $cf(Q_{2m},Z)/R$ (Q_{2m}) when n is an odd number", M.Sc.Thesis, University of Kufa, 2009.

- [8] K.Sekigvchi, "Extensions and The Irreducibilities of The Induced Charcters of Cyclic p- Group ",Hiroshima math Journal, p 165-178,2002.
- [9] M.S. Kirdar, "The Factor Group of The Z-Valued Class Function Modulo The Group of The Generalized Characters", Ph.D. thesis, University of Birmingham, 1982.
- [10] M. S. Mahdi, "The Cyclic Decomposition of The Factor Group $cf(D_{nh},Z)/\overline{R}$ (D_{nh}) when n is an odd number", M.Sc. Thesis,

University of Kufa, 2008.

[11] N. R. Mahamood " The Cyclic Decomposition of the Factor Group

 $cf(Q_{2m},Z)/R$ (Q_{2m})", M.Sc. thesis, University of Technology, 1995.