The Cyclic Decomposition of The Factor Group $\operatorname{cf}\left(\mathbf{Q}_{2 \mathrm{~m}} \times \mathbf{D}_{4}, \mathbf{Z}\right) / \overline{\mathbf{R}}\left(\mathbf{Q}_{2 \mathrm{~m}} \times \mathbf{D}_{4}\right)$ When m is an odd Number

Naba Hasoon Jabir
Department of Mathematics
University of Kufa,Faculty of Education for Girls
Iraq
Email:nabaah.al-saedi@uokufa.edu.iq

Abstract

The purpose of this paper is to find The Cyclic Decomposition of The Factor Group $\operatorname{cf}\left(\mathrm{Q}_{2 \mathrm{~m}} \times \mathrm{D}_{4}, \mathrm{Z}\right) / \overline{\mathrm{R}}\left(\mathrm{Q}_{2 \mathrm{~m}} \times \mathrm{D}_{4}\right)$ when m is a prime number, where $\mathrm{Q}_{2 \mathrm{~m}}$ is denoted to Quaternion group of order 4 n , such that for each positive integer n, there are two generators x and y for $Q_{2 m}$ satisfies $Q_{2 m}=\left\{x^{h} y^{k}, 0 \leq h \leq 2 m-\right.$ $1, \mathrm{k}=0,1\}$ which has the following properties $\left\{\mathrm{X}^{2 \mathrm{~m}}=\mathrm{y}^{4}=\mathrm{I}, \mathrm{yx}^{m} \mathrm{y}^{-1}=\mathrm{x}^{-\mathrm{m}}\right\}$ and D_{4} is the Dihedral group of order 8 is generate by a rotation r of order 4 and reflection s of order 2 then 8 elements of D_{4} can be written as: $\left\{I^{*}, r, r^{2}\right.$, $\left.\mathrm{r}^{3}, \mathrm{~s}, \mathrm{sr}, \mathrm{sr}^{2}, \mathrm{sr}^{3}\right\}$.

Keywords: Cyclic Decomposition ,Factor Group, $\mathrm{Q}_{2 \mathrm{~m}}, \mathrm{D}_{4}$, odd number.

1.Introduction :

Let F be a field .The general linear group GL ($n, \mathrm{~F}$) is a multiplicative group of all non-singular $n \times n$ matrices over F [2].

Let F be a field .A matrix representation of G is homomorphism $\mathrm{T}: \mathrm{Gr} \rightarrow \mathrm{GL}(n, \mathrm{~F}), \mathrm{n}$ is called the degree of representation $\mathrm{T} . \mathrm{T}$ is called a unit representation(principal) if $\mathrm{T}(\mathrm{g})=1$ for all $\mathrm{g} \in \mathrm{Gr}[2]$.

Let T be a matrix representation of Gr over the field F . The character χ of a matrix representation T is the mapping $\chi: \mathrm{Gr} \rightarrow \mathrm{F}$ defined by $\chi(\mathrm{g})=\operatorname{tr}(\mathrm{T}(\mathrm{g}))$ for all $\mathrm{g} \in \mathrm{Gr}$. The degree of T is called the degree of χ.Recall that the trace of an $n \times n$ matrix A is the sum of main diagonal elements : $\quad \operatorname{tr}(\mathrm{A})=\sum_{i=1}^{n} a_{i i}[1]$.

Two elements of Gr are said to be Γ - conjugate if the cyclic subgroups they generate are conjugate in G ; this defines an equivalence relation on Gr . These classes are called Γ - classes[4].

In this work we find The Cyclic Decomposition of The Factor Group $\operatorname{cf}\left(\mathrm{Q}_{2 \mathrm{~m}} \times \mathrm{D}_{4}, \mathrm{Z}\right) / \overline{\mathrm{R}}\left(\mathrm{Q}_{2 \mathrm{~m}} \times \mathrm{D}_{4}\right)$ When m is a prime Number .
2. The Group $\overline{\mathbf{R}}(\mathbf{G r})$:

Definition (2.1):[9]
A class function f on the group Gr with values in C is called a complex - valued class function on $\mathbf{G r}$, the set of all complex - valued class functions will be denoted by $\mathrm{cf}(\mathrm{G}, \mathrm{C})$.

Definition (2.2):[6]
The group generated by all generalized characters on C is called the group of the generalized characters of \mathbf{G} and it is denoted by $\mathrm{R}(\mathrm{Gr})$.

Definition (2.3):[10]
The intersection of $\mathrm{cf}(\mathrm{Gr}, \mathrm{Z})$ with $\mathrm{R}(\mathrm{G})$ forms an abelian group which is called the group of Z -valued generalized characters of G, denoted by $\bar{R}(G)$ and the $c f(G, Z) / \bar{R}(G r)$ is a finite abelian factor group denoted by K(Gr).
Definition (2.4):[5]
Let K a subfield of a field F . The Galios group of F over K , denoted by $\operatorname{Gal}(\mathrm{F} / \mathrm{K})$, is the set of all those automorphisms of F that fix K . If $\mathrm{f}(\mathrm{x}) \in \mathrm{K}[\mathrm{x}]$, and if $\mathrm{F}=\mathrm{K}\left(\mathrm{Z}_{1}, \mathrm{Z}_{2}, \ldots, \mathrm{Z}_{\mathrm{n}}\right)$ is a splitting field, then the Galois group of $f(x)$ over K is defined to be $\operatorname{Gal}(F / K)$.

3. The Rational Valued Characters Table:

Definition (3.1):[8]
A rational valued character θ of Gr is a character whose values are in Z , which is $\theta(\mathrm{g}) \in \mathrm{Z}$, for all $\mathrm{g} \in \mathrm{Gr}$.
Proposition (3.2):[9]
The rational valued characters $\theta_{i}=\sum_{\sigma \in \operatorname{Gal}}\left(Q\left(\chi_{i}\right) / Q\right) \quad \sigma\left(\chi_{i}\right)$ form basis for $\overline{\mathrm{R}}(\mathrm{Gr})$, where χi are the irreducible characters of G and their numbers are equal to the number of all distinct Γ - classes of Gr . Proposition (3.3):[6]

The number of all rational valued characters of a finite group Gr is equal to the number of all distinct Γ -
classes on Gr .
Definition (3.4):[9]
The information about rational valued characters of a finite group Gr is displayed in a table called the rational valued characters table of Gr.

We denote it by \equiv * (Gr) which is 1×1 matrix whose columns are Γ-classes and rows are the values of all rational valued characters of G , where 1 is the number of Γ-classes.

Lemma (3.5):[8]
Let A, L and W be matrices with entries in the principal ideal domain R . Let L and W are invertible matrices, then :
$D_{k}\left(L_{\text {A W }}\right)=D_{k}(A)$.
Theorem (3.6):[3]
Let $\mathrm{M} \in \mathrm{M}_{n \times m}$ (A) be a matrix with entries in a principle ideal domain. Then there exist two invertible matrices
$\mathrm{L} \in \mathrm{GL}_{n}(\mathrm{~A}), \mathrm{W} \in \mathrm{GL}_{m}(\mathrm{~A})$ and a quasi-diagonal matrix $\mathrm{D} \in \mathrm{M}_{n \times m}(\mathrm{~A})$ (that is, $\mathrm{d}_{i j}=0$ for $i \neq j$) such that
1- $\quad \mathrm{M}=\mathrm{LDW}$.
2- $d_{1}\left|d_{2}, \ldots, d_{i}\right| d_{i+1}, \ldots$, where the d_{j} are the diagonal entries of D.
And then, $D_{k}(L D W)=D_{k}(M)$ modulo the group of unites of A.
Theorem (3.7):[9]
$\mathrm{K}(\mathrm{G})=\oplus \sum C_{d_{i}}$
Such that $\mathrm{d}_{\mathrm{i}}= \pm D_{i}\left(\equiv^{*}(\mathrm{Gr})\right) / \pm D_{i-1}\left(\equiv^{*}(\mathrm{Gr})\right)$.

$$
|\mathrm{K}(\mathrm{G})|=\operatorname{det}\left(\equiv^{*}(\mathrm{Gr})\right) .
$$

Proposition(3.9):[9]
If A and B two matrices of the degree n and m respectively, then
$\operatorname{det}(\mathrm{A} \otimes \mathrm{B})=(\operatorname{det}(\mathrm{A}))^{m} \cdot(\operatorname{det}(\mathrm{~B}))^{n}$
Proposition(3.10):[7]
Let A and B be two non-singular matrices of the rank n and m respectively ,over a principal domain R.
And let

$$
\begin{aligned}
& \mathrm{L}_{1} \mathrm{AW}_{1}=\mathrm{D}(\mathrm{~A})=\operatorname{diag}\left\{\mathrm{d}_{1}(\mathrm{~A}), \mathrm{d}_{2}(\mathrm{~A}), \ldots \ldots, \mathrm{d}_{\mathrm{n}}(\mathrm{~A})\right\} \\
& \mathrm{L}_{2} \mathrm{BW}_{2}=\mathrm{D}(\mathrm{~B})=\operatorname{diag}\left\{\mathrm{d}_{1}(\mathrm{~B}), \mathrm{d}_{2}(\mathrm{~B}), \ldots \ldots, \mathrm{d}_{\mathrm{m}}(\mathrm{~B})\right\}
\end{aligned}
$$

be the invariant factor matrices of A and B , then

$$
\left(\mathrm{L}_{1} \otimes \mathrm{~L}_{2}\right) \cdot(\mathrm{A} \otimes \mathrm{~B}) \cdot\left(\mathrm{W}_{1} \otimes \mathrm{~W}_{2}\right)=\mathrm{D}(\mathrm{~A}) \otimes \mathrm{D}(\mathrm{~B})
$$

and from this we can write down the invariant factor matrix of $\mathrm{A} \otimes \mathrm{B}$.
Let H_{1} and H_{2} be P_{1}-group and P_{2}-group respectively, where P_{1} and P_{2} are distinct primes. We know that
$\equiv\left(\mathrm{H}_{1} \times \mathrm{H}_{2}\right)=\equiv\left(\mathrm{H}_{1}\right) \otimes \equiv\left(\mathrm{H}_{2}\right)$
$\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right)=1$,so we have
$\equiv^{*}\left(\mathrm{H}_{1} \times \mathrm{H}_{2}\right)=\equiv^{*}\left(\mathrm{H}_{1}\right) \otimes \equiv^{*}\left(\mathrm{H}_{2}\right)$.
Theorem(3.11):[6]
Let H_{1} and H_{2} be p_{1}-group and p_{2}-group respectively, where
$\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right)=1$, let $\equiv^{*}\left(\mathrm{H}_{1}\right)$ and $\equiv^{*}\left(\mathrm{H}_{2}\right)$ be of the ranks n , m respectively.
$\mathrm{K}\left(\mathrm{H}_{1} \times \mathrm{H}_{2}\right)=\underbrace{\begin{array}{llll}K\left(\mathrm{H}_{1}\right) \oplus & \cdots & \cdots & \oplus K\left(\mathrm{H}_{1}\right)\end{array}} \underbrace{K\left(\mathrm{H}_{2}\right) \oplus} \quad \cdots \quad \cdots \quad \oplus K\left(\mathrm{H}_{2}\right))$
n-times
Proposition(3.11):[9]
Let $\mathrm{n}=\prod_{i=1}^{k} P_{i}^{a_{i}}$, where P_{i} are distinct primes ,then :
$\mathrm{K}\left(\mathrm{C}_{\mathrm{n}}\right)=\oplus \sum_{i=1}^{k}\left(\oplus \sum K\left(C_{P_{i} \alpha_{i}}\right)\right)\left[\prod_{\substack{j \neq i \\ j=1}}^{k}\left(\alpha_{j}+1\right)\right]$ time.
Example(3.12) :
$\mathrm{K}\left(\mathrm{C}_{165}\right)=\mathrm{K}\left(\mathrm{C}_{5.3 .11}\right)=\bigoplus_{i=1}^{2} \mathrm{C}_{5} \bigoplus_{i=1}^{2} \mathrm{C}_{3} \bigoplus_{i=1}^{2} \mathrm{C}_{11}$
Theorem(3.13) : [11]
If m is an odd number, then

$$
K\left(\mathrm{Q}_{2 \mathrm{~m}}\right)=\mathrm{K}\left(\mathrm{C}_{2 \mathrm{~m}}\right) \oplus \mathrm{C}_{4} .
$$

To calculate two matrices N and R .
First we will define two matrices n_{1} and r_{1} are the same degree of $\equiv^{*}\left(\mathrm{Q}_{2 \mathrm{~m}}\right)$.

$$
n_{1}=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right] \quad \mathrm{r}_{1}=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
-1 & 0 & 1 & 0 & 0 \\
0 & -1 & 0 & 1 & 0 \\
0 & 0-1 & -1 & 1
\end{array}\right]
$$

Second we will define two matrices n_{2} and r_{2} such that

$$
n_{2}=\left[\begin{array}{lllll}
1 & 2 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 2 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \quad \mathrm{r}_{2}=\left[\begin{array}{ccccc}
(p-1) & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & (p-1) & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Third we will define two matrices D_{1} and D_{2} where

$$
\mathrm{D}_{1}=\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & - \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & -1 & 1 & 0 \\
1 & -1 & -1 & 1 & 0
\end{array}\right] \quad \mathrm{D}_{2}=\left[\begin{array}{ccccc}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
-1 & - & 1 & 1 & 1
\end{array}\right]
$$

From first,second and third we have
$\mathrm{N}=\left(\mathrm{n}_{2}, \mathrm{n}_{1}\right) \mathrm{D}_{1}$
$\mathrm{R}=\left(\mathrm{r}_{1}, \mathrm{r}_{2}\right) \mathrm{D}_{2}$.

Theorem(4.1):

If $\mathrm{m}=p_{1} \cdot p_{2} \ldots p_{n}$, such that p_{i} 's are distints primes, all $\mathrm{i}=1,2, \ldots, \mathrm{n}$ then the cyclic decomposition of $\mathrm{k}\left(\mathrm{Q}_{2 \mathrm{~m}} \times \mathrm{D}_{4}\right)$ is :

$$
\mathrm{K}\left(\mathrm{Q}_{2 \mathrm{~m}} \times \mathrm{D}_{4}\right)=\oplus_{i=1}^{3} \mathrm{~K}\left(\mathrm{C}_{2 \mathrm{~m}}\right) \oplus \mathrm{K}\left(\mathrm{C}_{2}^{4}\right) \oplus_{i=1}^{3} \mathrm{C}_{4} \oplus_{i=1}^{3} \mathrm{C}_{2} \oplus \mathrm{C}_{3}
$$

Proof :

We use theorem(3.6) and theorem(3.7) to prove theorem .
If m is a prime number, we will define two matrices N and R such that
$\mathrm{N}\left(\mathrm{Q}_{2 \mathrm{~m}} \times \mathrm{D}_{4}\right)=$

 $\begin{array}{llllllllllllllllllllllllll}\mathrm{m}-1 & \mathrm{~m}-1 & \mathrm{~m}-1 & \mathrm{~m}-1 & \mathrm{~m}-1 & -1 & -1 & -1 & -1 & -1 & \mathrm{~m}-1 & \mathrm{~m}-1 & \mathrm{~m}-1 & \mathrm{~m}-1 & \mathrm{~m}-1 & -1 & -1 & -1 & -1 & -1 & 0 & 0 & 0 & 0 & 0\end{array}$

 $2(\mathrm{~m}-1)-2(\mathrm{~m}-1) \quad 0 \quad 0 \quad 0 \quad-2 \quad 2 \quad 0 \quad 0 \quad 0 \quad 2(\mathrm{~m}-1)-2(\mathrm{~m}-1) \quad 0 \quad 0 \quad 0 \quad 2(\mathrm{~m}-1)-2(\mathrm{~m}-1)$
 $\begin{array}{lllllllllllllllllllllllllll}1 & 1 & -1 & 1 & -1 & 1 & 1 & -1 & 1 & -1 & 1 & 1 & -1 & 1 & -1 & 1 & 1 & -1 & 1 & -1 & -1 & -1 & 1 & -1 & 1\end{array}$ $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrr}1 & 1 & 1 & -1 & -1 & 1 & 1 & 1 & -1 & -1 & 1 & 1 & 1 & -1 & -1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & 1 & 1 \\ 1 & 1 & -1 & -1 & 1 & 1 & 1 & -1 & -1 & 1 & 1 & 1 & -1 & -1 & 1 & 1 & 1 & -1 & -1 & 1 & -1 & -1 & 1 & 1 & -1\end{array}$ $\begin{array}{llllllllllllllllllllllllll}1 & 1 & -1 & -1 & 1 & 1 & 1 & -1 & -1 & 1 & 1 & 1 & -1 & -1 & 1 & 1 & 1-1 & -1 & 1 & -2 & 2 & 0 & 0 & 0\end{array}$
 $\mathrm{m}-1 \mathrm{~m}-1-(\mathrm{m}-1) \mathrm{m}-1-(\mathrm{m}-1) \quad-1 \quad-1 \quad 1 \quad-1 \quad 1-(\mathrm{m}-1)-(\mathrm{m}-1) \mathrm{m}-1 \quad-(\mathrm{m}-1)$

 $2(\mathrm{~m}-1)-2(\mathrm{~m}-1) \quad 0 \quad 0 \quad 0 \quad-2 \quad 2 \quad 0 \quad 0 \quad 0 \quad-2(\mathrm{~m}-1) 2(\mathrm{~m}-1) \quad 0 \quad 0 \quad 0 \quad 10$ $\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrr}2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & -2 & -2 & -2 & -2 & -2 & -2 & -2 & -2 & -2 & -2 & 0 & 0 & 0 & 0 & 0 \\ 2 & 2 & -2 & 2 & -2 & 2 & 2 & -2 & 2 & -2 & -2 & -2 & 2 & -2 & 2 & -2 & -2 & 2 & -2 & 2 & 0 & 0 & 0 & 0 & 0 \\ 2 & 2 & 2 & -2 & -2 & 2 & 2 & 2 & -2 & -2 & -2 & -2 & -2 & 2 & 2 & -2 & -2 & -2 & 2 & 2 & 0 & 0 & 0 & 0 & 0 \\ 2 & 2 & -2 & -2 & 2 & 2 & 2 & -2 & -2 & 2 & -2 & -2 & 2 & 2 & -2 & -2 & -2 & 2 & 2 & -2 & 0 & 0 & 0 & 0 & 0 \\ 4 & -4 & 0 & 0 & 0 & 4 & -4 & 0 & 0 & 0 & -4 & 4 & 0 & 0 & 0 & -4 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
\left.\mathbf{R}\left(\mathrm{Q}_{2} \mathrm{~m} \times \mathrm{D}_{4}\right)=\begin{array}{cccccccccccccccccccccccccc}
(\mathrm{m}-1) & (\mathrm{m}-1) & 0 \\
0 & (\mathrm{~m}-1) & 0 \\
-(\mathrm{m}-1) & -(\mathrm{m}-1) & (\mathrm{m}-1) & (\mathrm{m}-1) & (\mathrm{m}-1) & 0 \\
0 & (\mathrm{~m}-1) & -(\mathrm{m}-1) & (\mathrm{m}-1) & 2(\mathrm{~m}-1) & 0 \\
0 & 0 & 0 & 0 & (\mathrm{~m}-1) & 0 \\
1 & 1 & 0 \\
0 & 1 & 0 \\
-1 & -1 & 1 & 1 & 1 & 0 \\
0 & 1 & -1 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
-(\mathrm{m}-1) & -(\mathrm{m}-1) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & (\mathrm{~m}-1) & (\mathrm{m}-1) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -(\mathrm{m}-1) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & (\mathrm{~m}-1) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
(\mathrm{~m}-1) & (\mathrm{m}-1) & -(\mathrm{m}-1) & -(\mathrm{m}-1) & -(\mathrm{m}-1) & 0 & 0 & 0 & 0 & 0 & -(\mathrm{m}-1) & -(\mathrm{m}-1) & (\mathrm{m}-1) & (\mathrm{m}-1) & (\mathrm{m}-1) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & -(\mathrm{m}-1) & (\mathrm{m}-1) & -(\mathrm{m}-1) & -2(\mathrm{~m}-1) & 0 & 0 & 0 & 0 & 0 & 0 & (\mathrm{~m}-1) & -(\mathrm{m}-1) & (\mathrm{m}-1) & 2(\mathrm{~m}-1) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -(\mathrm{m}-1) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & (\mathrm{~m}-1) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & -1 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 1 & -1 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 1 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\mathrm{m} & -\mathrm{m} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\mathrm{m} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \mathrm{~m} & \mathrm{~m} & -\mathrm{m} & -\mathrm{m} & -\mathrm{m} & 0 & 0 & 0 & 0 & 0 & -1 & -1 & -1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\mathrm{m} & \mathrm{~m} & -\mathrm{m} & -2(\mathrm{~m}-1) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 1 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -m & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Then

$N . \equiv{ }^{*}\left(Q_{2 m} \times D_{4}\right) . R=\operatorname{diag}\{84 m, 44 m,-24 m,-20 m, 26 m, 4 m, 2,-4 m, 8 m,-2,42 m,-6,2 m, 1,-1,-11,12,20,-20,-12,6,-$ 13,11,1,-1\}

Find the cyclic decomposition to the $\operatorname{group}\left(\mathrm{Q}_{22} \times \mathrm{D}_{4}\right)$.
$N . \quad{ }^{*}\left(\mathrm{Q}_{22} \times \mathrm{D}_{4}\right) . \mathrm{R}=\left(\begin{array}{ccccccccccccccccccccccccc}924 & 0 \\ 0 & 48 & 0 \\ 0 & 0 & -264 & 0 \\ 0 & 0 & 0 & -220 & 0 \\ 0 & 0 & 0 & 0 & 286 & 0 \\ 0 & 0 & 0 & 0 & 0 & 44 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -44 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 88 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 462 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -66 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 22 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -11 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 12 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 20 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -20 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -12 & 0 & 0 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 & 0 & 0 \\ 0 & -13 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1\end{array}\right)$
$=\operatorname{diag}\{924,484,-264,-220,286,44,2,-44,88,-2,462,-66,22,1,-1,-11,12,20,-12,6,-13,11,1,-1\}$.
$\mathrm{K}\left(\mathrm{Q}_{22} \times \mathrm{D}_{4}\right)=\stackrel{3}{\oplus} \underset{i=1}{ } \mathrm{~K}\left(\mathrm{C}_{22}\right) \oplus \mathrm{K}\left(\mathrm{C}_{2}{ }^{4}\right) \underset{i=1}{3} \mathrm{C}_{4} \underset{i=1}{3} \mathrm{C}_{2} \oplus \mathrm{C}_{3}$.

References:

[1] C.Curits and I.Reiner ," Methods of Representation Theory with Application to Finite Groups and Order " , John wily\& sons, New York, 1981.
[2] C.W. Curits \& I. Renier " Representation Theory of Finite Groups and Associative Algebra " ,AMS Chelsea publishing ,1962, printed by the AMS ,2006 .
[3] D. Serra " Matrices : Theory and Applications " Gradute Text in Mathematics 216 , Springer - Verlag New York ,Inc, 2002 .
[4] H.H. Abass," On The Factor Group of Class Functions Over The Group of Generalized Characters of $\mathrm{D}_{n} "$, M.Sc thesis, Technology University,1994.
[5] J. J. Rotman, " Introduction to The Theory of Groups ",prentice Hall ; $2^{\text {nd }}$ printing 2003.
[6] J. P. Serre, " Linear Representation of Finite Groups " ,Translated from French by Leonard L. Scott, Gradute Texts in Mathematics 42 , Springer-Verlag New York INC, 1977 .
[7] J. R. Nima " The Cyclic Decomposition of The Factor Group $\operatorname{cf}\left(\mathrm{Q}_{2 \mathrm{~m}}, \mathrm{Z}\right) / \bar{R}\left(\mathrm{Q}_{2 \mathrm{~m}}\right)$ when n is an odd number", M.Sc.Thesis, University of Kufa, 2009.
[8] K.Sekigvchi, " Extensions and The Irreducibilities of The Induced Charcters of Cyclic p- Group " ,Hiroshima math Journal , p 165178,2002.
[9] M.S. Kirdar , " The Factor Group of The Z-Valued Class Function Modulo The Group of The Generalized Characters ", Ph.D . thesis , University of Birmingham, 1982.
[10] M. S. Mahdi , " The Cyclic Decomposition of The Factor Group $\operatorname{cf}\left(\mathrm{D}_{\mathrm{nh}}, \mathrm{Z}\right) / \bar{R}\left(\mathrm{D}_{\mathrm{nh}}\right)$ when n is an odd number", M.Sc. Thesis, University of Kufa, 2008.
[11] N. R. Mahamood " The Cyclic Decomposition of the Factor Group $\operatorname{cf}\left(\mathrm{Q}_{2 \mathrm{~m}}, \mathrm{Z}\right) / \bar{R}\left(\mathrm{Q}_{2 \mathrm{~m}}\right)$ ", M.Sc. thesis, University of Technology, 1995.

