# Artin's cokernel of the group $(Q_{2m\times}C_4)$ When $m=2^h \cdot p_1^{r_1} \cdot p_2^{r_2} \cdot \dots \cdot p_n^{r_n}$ , ,h,r $\in Z^+$ and p is prime Number

## Rajaa Hasan Abbas

Department of Mathematics, Faculty of Education for Girls, University of Kufa, Iraq. Email :rajaah.alabidy@uokufa.edu.iq

Abstract— The main purpose of this paper is to find The Cyclic decomposition of the group  $(Q_{2m} \times C_4)$  when  $m = 2^h \cdot p_1^{r_1} \cdot p_2^{r_2} \dots p_n^{r_n}$ ,  $h, r \in Z^+$  and p is prime number, which is denoted by AC  $(Q_{2m} \times C_4)$  where  $Q_{2m}$  is the Quaternion group and  $C_4$  is the cyclic group of order 4.

Keywords— Quaternion group; the cyclic group; Artin's characters table ;the cyclic decomposition.

## **1. INTRODUCTION**

This matrix is very important to find the cyclic decomposition of the factor group AC(G) and Artin's exponent A(G). In 1981 C.Curits and I. Reiner[3] studied Methods of Representation Theory with Application to Finite Groups. In 2009 S.J. Mahmood [6] studied the general from of Artin's characters table Ar( $Q_{2m}$ ) when m is an even number. The aim of this paper is to find the general from of The Cyclic decomposition and the Artin's characters table of the group ( $Q_{2m} \times C_4$ ) when m=  $2^h \cdot p_1^{r_1} \cdot p_2^{r_2} \dots p_n^{r_n}$ 

,h,r ∈  $Z^+$  and p is prime number.

## 2. PRELIMINARIES

This section introduce some important definitions and basic concepts the factor group AC(G) of a group G and the matrix M(G),  $M(Q_{2m})$ ,  $P(Q_{2m})$  and  $W(Q_{2m})$ .

**2.1 Proposition :[5]** The rational valued characters table of the group  $(Q_{2m} \times C_4)$  when m is an even number is equal to the tensor product of the rational valued characters table of  $Q_{2m}$  when m is an even number and the rational valued characters table of  $C_4$  that

is: 
$$\equiv (Q_{2m} \times C_4) = \equiv (Q_{2m}) \otimes \equiv (C_4)$$
.

**2.2 Definition :**[4] Let T(G) be the subgroup of  $\overline{R}$  (G) generated by Artin's characters .T (G) is normal subgroup of  $\overline{R}$  (G) and denotes the factor abelian group  $\overline{R}$  (G)/T(G) by AC(G) which is called **Artin cokernel of** G.

**2.3 Definition :**[3] Let M be a matrix with entries in a principal domain R. A k-minor of M is the determinant of  $k \times k$  sub matrix preserving row and column order.

**2.4 Definition :[3]** A k-th determinant divisor of M is the greatest common divisor (g.c.d) of all the k-minors of M. This is denoted by D  $_{k}$  (M)

2.5 Lemma :[3] Let M, P and W be matrices with entries in a principal ideal domain R, let P and W be invertible matrices

,Then D<sub>k</sub> (P M W)= D<sub>k</sub> (M) module the group of unites of R.

**2.6 Theorem :**[3] Let M be an  $n \times n$  matrix with entries in principal ideal domain R, then there exist two matrices P and W such that:

1. P and W are invertible.

2. P M W = D.

3. D is diagonal matrix.

4. if we denote D<sub>*ii*</sub> by d<sub>*i*</sub> then there exists a natural number m ;  $0 \le m \le n$  such that j > m

implies d<sup>j</sup> = 0 and j ≤ m implies d<sup>j</sup> ≠ 0 and 1 ≤ j ≤ m implies d<sup>j</sup> |d<sup>j+1</sup>.

**2.7 Definition :**[3] Let M be matrix with entries in a principal domain R, be equivalent to a matrix D = diag {d<sub>1</sub>, d<sub>2</sub>, ..., d<sub>m</sub>, 0, 0,

..., 0} such that d<sub>j</sub> |d<sub>j+1</sub> for  $1 \le j < m$ . We call D **the invariant factor matrix of** M and d<sub>1</sub>, d<sub>2</sub>, ..., d<sub>m</sub> the invariant factors of M.

2.8 Theorem :[3] Let K be a finitely generated module over a principal domain R, then K is the direct sum of cyclic sub module

with an annihilating ideal  $\langle d_1 \rangle$ ,  $\langle d_2 \rangle$ , ...,  $\langle d_m \rangle$ ,  $d_j \mid d_{j+1}$  for j = 1, 2, ..., K-1.

**2.9 Proposition:**[4] AC(G) is a finitely generated Z- module .Let m be the number of all distinct  $\Gamma$ -classes then Ar(G) and  $\equiv *(G)$  are of the rank l. There exists an invertible matrix M(G) with entries in rational number such That:  $\equiv *(G)=M^{-1}(G)$ .Ar(G) and this implies M(G)=Ar(G).( $\equiv *(G)$ )<sup>-1</sup>

**2.10 Theorem:**[2] AC(G) =  $\bigoplus_{i=1}^{l} C_{d_i}$  where  $d_i = \pm D_i(G) / D_{i-1}(G)$  where l is the number of all distinct  $\Gamma$ -classes.

**2.11 Corollary :**[4]  $|AC(G)| = |\det(M(G))|$ 

**2.12 Lemma :[4]** If A and B are two matrices of degree m and t respectively, then:

det  $(A \otimes B) = (det (A))^{t} \cdot (det (B))^{m}$ .

2.13 Lemma:[4] Let A and B be two non-singular matrices of rank l and m respectively, over a principal domain R and let:

 $P_1AW_1 = D(A) = diag\{d_1(A), d_2(A), ..., d_l(A)\}$  and  $P_2AW_2 = D(B) = diag\{d_1(B), d_2(B), ..., d_m(B)\}$ 

The invariant factor matrices of A and B then:

 $(\mathsf{P}_1 \otimes \mathsf{P}_2)(\mathsf{A} \otimes \mathsf{B})(\mathsf{W}_1 \otimes \mathsf{W}_2) = \mathsf{D}(\mathsf{A}) \otimes \mathsf{D}(\mathsf{B})$ 

and from this the invariant factor matrices of  $A\otimes B$  can be obtained.

**2.14 Proposition :[2]** Let H<sub>1</sub> and H<sub>2</sub> be p<sub>1</sub>and p<sub>2</sub> - groups respectively where p<sub>1</sub> and p<sub>2</sub> are distinct primes and if M<sub>1</sub> is the matrix from all cyclic subgroups of  $\overline{R}$  (H<sub>1</sub>) basis and M<sub>2</sub> is the matrix which expresses the T(H<sub>2</sub>) basis terms of  $\overline{R}$  (H<sub>2</sub>) basis then the matrix which expresses the T (H<sub>1</sub> × H<sub>2</sub>) basis of  $\overline{R}$  (H<sub>1</sub> × H<sub>2</sub>) basis is M<sub>1</sub> $\otimes$ M<sub>2</sub>.

**2.15 Remarks:** [1] In general if  $m = 2^h \cdot p_1^{r_1} \cdot p_2^{r_2} \cdot \dots \cdot p_n^{r_n}$  such that  $p_i$  are prime numbers  $p_i \neq 2$  and g.c.d ( $p_i, p_j$ )=1, h and  $r_i$  are any positive integer numbers for all i=1,2,...,n then we can write  $C_m$  as the from :

 $C_m = C_{2^h} \times C_{p_1^{r_1}} \times C_{p_2^{r_2}} \times \cdots \times C_{p_n^{r_n}}$ 

(i) By the proposition 5 we get

 $M(C_m) = M(C_{2^h}) \otimes M(C_{p_1^{r_1}}) \otimes M(C_{p_2^{r_2}}) \otimes \cdots \otimes M(C_{p_n^{r_n}})$ 

We can write  $M(C_m)$  in the form:

$$\mathbf{M}(\mathbf{C}_{\mathbf{m}}) = \begin{bmatrix} & h.times & \begin{cases} \mathbf{1} & \mathbf{1} \\ \vdots & \mathbf{1} \\ \mathbf{1} & \\ \mathbf{0} & \\ \mathbf{R}_{2}(\mathbf{C}_{m}) & h.times & \begin{cases} \mathbf{1} & \mathbf{1} \\ \vdots & \mathbf{1} \\ \mathbf{1} & \\ \vdots \\ \mathbf{1} & \\ \mathbf{0} & \\ \vdots \\ \\ \mathbf{h.times} & \begin{cases} \mathbf{1} & \\ \vdots \\ \mathbf{1} & \\$$

which is  $(r_1+1) \dots (r_n+1)(h+1) \times (r_1+1) \dots (r_n+1)(h+1)$  square matrix,  $R_2(C_m)$  is the matrix obtained by omitting the last two rows  $\{0,0,\dots,1,1\}$  and  $\{0,0,\dots,0,1\}$  and the last two columns  $\{1,\dots,1,0,1,\dots,1,0\}$  and  $\{1,1,\dots,1\}$  from the tensor product.

$$M(C_{2^{h}})\otimes M(C_{p_{1}^{r_{1}}})\otimes M(C_{p_{2}^{r_{2}}})\otimes \cdots \otimes M(C_{p_{n}^{r_{n}}})$$

(ii) By lemma 3 we have :

1- 
$$P(C_m) = P(C_{2^h}) \otimes P(C_{p_1^{n}}) P \otimes (C_{p_2^{n}}) \otimes \cdots \otimes P(C_{p_n^{n}})$$

2- W(C<sub>m</sub>)= W(C<sub>2<sup>h</sup></sub>) 
$$\otimes$$
 W(C<sub>p1</sub><sup>n</sup>)  $\otimes$  W(C<sub>p2</sub><sup>2</sup>)  $\otimes$  ···  $\otimes$  W(C<sub>pn</sub><sup>n</sup>)

**2.16 Proposition:**[6] If  $m = 2^h \cdot p_1^{r_1} \cdot p_2^{r_2} \cdot \cdots \cdot p_n^{r_n}$ , such that  $p_i$ 's are all distinct primes,  $p_i \neq 2$  and g.c.d  $(p_i, p_j) = 1$  for all

 $i=1,2,\cdots,n$ , *h* and  $r_i$  any positive integers then

 $\vdots \vdots \vdots h+1.times$  $\left\{\begin{array}{cccc} \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \end{array}\right\}$  $2.R_2(C_{2m})$ ſ1  $1 \ 1 \ 1$ : : h+1.times1 1 1 1  $M(Q_{2m}) =$ . . . h+1.times1 1 1 1 0 0  $0 \ 0 \ 0 \ \cdots \ 0$  $0 \ 0 \ 0 \ \cdots \ 0 \ 0 \ 1 \ 0$ 0 0 ... 0 0 ...  $0 \ 1 \ 1 \ \cdots \ 1 \ 0 \ 0 \ 1$ 1 0 1 1 ... 1 1 0 0 1 0 0 ...

which is  $[(r_1+1)(r_2+1)\cdots(r_n+1)(h+2)+2] \times [(r_1+1)(r_2+1)\cdots(r_n+1)(h+2)+2]$ square matrix .

 $R_2(C_{2m})$  is similar to the matrix in the remark 1

**2.17 Proposition:**[6] If  $m = 2^h \cdot p_1^{r_1} \cdot p_2^{r_2} \cdot \cdots \cdot p_n^{r_n}$ , such that  $p_i$ 's are all distinct primes,  $p_i \neq 2$  and g.c.d  $(p_i, p_j) = 1$  for all  $i = 1, 2, \dots, n$ , h and  $r_i$  any positive integers then the matrices  $P(Q_{2m})$  and  $W(Q_{2m})$  are taking the forms :

 $k = [(r_1 + 1)(r_2 + 1)\cdots(r_n + 1)(h+2)] - 1 \text{ and } l_k \text{ is the identity matrix of the order } k \text{ ,they are } [(r_1 + 1)(r_2 + 1)\cdots(r_n + 1)(h+2) + 2] \times [(r_1 + 1)(r_2 + 1)\cdots(r_n + 1)(h+2) + 2] \text{ square matrix }.$ 

**2.18 Theorem:**[6] If  $m = 2^h \cdot p_1^{r_1} \cdot p_2^{r_2} \cdot \cdots \cdot p_n^{r_n}$ , such that  $p_i$ 's are all distinct primes,  $p_i \neq 2$  and g.c.d  $(p_i, p_j) = 1$  for all  $i=1,2,\dots,n$ , h and  $r_i$  any positive integers then the cyclic decomposition of AC(Q<sub>2m</sub>) is :

$$(r_1+1)(r_2+1)\cdots(r_n+1)(h+2)-1$$

$$AC(Q_{2m}) = \bigoplus_{i=1}^{m} C_2$$

### **3. THE MAIN RESULTS**

In this section we find the general form of The Cyclic decomposition the group  $(Q_{2m} \quad C_4)$  when  $m = 2^h \cdot p_1^{r_1} \cdot p_2^{r_2} \cdot \dots \cdot p_n^{r_n}$ ,  $h, r \in Z^+$  and p is prime number.

**3.1 Proposition:** If  $m = 2^h \cdot p_1^{r_1} \cdot p_2^{r_2} \cdots p_n^{r_n}$ , such that  $p_i$ 's are all distinct primes,  $p_i \neq 2$  and g.c.d  $(p_i, p_j) = 1$  for all  $i=1,2,\dots,n$ , *h* and  $r_i$  any positive integers then:

$$M(Q_{2m} \times C_4) = \begin{bmatrix} \frac{M(Q_{2m}) & M(Q_{2m}) & M(Q_{2m})}{0 & M(Q_{2m}) & M(Q_{2m})} \\ 0 & 0 & M(Q_{2m}) \end{bmatrix}$$

which is  $[3(r_1+1)(r_2+1)\cdots(r_n+1)(h+2)+6]\times[3(r_1+1)(r_2+1)\cdots(r_n+1)(h+2)+6]$  square matrix M (Q<sub>2m</sub>) is similar to the matrix of the proposition 6.

**Proof :** By Proposition 2.18 and the Artin's characters Table Ar( $Q_{2m} \times C_4$ ) of the group ( $Q_{2m} \times C_4$ ) when m=  $2^h \cdot p_1^{r_1} \cdot p_2^{r_2} \dots p_n^{r_n}$ ,  $h, r \in Z^+$  and p is prime number and from the Proposition 2.18 we get the rational valued characters table  $(\stackrel{*}{=} (Q_{2m} \times C_4))$  of the group  $(Q_{2m} \times C_4)$  when m=  $2^h \cdot p_1^{r_1} \cdot p_2^{r_2} \dots p_n^{r_n}$ ,  $h, r \in Z^+$  and p is prime number.

Thus, by definition of M(G) we can find the matrix M( $Q_{2m} \times C_4$ ) when  $2^h \cdot p_1^{r_1} \cdot p_2^{r_2} \cdot \dots \cdot p_n^{r_n}$ ,  $h, r \in \mathbb{Z}^+$  and p is prime number.

$$M(Q_{2m} \times C_4) = Ar(Q_{2m} \times C_4) \cdot \left( \stackrel{*}{\equiv} (Q_{2m} \times C_4) \right)^{-1} = \begin{bmatrix} \frac{M(Q_{2m}) & M(Q_{2m}) & M(Q_{2m})}{0 & M(Q_{2m}) & M(Q_{2m})} \\ \frac{0 & M(Q_{2m}) & M(Q_{2m})}{0 & 0 & M(Q_{2m})} \end{bmatrix} = M(Q_{2m} \times C_4)$$

## 3.2 Example :

Consider the group ( $Q_{48} \times C_4$ ), we can find the matrix M( $Q_{48} \times C_4$ )

by using: 
$$M(Q_{48} \times C_4) = M(Q_{32^4} \times C_4) = Ar(Q_{32^4} \times C_4)^{-1} = \left( \begin{array}{c} (C_{32^4} \times C_4) \\ (C_{3$$

**3.3 Proposition :** If  $m = 2^h \cdot p_1^{r_1} \cdot p_2^{r_2} \cdot \dots \cdot p_n^{r_n}$ , such that  $p_i$ 's are all distinct primes,  $p_i \neq 2$  and g.c.d  $(p_i, p_j) = 1$  for all i=1,2,...,n, *h* and  $r_i$  any positive integers then the matrices P(Q<sub>2m</sub>×C<sub>4</sub>) and W(Q<sub>2m</sub>×C<sub>4</sub>) are taking the forms :

$$P(Q_{2m} \times C_4) = \begin{bmatrix} \frac{P(Q_{2m}) - P(Q_{2m}) & 0}{0 & P(Q_{2m}) & -P(Q_{2m})} \\ 0 & 0 & P(Q_{2m}) \end{bmatrix}$$

Which is  $[3(r_1+1)(r_2+1)\cdots(r_n+1)(h+2)+6] \times [3(r_1+1)(r_2+1)\cdots(r_n+1)(h+2)+6]$  square matrix.

And

$$W(Q_{2m} \times C_4) = \begin{bmatrix} W(Q_{2m}) & 0 & 0 \\ 0 & W(Q_{2m}) & 0 \\ \hline 0 & 0 & W(Q_{2m}) \end{bmatrix}$$

which is  $[3(r_1+1)(r_2+1)\cdots(r_n+1)(h+2)+6] \times [3(r_1+1)(r_2+1)\cdots(r_n+1)(h+2)+6]$  square matrix.

#### **Proof**:

By using the proposition 3.1 taking the matrix  $M(Q_{2m} \times C_4)$  and the above forms  $P(Q_{2m} \times C_4)$  and  $W(Q_{2m} \times C_4)$  then we have :  $P(Q_{2m} \times C_4)$ .  $M(Q_{2m} \times C_4)$ .  $W(Q_{2m} \times C_4) =$ 

 $\{\underbrace{2,2,2,2,\cdots,2}_{[3(r_1+1)(r_2+1)\cdots(r_n+1)(h+2)-3]-time},$ ,1,1,1,1,1,1,1,1,1,1,1 diag {

$$D(Q_{2m} \times C_4)$$

which is  $[3(r_1+1)(r_2+1)\cdots(r_n+1)(h+2)+6] \times [3(r_1+1)(r_2+1)\cdots(r_n+1)(h+2)+6]$  square matrix.

### 3.4 Example :

To find the matrices  $P(Q_{48} \times C_4)$  and  $W(Q_{48} \times C_4)$  by the proposition 2.17 to find  $P(Q_{48})$  and  $W(Q_{48})$ :

|                  | 1 | -1 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|------------------|---|----|----|----|----|----|----|----|----|----|----|----|
| $P(Q_{3,2^4}) =$ | 0 | 1  | -1 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|                  | 0 | 0  | 1  | -1 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|                  | 0 | 0  | 0  | 1  | -1 | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|                  | 0 | 0  | 0  | 0  | 1  | -1 | 0  | 0  | 0  | 0  | 0  | 0  |
|                  | 0 | 0  | 0  | 0  | 0  | 1  | -1 | 0  | 0  | 0  | 0  | 0  |
|                  | 0 | 0  | 0  | 0  | 0  | 0  | 1  | -1 | 0  | 0  | 0  | 0  |
|                  | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 1  | -1 | 0  | 0  | 0  |
|                  | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | -1 | -1 | 1  |
|                  | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | -1 |
|                  | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | -1 |
|                  | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  |

And



And by the proposition 9 then:

International Journal of Academic and Applied Research (IJAAR) ISSN: 2643-9603 Vol. 6 Issue 8, August - 2022, Pages: 195-200

|                          | $P(Q_{48})$ | $-P(Q_{48})$ | 0            |     |                          | $W(Q_{48})$ | 0           | 0           |
|--------------------------|-------------|--------------|--------------|-----|--------------------------|-------------|-------------|-------------|
| $P(Q_{48} \times C_4) =$ | 0           | $P(Q_{48})$  | $-P(Q_{48})$ | and | $W(Q_{48} \times C_4) =$ | 0           | $W(Q_{48})$ | 0           |
|                          | 0           | 0            | $P(Q_{48})$  |     |                          | 0           | 0           | $W(Q_{48})$ |

**3.5 Example :** To find  $D(Q_{48} \times C_4)$  and the cyclic decomposition of the factor group

We find the matrices  $P(Q_{48} \times C_4)$  and  $W(Q_{48} \times C_4)$  as in example 3.4 and  $M(Q_{48} \times C_4)$  as in example 3.2, then :  $P(Q_{48} \times C_4).M(Q_{48} \times C_4).W(Q_{48} \times C_4) =$ 

Then by Theorem 5 we have

$$\operatorname{AC}(\operatorname{D}(\operatorname{Q}_{48}\times\operatorname{C}_4)=\bigoplus_{i=1}^{27}\boldsymbol{C}_2$$

The following theorem gives the cyclic decomposition of the factor group AC(D( $Q_{2m} \times C_4$ )) when m=  $2^h \cdot p_1^{r_1} \cdot p_2^{r_2} \dots p_n^{r_n}$ ,  $h, r \in \mathbb{Z}^+$ and p is prime number .

**3.6 Theorem:** If  $m = 2^h \cdot p_1^{r_1} \cdot p_2^{r_2} \dots p_n^{r_n}$ ,  $h, r \in Z^+$  and p is prime number then the cyclic decomposition of AC(Q<sub>2m</sub>×C<sub>4</sub>) is :

$$\operatorname{AC}(\operatorname{D}(\operatorname{Q}_{2\mathrm{m}} \times \operatorname{C}_4)) = \bigoplus_{i=1}^{3(r_1+1)(r_2+1)\cdots(r_n+1)(h+2)-3} C_2$$

**Proof :** By using the proposition 3.1, we can find matrix  $M(Q_{2m} \times C_4)$  and by the proposition 3.2, we find  $P(Q_{2m} \times C_4)$  and  $W(Q_{2m} \times C_4)$ when m= $2^h \cdot p_1^{r_1} \cdot p_2^{r_2} \cdot \dots \cdot p_n^{r_n}$ ,  $h, r \in \mathbb{Z}^+$  and p is prime number:

 $P(Q_{2m} \times C_4)$ .  $M(Q_{2m} \times C_4)$ .  $W(Q_{2m} \times C_4)$ =

Then ,by the theorem 2.18 we have :

$$3(r_1+1)(r_2+1)\cdots(r_n+1)(h+2)-3$$

AC(D(Q<sub>2m</sub>×C<sub>4</sub>))=  $\bigoplus_{i=1}^{m} C_2$ 3.7 Example : Consider the groups (Q<sub>7087500</sub>×C<sub>4</sub>) ,(Q<sub>98000</sub>×C<sub>4</sub>),then :

1. 
$$AC(Q_{7087500} \times C_4) = AC(Q_{2^2,3^4,7,5^5} \times C_4) = \bigoplus_{i=1}^{537} C_2$$
  
2.  $AC(Q_{98000} \times C_4) = AC(Q_{2^4,7^2,5^3} \times C_4) = \bigoplus_{i=1}^{141} C_2$ 

### **4.REFERENCES**

- [1] A.H. Mohammed," On Artin Cokernel of finite Groups ", M.Sc. thesis, University of Kufa, 2007.
- [2] H.R. Yassien, " On Artin Cokernel of Finite Group", M.Sc. thesis, Babylon University, 2000.
- [3] K. Sekigvchi," Extensions and the Irreducibilities of The Induced Characters of Cyclic p-Group", Hiroshima math Journal, p165-178, 2002.
- [4] M. J. Hall, "The Theory of Group ", Macmillan, New York, 1959.
- [5] R.H.Abass," On the Rational Valued Characters Table of the  $Group(Q_{2m} \times C_4)$  When m is an Even Number" Applied Mathematical Sciences, p 1915 – 1923,2017.
- [6] S.J. Mahmood," On Artin Cokernel of Quaternion Group Q<sub>2m</sub> When m is an Even Number ", M.Sc. thesis, University of Kufa , 2009.