Artin's cokernel of the group $\left(\mathrm{Q}_{2 \mathrm{~m} \times} \mathrm{C}_{4}\right)$ When $\mathrm{m}=2^{h} . p_{1}^{r_{1}} \cdot p_{2}^{r_{2}} \ldots . . p_{n}^{r_{n}}$,h,r $\in \mathrm{Z}^{+}$and p is prime Number

Rajaa Hasan Abbas
Department of Mathematics, Faculty of Education for Girls, University of Kufa, Iraq.
Email :rajaah.alabidy@uokufa.edu.iq

Abstract

The main purpose of this paper is to find The Cyclic decomposition of the group $\left(Q_{2 m} \times C_{4}\right)$ when $m=2^{h} . p_{1}^{r_{1}} \cdot p_{2}^{r_{2}} \ldots \ldots p_{n}^{r_{n}}$ $, h, r \in Z^{+}$and p is prime number, which is denoted by $A C\left(Q_{2 m} \times C_{4}\right)$ where $Q_{2 m}$ is the Quaternion group and C_{4} is the cyclic group of order 4 .

Keywords- Quaternion group; the cyclic group; Artin's characters table ;the cyclic decomposition.

1. INTRODUCTION

This matrix is very important to find the cyclic decomposition of the factor group $\mathrm{AC}(\mathrm{G})$ and Artin 's exponent $\mathrm{A}(\mathrm{G})$. In 1981 C.Curits and I. Reiner[3] studied Methods of Representation Theory with Application to Finite Groups. In 2009 S.J. Mahmood [6] studied the general from of Artin's characters table $\operatorname{Ar}\left(\mathrm{Q}_{2 \mathrm{~m}}\right)$ when m is an even number. The aim of this paper is to find the general from of The Cyclic decomposition and the Artin's characters table of the group $\left(\mathrm{Q}_{2 \mathrm{~m}} \times \mathrm{C}_{4}\right)$ when $\mathrm{m}=2^{h} \cdot p_{1}^{r_{1}} \cdot p_{2}^{r_{2}} \ldots \ldots p_{n}^{r_{n}}$ $, h, r \in Z^{+}$and p is prime number.

2. PRELIMINARIES

This section introduce some important definitions and basic concepts the factor group $A C(G)$ of a group G and the matrix $M(G)$, $\mathrm{M}\left(\mathrm{Q}_{2 \mathrm{~m}}\right), \mathrm{P}\left(\mathrm{Q}_{2 \mathrm{~m}}\right)$ and $\mathrm{W}\left(\mathrm{Q}_{2 \mathrm{~m}}\right)$.
2.1 Proposition :[5] The rational valued characters table of the group $\left(\mathrm{Q}_{2 \mathrm{~m}} \times \mathrm{C}_{4}\right)$ when m is an even number is equal to the tensor product of the rational valued characters table of $\mathrm{Q}_{2 \mathrm{~m}}$ when m is an even number and the rational valued characters table of C_{4} that is: $\stackrel{*}{\equiv}\left(Q_{2 m} \times C_{4}\right)=\stackrel{*}{\equiv}\left(Q_{2 m}\right) \otimes \stackrel{*}{\equiv}\left(C_{4}\right)$.
2.2 Definition :[4] Let $\mathrm{T}(\mathrm{G})$ be the subgroup of $\bar{R}(\mathrm{G})$ generated by Artin's characters .T (G) is normal subgroup of $\bar{R}(\mathrm{G})$ and denotes the factor abelian group $\bar{R}(\mathrm{G}) / \mathrm{T}(\mathrm{G})$ by $\mathrm{AC}(\mathrm{G})$ which is called Artin cokernel of G .
2.3 Definition :[3] Let M be a matrix with entries in a principal domain R. A k-minor of \mathbf{M} is the determinant of $k \times k$ sub matrix preserving row and column order.
2.4 Definition :[3] A k-th determinant divisor of \mathbf{M} is the greatest common divisor (g.c.d) of all the k-minors of M.This is denoted by D_{k} (M)
2.5 Lemma :[3] Let M, P and W be matrices with entries in a principal ideal domain R , let P and W be invertible matrices ,Then $\mathrm{D}_{k}(\mathrm{P} \mathrm{M} \mathrm{W})=\mathrm{D}_{k}(\mathrm{M})$ module the group of unites of R .
2.6 Theorem :[3] Let M be an $n \times n$ matrix with entries in principal ideal domain R, then there exist two matrices P and W such that:

1. P and W are invertible.
2. $\quad \mathrm{PMW}=\mathrm{D}$.
3. D is diagonal matrix.
4. if we denote $\mathrm{D}_{i i}$ by d_{i} then there exists a natural number $\mathrm{m} ; 0 \leq \mathrm{m} \leq \mathrm{n}$ such that $\mathrm{j}>\mathrm{m}$
implies $\mathrm{d}^{j}=0$ and $\mathrm{j} \leq \mathrm{m}$ implies $\mathrm{d}^{j} \neq 0$ and $1 \leq \mathrm{j} \leq \mathrm{m}$ implies $\mathrm{d}^{j} \mid \mathrm{d}^{j+1}$.
2.7 Definition :[3] Let M be matrix with entries in a principal domain R, be equivalent to a matrix $D=\operatorname{diag}\left\{\mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots, \mathrm{~d}_{m}, 0,0\right.$,
$\ldots, 0\}$ such that $\mathrm{d}_{j} \mid \mathrm{d}_{j+1}$ for $1 \leq \mathrm{j}<\mathrm{m}$. We call D the invariant factor matrix of M and $\mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots, \mathrm{~d}_{m}$ the invariant factors of M.
2.8 Theorem :[3] Let K be a finitely generated module over a principal domain R, then K is the direct sum of cyclic sub module with an annihilating ideal $\left.\left\langle\mathrm{d}_{1}\right\rangle,\left\langle\mathrm{d}_{2}\right\rangle, \ldots,<\mathrm{d}_{m}\right\rangle, \mathrm{d}_{j} \mid \mathrm{d}_{j+1}$ for $\mathrm{j}=1,2, \ldots, \mathrm{~K}-1$.
2.9 Proposition:[4] $\mathrm{AC}(\mathrm{G})$ is a finitely generated Z - module .Let m be the number of all distinct Γ-classes then $\operatorname{Ar}(\mathrm{G})$ and $\equiv *(\mathrm{G})$ are of the rank l. There exists an invertible matrix $\mathrm{M}(\mathrm{G})$ with entries in rational number such That: $\quad \equiv *(G)=\mathrm{M}^{-1}(\mathrm{G}) \cdot \operatorname{Ar}(\mathrm{G})$ and this implies $\mathrm{M}(\mathrm{G})=\operatorname{Ar}(\mathrm{G}) .(\equiv *(\mathrm{G}))^{-1}$
2.10 Theorem:[2] $\mathrm{AC}(\mathrm{G})=\underset{i=1}{l} \mathrm{C}_{d_{i}}$ where $\mathrm{d}_{i}= \pm \mathrm{D}_{i}(\mathrm{G}) / \mathrm{D}_{i-1}(\mathrm{G})$ where l is the number of all distinct Γ-classes.
2.11 Corollary :[4] $|A C(G)|=|\operatorname{det}(\mathrm{M}(\mathrm{G}))|$
2.12 Lemma :[4] If A and B are two matrices of degree m and t respectively, then:
$\operatorname{det}(\mathrm{A} \otimes \mathrm{B})=(\operatorname{det}(\mathrm{A}))^{t} .(\operatorname{det}(\mathrm{B}))^{m}$.
2.13 Lemma:[4] Let A and B be two non-singular matrices of rank l and m respectively, over a principal domain R and let:
$\mathrm{P}_{1} \mathrm{AW}_{1}=\mathrm{D}(\mathrm{A})=\operatorname{diag}\left\{\mathrm{d}_{1}(\mathrm{~A}), \mathrm{d}_{2}(\mathrm{~A}), . ., \mathrm{d}_{l}(\mathrm{~A})\right\}$ and $\mathrm{P}_{2} \mathrm{AW} 2_{2}=\mathrm{D}(\mathrm{B})=\operatorname{diag}\left\{\mathrm{d}_{1}(\mathrm{~B}), \mathrm{d}_{2}(\mathrm{~B}), . ., \mathrm{d}_{m}(\mathrm{~B})\right\}$
The invariant factor matrices of A and B then:
$\left(\mathrm{P}_{1} \otimes \mathrm{P}_{2}\right)(\mathrm{A} \otimes \mathrm{B})\left(\mathrm{W}_{1} \otimes \mathrm{~W}_{2}\right)=\mathrm{D}(\mathrm{A}) \otimes \mathrm{D}(\mathrm{B})$
and from this the invariant factor matrices of $\mathrm{A} \otimes \mathrm{B}$ can be obtained.
2.14 Proposition :[2] Let H_{1} and H_{2} be p_{1} and p_{2} - groups respectively where p_{1} and p_{2} are distinct primes and if M_{1} is the matrix from all cyclic subgroups of $\overline{\boldsymbol{R}}\left(\mathrm{H}_{1}\right)$ basis and M_{2} is the matrix which expresses the $\mathrm{T}\left(\mathrm{H}_{2}\right)$ basis terms of $\overline{\boldsymbol{R}}\left(\mathrm{H}_{2}\right)$ basis then the matrix which expresses the $\mathrm{T}\left(\mathrm{H}_{1} \times \mathrm{H}_{2}\right)$ basis of $\boldsymbol{R}\left(\mathrm{H}_{1} \times \mathrm{H}_{2}\right)$ basis is $\mathrm{M}_{1} \otimes \mathrm{M}_{2}$.
2.15 Remarks: [1] In general if $m=2^{h} . p_{1}^{r_{1}} \cdot p_{2}^{r_{2}} \ldots \ldots p_{n}^{r_{n}}$ such that p_{i} are prime numbers $p_{i} \neq 2$ and g.c.d ($\left.p_{i}, p_{j}\right)=1, h$ and r_{i} are any positive integer numbers for all $i=1,2, \ldots, n$ then we can write C_{m} as the from :

$$
C_{m}=C_{2^{h}} \times C_{p_{1}^{r_{1}}} \times C_{p_{2}^{\prime 2}} \times \cdots \times C_{p_{n}^{r_{n}}}
$$

(i) By the proposition 5 we get
$M\left(C_{m}\right)=M\left(C_{2^{h}}\right) \otimes M\left(C_{p_{1}^{1_{1}^{\prime}}}\right) \otimes M\left(C_{p_{2}^{\prime_{2}^{2}}}\right) \otimes \cdots \otimes M\left(C_{p_{n}^{r_{n}^{\prime}}}\right)$
We can write $\mathrm{M}\left(\mathrm{C}_{\mathrm{m}}\right)$ in the form:

which is $\left(\mathrm{r}_{1}+1\right) \ldots \ldots\left(\mathrm{r}_{\mathrm{n}}+1\right)(\mathrm{h}+1) \times\left(\mathrm{r}_{1}+1\right) \ldots \ldots\left(\mathrm{r}_{\mathrm{n}}+1\right)(\mathrm{h}+1)$ square matrix,
$R_{2}\left(C_{m}\right)$ is the matrix obtained by omitting the last two rows $\{0,0, \cdots, 1,1\}$ and $\{0,0, \cdots, 0,1\}$ and the last two columns $\{1, \cdots, 1,0,1, \cdots, 1,0, \cdots, 1,0\}$ and $\{1,1, \cdots, 1\}$ from the tensor product.

$$
M\left(C_{2^{h}}\right) \otimes M\left(C_{p_{1}^{\prime \prime}}\right) \otimes M\left(C_{p_{2}^{\prime 2}}\right) \otimes \cdots \otimes M\left(C_{p_{n}^{r_{n}}}\right)
$$

(ii) By lemma 3 we have :

1- $\quad \mathrm{P}\left(\mathrm{C}_{\mathrm{m}}\right)=P\left(C_{2^{h}}\right) \otimes P\left(C_{p_{1}^{r_{1}^{\prime}}}\right) P \otimes\left(C_{p_{2}^{\prime 2}}\right) \otimes \cdots \otimes P\left(C_{p_{n}^{r_{n}^{\prime}}}\right)$
$2-\quad \mathrm{W}\left(\mathrm{C}_{\mathrm{m}}\right)=W\left(C_{2^{h}}\right) \otimes W\left(C_{p_{1}^{r_{1}}}\right) \otimes W\left(C_{p_{2}^{r_{2}^{2}}}\right) \otimes \cdots \otimes W\left(C_{p_{n}^{r_{n}}}\right)$
2.16 Proposition:[6] If $m=2^{h} \cdot p_{1}^{r_{1}} \cdot p_{2}^{r_{2}} \cdots \cdots p_{n}^{r_{n}}$, such that p_{i} 's are all distinct primes, $p_{i} \neq 2$ and g.c.d $\left(p_{i}, p_{j}\right)=1$ for all $\mathrm{i}=1,2, \cdots, \mathrm{n}, h$ and r_{i} any positive integers then

which is $\left[\left(\mathrm{r}_{1}+1\right)\left(\mathrm{r}_{2}+1\right) \cdots\left(\mathrm{r}_{\mathrm{n}}+1\right)(\mathrm{h}+2)+2\right] \times\left[\left(\mathrm{r}_{1}+1\right)\left(\mathrm{r}_{2}+1\right) \cdots\left(\mathrm{r}_{\mathrm{n}}+1\right)(\mathrm{h}+2)+2\right]$
square matrix .
$\mathrm{R}_{2}\left(\mathrm{C}_{2 \mathrm{~m}}\right)$ is similar to the matrix in the remark 1
2.17 Proposition:[6] If $m=2^{h} \cdot p_{1}^{r_{1}} \cdot p_{2}^{r_{2}} \cdots \cdots p_{n}^{r_{n}}$, such that p_{i} 's are all distinct primes, $p_{i} \neq 2$ and g.c.d $\left(p_{i}, p_{j}\right)=1$ for all $i=1,2, \cdots, n, h$ and r_{i} any positive integers then the matrices $P\left(Q_{2 m}\right)$ and $W\left(Q_{2 m}\right)$ are taking the forms :

$k=\left[\left(r_{1}+1\right)\left(r_{2}+1\right) \cdots\left(r_{n}+1\right)(h+2)\right]-1 \quad$ and $\quad I_{k} \quad$ is the identity matrix of the order k ,they are $\left[\left(r_{1}+1\right)\left(r_{2}+1\right) \cdots\left(r_{n}+1\right)(h+2)+2\right] \times\left[\left(r_{1}+1\right)\left(r_{2}+1\right) \cdots\left(r_{n}+1\right)(h+2)+2\right]$ square matrix.
2.18 Theorem:[6] If $m=2^{h} \cdot p_{1}^{r_{1}} \cdot p_{2}^{r_{2}} \cdots \cdots p_{n}^{r_{n}}$, such that p_{i} 's are all distinct primes, $p_{i} \neq 2$ and g.c.d $\left(p_{i}, p_{j}\right)=1$ for all $i=1,2, \cdots, h, h$ and r_{i} any positive integers then the cyclic decomposition of $\operatorname{AC}\left(\mathrm{Q}_{2 \mathrm{~m}}\right)$ is :

$$
\bigoplus_{i=1}^{\left(r_{1}+1\right)\left(r_{2}+1\right) \cdots\left(r_{n}+1\right)(h+2)-1} C_{2}
$$

3. THE MAIN RESULTS

In this section we find the general form of The Cyclic decomposition the group ($\mathrm{Q}_{2 \mathrm{~m}} \quad \mathrm{C}_{4}$) when $\mathrm{m}=2^{h} \cdot p_{1}^{r_{1}} \cdot p_{2}^{r_{2}} \ldots \ldots p_{n}^{r_{n}}, \mathrm{~h}, \mathrm{r} \in \mathrm{Z}^{+}$ and p is prime number.
3.1 Proposition: If $m=2^{h} \cdot p_{1}^{r_{1}} \cdot p_{2}^{r_{2}} \cdots \cdots p_{n}^{r_{n}}$, such that p_{i} 's are all distinct primes, $p_{i} \neq 2$ and g.c.d $\left(p_{i}, p_{j}\right)=1$ for all $\mathrm{i}=1,2, \cdots, \mathrm{n}, h$ and r_{i} any positive integers then:

$$
M\left(Q_{2 m} \times C_{4}\right)=\left[\begin{array}{c|c|c}
M\left(Q_{2 m}\right) & M\left(Q_{2 m}\right) & M\left(Q_{2 m}\right) \\
\hline 0 & M\left(Q_{2 m}\right) & M\left(Q_{2 m}\right) \\
\hline 0 & 0 & M\left(Q_{2 m}\right)
\end{array}\right]
$$

which is $\left[3\left(r_{1}+1\right)\left(r_{2}+1\right) \cdots\left(r_{n}+1\right)(h+2)+6\right] \times\left[3\left(r_{1}+1\right)\left(r_{2}+1\right) \cdots\left(r_{n}+1\right)(h+2)+6\right]$ square matrix $M\left(Q_{2 m}\right)$ is similar to the matrix of the proposition 6 .

Proof :By Proposition 2.18 and the Artin's characters Table $\operatorname{Ar}\left(\mathrm{Q}_{2 \mathrm{~m}} \times \mathrm{C}_{4}\right)$ of the group $\left(\mathrm{Q}_{2 \mathrm{~m}} \times \mathrm{C}_{4}\right)$ when $\mathrm{m}=2^{h} . p_{1}^{r_{1}} . p_{2}^{r_{2}} \ldots \ldots p_{n}^{r_{n}}, h, r \in$ Z^{+}and p is prime number and from the Proposition 2.18 we get the rational valued characters table $\left(\stackrel{*}{\equiv}\left(Q_{2 m} \times C_{4}\right)\right)$ of the group $\left(\mathrm{Q}_{2 \mathrm{~m}} \times \mathrm{C}_{4}\right)$ when $\mathrm{m}=2^{h} \cdot p_{1}^{r_{1}} \cdot p_{2}^{r_{2}} \ldots . . p_{n}^{r_{n}}, h, r \in \mathrm{Z}^{+}$and p is prime number.

Thus, by definition of $\mathrm{M}(\mathrm{G})$ we can find the matrix $\mathrm{M}\left(\mathrm{Q}_{2 \mathrm{~m}} \times \mathrm{C}_{4}\right)$ when $2^{h} . p_{1}^{r_{1}} \cdot p_{2}^{r_{2}} \ldots \ldots p_{n}^{r_{n}}, h, r \in \mathrm{Z}^{+}$and p is prime number.

$$
M\left(Q_{2 m} \times C_{4}\right)=\operatorname{Ar}\left(Q_{2 m} \times C_{4}\right) \cdot\left(\equiv\left(Q_{2 m} \times C_{4}\right)\right)^{-1}=\left[\begin{array}{c|c|c}
M\left(Q_{2 m}\right) & M\left(Q_{2 m}\right) & M\left(Q_{2 m}\right) \\
\hline 0 & M\left(Q_{2 m}\right) & M\left(Q_{2 m}\right) \\
\hline 0 & 0 & M\left(Q_{2 m}\right)
\end{array}\right]=M\left(Q_{2 m} \times C_{4}\right)
$$

3.2 Example :

Consider the group ($\mathrm{Q}_{48} \times \mathrm{C}_{4}$), we can find the matrix $\mathrm{M}\left(\mathrm{Q}_{48} \times \mathrm{C}_{4}\right)$
by using: $M\left(Q_{48} \times C_{4}\right)=M\left(Q_{3.2^{4}} \times C_{4}\right)=\operatorname{Ar}\left(Q_{3.2^{4}} \times C_{4}\right) \cdot\left(\equiv\left(Q_{3.2^{4}} \times C_{4}\right)\right)^{-1}$
$\left[\begin{array}{llllllllllllllllllllllllllllll}2 & 2 & 2 & 2 & 2 & 2 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 211 & 1 & 1 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 1 & 1 & 1 \\ 0\end{array}\right]$
$\begin{array}{llllllllllllllllllllllllllllllll}0 & 2 & 2 & 2 & 0 & 2 & 2 & 1 & 1 & 1 & 0 & 2 & 2 & 2 & 2 & 0 & 2 & 2 & 1 & 1 & 1 & 1 & 0 & 2 & 2 & 2 & 2 & 0 & 2 & 2 & 1 & 1 \\ 1 & 1\end{array}$
$\begin{array}{llllllllllllllllllllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 2 & 2 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 2 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 2\end{array} 1 \begin{array}{llll}1 & 1 & 1 \\ 0 & 0 & 0 & 0\end{array} 0$
$\left[\begin{array}{llllllllllllllllllllllllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1\end{array}\right.$

$$
\begin{aligned}
& \left.\begin{array}{llllllllllllllllllllllllllllllllllll}
0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 2 & 1
\end{array} \right\rvert\,
\end{aligned}
$$

$\begin{array}{lllllllllllllllllllllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 2 & 2 & 0 & 0 & 2 & 1 & 1 & 1 & 1 & 0 & 0 & 2 & 2 & 2 & 0 & 0 & 2 & 1\end{array} 1 \begin{array}{ll}1 & 1 \\ 0 & 0\end{array} 0$
$0000000000010 \begin{array}{llllllllllllllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 1 & 0 & 1\end{array}$
$M\left(Q_{32^{4}} \times C_{4}\right)=\left(\begin{array}{lllllllllllllllllllllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 2 & 2 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 2 & 2 & 2 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 2 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 2 & 1\end{array} 1111210\right.$
$0 \begin{array}{lllllllllllllllllllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array} 11111$
$\begin{array}{lllllllllllllllllllllllllllllll}0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 0$
$\left.\begin{array}{llllllllllllllllllllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1\end{array} 100 c c \right\rvert\, c$
$\begin{array}{lllllllllllllllllllllllllllllllllll}0 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 1 & 1 & 1\end{array} 1$
$\begin{array}{llllllllllllllllllllllllllllllllll}0 & 2 & 2 & 2 & 0 & 0 & 2 & 1 & 1 \\ 0 & 1 & 1\end{array}$
$\begin{array}{llllllllllllllllllllllllllllllll}0 & 2 & 2 & 0 & 0 & 0\end{array} 111111$

$$
\begin{aligned}
& \begin{array}{lllllllllllllllllllllllllllllllll}
0 & 2 & 2 & 2 & 1
\end{array} 11111
\end{aligned}
$$

$\begin{array}{lllllllllllllllllllllllllllllllll}0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0\end{array} 0$
$\left[\begin{array}{llllllllllllllllllllllllllllllll}0 & 1 & 1 & 1 & 1 & 1 & 1\end{array} 10001\right]$
3.3 Proposition : If $m=2^{h} \cdot p_{1}^{r_{1}} \cdot p_{2}^{r_{2}} \cdots \cdots p_{n}^{r_{n}}$, such that p_{i} 's are all distinct primes, $p_{i} \neq 2$ and g.c.d $\left(p_{i}, p_{j}\right)=1$ for all $\mathrm{i}=1,2, \cdots, \mathrm{n}, h$ and r_{i} any positive integers then the matrices $\mathrm{P}\left(\mathrm{Q}_{2 \mathrm{~m}} \times \mathrm{C}_{4}\right)$ and $\mathrm{W}\left(\mathrm{Q}_{2 \mathrm{~m}} \times \mathrm{C}_{4}\right)$ are taking the forms :

$$
P\left(Q_{2 m} \times C_{4}\right)=\left[\begin{array}{c|c|c}
P\left(Q_{2 m}\right) & -P\left(Q_{2 m}\right) & 0 \\
\hline 0 & P\left(Q_{2 m}\right) & -P\left(Q_{2 m}\right) \\
\hline 0 & 0 & P\left(Q_{2 m}\right)
\end{array}\right]
$$

Which is $\left[3\left(r_{1}+1\right)\left(r_{2}+1\right) \cdots\left(r_{n}+1\right)(h+2)+6\right] \times\left[3\left(r_{1}+1\right)\left(r_{2}+1\right) \cdots\left(r_{n}+1\right)(h+2)+6\right]$ square matrix .

International Journal of Academic and Applied Research (IJAAR)
Vol. 6 Issue 8, August - 2022, Pages: 195-200
And
$W\left(Q_{2 m} \times C_{4}\right)=\left[\begin{array}{c|c|c}W\left(Q_{2 m}\right) & 0 & 0 \\ \hline 0 & W\left(Q_{2 m}\right) & 0 \\ \hline 0 & 0 & W\left(Q_{2 m}\right)\end{array}\right]$
which is $\left[3\left(r_{1}+1\right)\left(r_{2}+1\right) \cdots\left(r_{n}+1\right)(h+2)+6\right] \times\left[3\left(r_{1}+1\right)\left(r_{2}+1\right) \cdots\left(r_{n}+1\right)(h+2)+6\right]$ square matrix .

Proof:

By using the proposition 3.1 taking the matrix $\mathrm{M}\left(\mathrm{Q}_{2 \mathrm{~m}} \times \mathrm{C}_{4}\right)$ and the above forms $\mathrm{P}\left(\mathrm{Q}_{2 \mathrm{~m}} \times \mathrm{C}_{4}\right)$ and $\mathrm{W}\left(\mathrm{Q}_{2 \mathrm{~m}} \times \mathrm{C}_{4}\right)$ then we have :
$\mathrm{P}\left(\mathrm{Q}_{2 \mathrm{~m}} \times \mathrm{C}_{4}\right) . \mathrm{M}\left(\mathrm{Q}_{2 \mathrm{~m}} \times \mathrm{C}_{4}\right) . \mathrm{W}\left(\mathrm{Q}_{2 \mathrm{~m}} \times \mathrm{C}_{4}\right)=$
diag $\{\underbrace{2,2,2,2, \cdots, 2}_{\left[3\left(r_{r}+1\right)\left(r_{2}+1\right) \cdots\left(r_{0}+1\right)(h+2)-31 \text {-time }\right.}, 1,1,1,1,1,1,1,1,1\}$

$$
\left[3\left(r_{1}+1\right)\left(r_{2}+1\right) \cdots\left(r_{n}+1\right)(h+2)-3\right]-\text { time }
$$

$$
=\mathrm{D}\left(\mathrm{Q}_{2 \mathrm{~m}} \times \mathrm{C}_{4}\right)
$$

which is $\left[3\left(r_{1}+1\right)\left(r_{2}+1\right) \cdots\left(r_{n}+1\right)(h+2)+6\right] \times\left[3\left(r_{1}+1\right)\left(r_{2}+1\right) \cdots\left(r_{n}+1\right)(h+2)+6\right]$ square matrix .

3.4 Example :

To find the matrices $\mathrm{P}\left(\mathrm{Q}_{48} \times \mathrm{C}_{4}\right)$ and $\mathrm{W}\left(\mathrm{Q}_{48} \times \mathrm{C}_{4}\right)$ by the proposition 2.17 to find $\mathrm{P}\left(\mathrm{Q}_{48}\right)$ and $\mathrm{W}\left(\mathrm{Q}_{48}\right)$:
$P\left(Q_{3.2^{4}}\right)=\left[\begin{array}{cccccccccccc}1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & -1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$
And
$W\left(Q_{3.2^{4}}\right)=\left[\begin{array}{cccccccccccc}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & 0 & 0 & 1\end{array}\right]$
And by the proposition 9 then:
$P\left(Q_{48} \times C_{4}\right)=\left[\begin{array}{c|c|c}P\left(Q_{48}\right) & -P\left(Q_{48}\right) & 0 \\ \hline 0 & P\left(Q_{48}\right) & -P\left(Q_{48}\right) \\ \hline 0 & 0 & P\left(Q_{48}\right)\end{array}\right]$ and $W\left(Q_{48} \times C_{4}\right)=\left[\begin{array}{c|c|c}W\left(Q_{48}\right) & 0 & 0 \\ \hline 0 & W\left(Q_{48}\right) & 0 \\ \hline 0 & 0 & W\left(Q_{48}\right)\end{array}\right]$
3.5 Example : To find $D\left(Q_{48} \times C_{4}\right)$ and the cyclic decomposition of the factor group

We find the matrices $\mathrm{P}\left(\mathrm{Q}_{48} \times \mathrm{C}_{4}\right)$ and $\mathrm{W}\left(\mathrm{Q}_{48} \times \mathrm{C}_{4}\right)$ as in example 3.4 and $\mathrm{M}\left(\mathrm{Q}_{48} \times \mathrm{C}_{4}\right)$ as in example 3.2,then :
$\mathrm{P}\left(\mathrm{Q}_{48} \times \mathrm{C}_{4}\right)$. $\mathrm{M}\left(\mathrm{Q}_{48} \times \mathrm{C}_{4}\right)$. $\mathrm{W}\left(\mathrm{Q}_{48} \times \mathrm{C}_{4}\right)=$ $\operatorname{diag}\{2,1,1,1,1,1,1,1,1,1\}=D\left(\mathrm{Q}_{48} \times \mathrm{C}_{4}\right)$
Then by Theorem 5 we have

$$
\mathrm{AC}\left(\mathrm{D}\left(\mathrm{Q}_{48} \times \mathrm{C}_{4}\right)=\underset{i=1}{27} C_{2}\right.
$$

The following theorem gives the cyclic decomposition of the factor group $\mathrm{AC}\left(\mathrm{D}\left(\mathrm{Q}_{2 \mathrm{~m}} \times \mathrm{C}_{4}\right)\right)$ when $\mathrm{m}=2^{h} \cdot p_{1}^{r_{1}} \cdot p_{2}^{r_{2}} \ldots \ldots p_{n}^{r_{n}}, h, r \in \mathrm{Z}^{+}$ and p is prime number .
3.6 Theorem: If $\mathrm{m}=2^{h} \cdot p_{1}^{r_{1}} \cdot p_{2}^{r_{2}} \ldots \ldots p_{n}^{r_{n}}, h, r \in \mathrm{Z}^{+}$and p is prime number then the cyclic decomposition of $\mathrm{AC}\left(\mathrm{Q}_{2 \mathrm{~m}} \times \mathrm{C}_{4}\right)$ is :

$$
\mathrm{AC}\left(\mathrm{D}\left(\mathrm{Q}_{2 \mathrm{~m}} \times \mathrm{C}_{4}\right)\right)=\bigoplus_{i=1}^{3\left(r_{1}+1\right)\left(r_{2}+1\right) \cdots\left(r_{n}+1\right)(h+2)-3} C_{2}
$$

Proof: By using the proposition 3.1, we can find matrix $\mathrm{M}\left(\mathrm{Q}_{2 \mathrm{~m}} \times \mathrm{C}_{4}\right)$ and by the proposition 3.2, we find $\mathrm{P}\left(\mathrm{Q}_{2 \mathrm{~m}} \times \mathrm{C}_{4}\right)$ and $\mathrm{W}\left(\mathrm{Q}_{2 \mathrm{~m}} \times \mathrm{C}_{4}\right)$ when $\mathrm{m}=2^{h} \cdot p_{1}^{r_{1}} \cdot p_{2}^{r_{2}} \ldots \ldots p_{n}^{r_{n}}, h, r \in \mathrm{Z}^{+}$and p is prime number:
$\mathrm{P}\left(\mathrm{Q}_{2 \mathrm{~m}} \times \mathrm{C}_{4}\right) . \mathrm{M}\left(\mathrm{Q}_{2 \mathrm{~m}} \times \mathrm{C}_{4}\right) . \mathrm{W}\left(\mathrm{Q}_{2 \mathrm{~m}} \times \mathrm{C}_{4}\right)=$ $\operatorname{diag}\{2,2,2,2,2,2, \ldots, 2,2,2,1,1,1,1,1,1,1,1,1\}$
Then ,by the theorem 2.18 we have :

$$
\mathrm{AC}\left(\mathrm{D}\left(\mathrm{Q}_{2 \mathrm{~m}} \times \mathrm{C}_{4}\right)\right)=\bigoplus_{i=1}^{3\left(r_{1}+1\right)\left(r_{2}+1\right) \cdots\left(r_{n}+1\right)(h+2)-3} C_{2}
$$

3.7 Example : Consider the groups $\left(\mathrm{Q}_{7087500} \times \mathrm{C}_{4}\right),\left(\mathrm{Q}_{98000} \times \mathrm{C}_{4}\right)$,then :

1. $A C\left(Q_{7087500} \times C_{4}\right)=A C\left(Q_{2^{2} .3^{4} .7 .5^{5}} \times C_{4}\right)=\oplus_{i=1}^{537} C_{2}$
2. $A C\left(Q_{98000} \times C_{4}\right)=A C\left(Q_{2^{4} .7^{2} .5^{3}} \times C_{4}\right)=\oplus_{i=1}^{141} C_{2}$
3. REFERENCES
[1] A.H. Mohammed," On Artin Cokernel of finite Groups " ,M.Sc. thesis, University of Kufa,2007.
[2] H.R. Yassien, " On Artin Cokernel of Finite Group", M.Sc. thesis, Babylon University, 2000.
[3] K. Sekigvchi," Extensions and the Irreducibilities of The Induced Characters of Cyclic p-Group", Hiroshima math Journal, p165-178, 2002.
[4] M. J. Hall, " The Theory of Group ", Macmillan, New York, 1959.
[5] R.H.Abass," On the Rational Valued Characters Table of the $\operatorname{Group}\left(\mathrm{Q}_{2 \mathrm{~m}} \times \mathrm{C}_{4}\right)$ When m is an Even Number" Applied Mathematical Sciences, p 1915-1923,2017.
[6] S.J. Mahmood," On Artin Cokernel of Quaternion Group Q $_{2 m}$ When m is an Even Number ", M.Sc. thesis, University of Kufa , 2009.
