Optical and Electrical Conductivity of Fe₃O₄ and Ni₂O₃ Thin Films through Optical Method

¹Adam Mohammed Adam Bakheet, ²Emtithal Ahmed Jadallah, ³Al desogi Omer Hamed³, ^{4,5}Abdalsakhi. S. Mohammed and ^{2,4}Mona. A. Abdalrasool

¹University of Gezira- Faculty of Science - Department of Physics and Astronomy - Madani -Sudan ² Sudan University of Science & Technology-College of Science - Department of Physics -Khartoum – Sudan ³Kordfan University -Faculty of Science - Department of physics- Alobaid –Sudan ⁴Alneenlen University - Faculty of Science and Technology –Laser and Renewable Energy Department- Khartoum – Sudan ⁵Alneenlen University - Renewable and Alternative Energy Researches Center - Khartoum – Sudan

Abstract: In this work, the spin coating method was used to prepare thin films of samples of Nickel Oxide (Ni₂O₃) and Iron Oxide (Fe₃O₄) deposited on an ITO glass substrate with varying thicknesses (55.25, 78.7, 90.9, 144.9, and 263.15) for each. The optical method was used to determine the electrical and optical conductivity. The maximum values of optical conductivity equal 1.07x10¹⁵ sec⁻¹) for Ni₂O₃ and 1.05x10¹⁵ sec⁻¹) for Fe₃O₄, while the maximum values of electrical conductivity and optical conductivity is 37 Ω ⁻¹ for Ni₂O₃ and 35 Ω ⁻¹ for Fe₃O₄, for both samples thickness 263.1 nm has maximum value of optical and electrical conductivity.

Keyword: thin film, Nickel Oxide, Iron Oxide, Optical Conductivity and Electrical Conductivity.

Introduction

In comparison to bulk solid materials, nanoparticles exhibit novel properties. The various effects, such as the small size effect, surface effect, quantum size effect, macroscopic quantum tunnel effect, and so forth, account for this variation in properties. Due to their numerous potential uses, nanocrystalline transition metal oxides have garnered a lot of attention in recent years. Nickel oxide (NiO) is an attractive material due to its chemical stability [1,2]. Nickel oxide (NiO) is an attractive material due to its chemical stability [3]. NiO with cubic lattice structure has a wide intrinsic band gap of ~3.6 eV. It shows interesting optical, electrical and magnetic properties. It is a promising candidate for wide range of applications such as smart windows, gas sensors, catalysts, anode material in Li ion batteries and nanoscale optoelectronic devices like electrochromic display [4,5]. Moreover, nanocrystalline NiO powder shows super parmagnetism effect which can be used for drug delivery and MRI (magnetic resonance imaging) agent [6]. Iron oxide (Fe2O3) nanomaterials have attracted special attention from the research fields due to the highly applicable and versatile in the supercapacitors, catalysis and drug delivery [7]. Iron oxides occur in many forms in nature, with magnetite (Fe₃O₄), maghemite $(\gamma - \text{Fe}_3\text{O}_4)$, and hematite $(\alpha - \text{Fe}_3\text{O}_4)$ being probably the most common. Hematite $(\alpha - \text{Fe}_3\text{O}_4)$ is the one most important type of the iron oxides and widespread in rocks and soils. Hematite (α - Fe₃O₄) has a hexagonal unit cell in which two-thirds of the octahedral sites are occupied by Fe2+ ions (corundum structure) and has an energy gap (Eg = 2.1 eV) [8]. A thin film is a layer formed by atom to atom or molecule to molecule condensation process and their thickness ranging from fraction of nanometer to several micrometres in thickness [9]. Thin films have number of applications in various fields. Few of them are A.R. coating, interference filters, polarisers, narrow band filters, solar cells, photoconductors, IR detectors, waveguide coatings. Temperature control of satellites, photo thermal solar coatings such as black chrome, nickel, cobalt etc., magnetic films, superconducting films, anticorrosive films, microelectronics devices, diamond films, reduction of fabrication through coating or surface modification i.e. epitaxy and heterostructure films, high temperature wear resistance films, hard coatings [10,11]. The aim of this work is to study the influence of thickness on optical and electrical properties of NiO and Fe2O3 thin film using the optical method.

Theoretical Background

The relationship between the attenuation of light through a substance and the properties of the substance can be describe using Beer-Lambert law which relates the concentration of a sample to amount of light that absorbed when passes through the sample, the equation for this law is generally written as:

$$A = \varepsilon L c \tag{1}$$

Where A is the absorbance of a sample, ε is molar extinction coefficient, L is a path length and c is concentration of the sample [12].

The absorption coefficient determines how far into a material light of a particular wavelength can be penetrate before it absorbed, it depends on the material and also on the wavelength of light which is being absorbed, absorption coefficient (α) can be calculated from relation:

$$\alpha = \frac{2.303 \times A}{x} \tag{2}$$

Where A is the absorbance and x is optical path length of light through sample, in a material wit a low absorption coefficient, light is only poorly absorbed, and if the material is thin enough, it will appear transparent [13].

International Journal of Academic and Applied Research (IJAAR) ISSN: 2643-9603

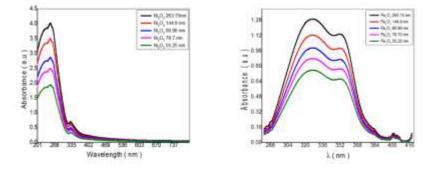
Vol. 7 Issue 1, January - 2023, Pages: 6-10

The refractive index (n) is the relative between speed of light in vacuum to its speed in material which does not absorb this light. The value of n was calculated from the equation [14]:

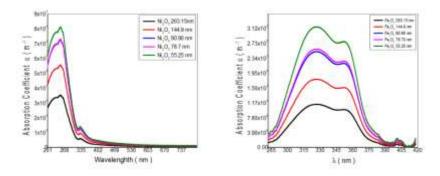
$$n = \left[\left(\frac{(1+R)}{(1-R)} \right)^2 - (1+k^2) \right]^{\frac{1}{2}} + \frac{(1+R)}{(1-R)}$$
(3)

where (R) is the reflectivity and (k) is exctiction cofficent. The optical conductivity is a measure of frequency response of material when irradiated with light which is determined using the following relation:

$$\delta_{opt} = \frac{\alpha nc}{4\pi} \tag{4}$$

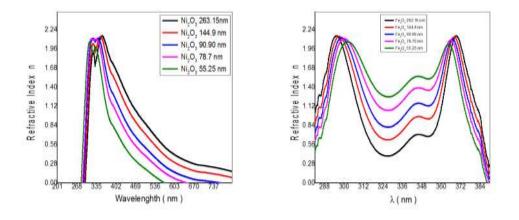

Where (c) is the light velocity. The electrical conductivity can be estimated using the following relation [15,16]:

$$\delta_{elec} = \frac{2\lambda\delta_{opt}}{\alpha} \tag{5}$$

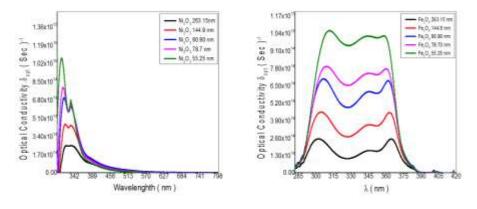

Material and Method

Nickel oxide (Ni₂O₃) and Iron oxide (Fe₃O₄) were prepared from nickel nitrate hexahydrate (Ni(NO₃)₂.6H₂O) (6.6 g dissolved in 508 mL deionized water) and Ferric nitrate nonahydrate ($Fe(NO_3)_3.9H2O$)(40.4 g dissolved in 515 mL deionized water) respectively (0.1M of each), each solution was but in the magnetic stirrer at 700C for 90 min and we were added methanol to accelerate the reaction, after 90 min the colour of Nickel solution was change from dark green to white green however, the Iron solution was change from white yellow to brown. Nickel oxide and Iron oxide thin films were prepared by spread a 0.1 M solutions of nickel nitrate and ferric nitrate onto the pre-heated amorphous glass substrates kept at $(390^{\circ}C \pm 10^{\circ})$ C using spin coater. Film thickness was measured by using the weight difference method considering the substrate surface area and the density of the bulk Nickel oxide and Iron oxide. As the density of thin films was certainly lower than the bulk density. The optical and electrical conductivity were through optical method by measuring the absorbance of each sample using UV-VIS spectrometer (UV-1650PC Shimadzu software 1700, 1650, UV-visible recording spectrophotometer).

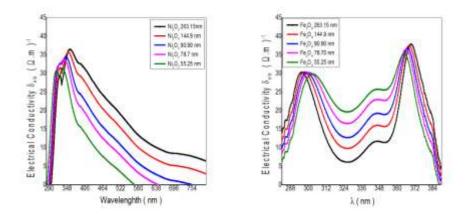
Results and Discussion



Fig(1) relation between absorbance and wavelengths Ni_2O_3 and Fe_3O_4 samples in different thicknesses



Fig(2) the relation between absorption cofficient and wavelengths of Ni₂O₃ and Fe₃O₄ samples


in different thicknesses

Fig(3) the relation between refractive index and wavelengths of Ni₂O₃ and Fe₃O₄ samples in different thicknesses

Fig(4) the relation between optical conductivity and wavelengths of Ni₂O₃ and Fe₃O₄ samples in different thickness

Fig(5) the relation between electrical conductivity and wavelengths Ni₂O₃ and Fe₃O₄ samples in different thickness

In fig. (1), the relation between absorbance and wavelengths of Ni_2O_3 and Fe_3O_4 with different thicknesses was shown, the informly increase of the a absorption at wavelengths 252nm and 326 nm for Ni_2O_3 and Fe_3O_4 respectively. For both samples, the value of

International Journal of Academic and Applied Research (IJAAR) ISSN: 2643-9603 Vol. 7 Issue 1, January - 2023, Pages: 6-10

absorbance increase according to sample thickness increase. The absorption coefficient (α) of Ni₂O₃ and Fe₃O₄ with different thicknesses was displayed in fig (2), the maximum value of α at 263.15nm for both samples , the maximum value of α equal 8.16×10⁷ cm⁻¹ for Ni₂O₃ at wavelength 251 nm while for Fe₃O₄ the maximum 3.17×10^7 cm⁻¹ at wavelength 325 nm in the U.V region, this means that the transition must corresponding to a direct electronic transition which responsible for electrical conduction. Fig (3) show the refractive index (n) of Ni₂O₃ and Fe₃O₄ with different thicknesses, the maximum value of (n) is (2.16) for all samples of Ni₂O₃ and Fe₃O₄ at the differances wavelength which is agreement with (blue sheft when the Ni₂O₃ thickness dccreased for all samples of Ni₂O₃ in different thickness and red sheft when the Fe₃O₄ thickness dccreased for all samples of Ni₂O₃ in different thickness and red sheft when the Fe₃O₄ thickness dccreased for all samples of Ni₂O₃ and this values confirm with the presence of very high photo-response of both samples which is refer to the high absorbance and then electron excitation by photon energy. Fig(5) show the relation between electrical conductivity and wavelengths of Ni₂O₃ and Fe₃O₄ with different thicknesses , the maximum value of $7(\Omega_m)^{-1}$ at 400 nm for Ni₂O₃ with thickness 263.1 nm sample , but for Fe₃O₄ electrical conductivity equal 35 (Ω_m)⁻¹ at 377 nm for Fe₃O₄ with thickness 263.1 nm sample. According to above results, these materials can be used in optoelctronics applications.

Conclusion

Thin films of Nickel Oxide Ni_2O_3 and Iron Oxide Fe_3O_4 were successfully fabricated with different thicknesses, the change in thickness effected on optical and electrical properties of samples, the fabricated thin films gave high optical conductivity which means highr current carriers generation increase with the thickness of sample increase, this unique properties of these materials make them sutable for optoelectronic applications.

Reference

[1] Suvardhan Kanchi and Shakeel Ahmed, Green Metal Nanoparticles-Synthesis, Characterization and their Applications, first published by John Wiley & Sons, Inc ,2018.

[2] Malkiat S. Johal and Lewis E. Johnson, Understanding Nanomaterials, Second Edition, CRC Press, Taylor & Francis Group, 2018.

[3] Taghizadeh, F., the Study of Structural and Magnetic Properties of NiO Nanoparticles. Optics and Photonics Journal, Volume (6), 2016, pages (164-169) ..

[4] Aliakbar Dehno Khalaji, Nickel Oxide (NiO) nanoparticles prepared by solid-state thermal decomposition of Nickel (II) schiff base precursor, Journal of Ultrafine Grained and Nanostructured Materials, Vol.48, No.1, June 2015, pp.1-4.

[5] M. Naseem Siddique and et al, Investigation of optical properties of nickel oxide nanostructures using photoluminescence and diffuse reflectance spectroscopy, 2nd International Conference on Condensed Matter and Applied Physics (ICC 2017), puplished by American Institute of Physics, 2018.

[6] Israa Muzahem Rashid and et al, Green Synthesis of Nickle Oxide Nanoparticles for Adsorption of Dyes, Sains Malaysiana 51(2): 533-546, 2022.

[7] Attarad Ali, HiraZafar, Muhammad Zia, IhsanulHaq, Abdul RehmanPhull, JohamSarfraz Ali, AltafHussain, Synthesis, characterization, applications, and challenges of iron oxide nanoparticles, Nanotechnology, Science and Applications, Volume (9), (2016), pages (49–67).

[8] Maryna V. Ved and et al, Nanostructured Functional Coatings of Iron Family Metals with Refractory Elements,

Nanochemistry, Biotechnology, Nanomaterials, and Their Applications, Selected Proceedings of the 5th International Conference Nanotechnology and Nanomaterials (NANO2017), August 23–26, 2017, Chernivtsi, Ukraine, springer, 2018.

[9] Nada. Abbas. Ahmad and et al ,Electrical Properties of Different Gum Arabic Thin Film by Optical Methods, International Journal of Academic and Applied Research (IJAAR), Vol. 5 Issue 12, December - 2021, Pages:68-73.

[10] Fatima Kh. Sharif Hussain, Rawia AbdElgani, Al desogi Omer Hamed, Abdalsakhi. S. Mohammed, (FTIR and XRD) Spectroscopy for Thin Film Multilayers Gum Arabic Doping with Aluminum Oxide by Sol Gal method, International Journal of Academic Multidisciplinary Research (IJAMR), Vol. 5 Issue 4, April - 2021, Pages: 313-316.

[11] Abdalsakhi. S. M.H, Mubarak Dirar Abd-alla, Rawia Abd Elgani, Asma M.Elhussien, Amel A.A. Alfaki, "Using Gum Arabic in Making Solar Cells by Thin Films Instead Of Polymers," IOSR Journal of Applied Physics (IOSR-JAP), e-ISSN: 2278-4861.Volume 8, Issue 1 Ver. III (Jan. - Feb. 2016), PP 27-32.

[12] Rawia Abd-alaziez1, Aldesogi Omer hamed, Mohammed Elmubark, Omaima Elrayah, Abdalsakhi, S.M.H ,Abdel Karim Sabir Ali, Quantitative Optical Properties of Acacia tortilis var. raddiana Gum using Ultra Violet Visible "UV- VI" Spectrophotometer, Neelain Journal of Science and Technology NJST volume 5, Issue 2, December 2021, 51 – 55.

[13] Maysa, Ahmed Elfaki, Kh. M. Haroun, Mona Ali, Abdalsakhi Sulman, Optical Properties of Carbon Nanotubes Made from Two Sources (Soot and Cool) Doped with Magnesium Oxide MgO, Omdurman Ahlia University Journal (OAUJ), Vol. 1 Issue 2, December 2021.

[14] Yosra Mansour, Mubarak Dirar Abdallah, Adam Mohammed Adam Bakheet ,Abdalsakhi S. Mohammed, Ahmed Alfaki and Aldesogi Omer Hamed, Optical Parapets and Electrical Conductivity of Ni X Co1-X O2 Nanomaterials in Different Molar, International Journal of Academic and Applied Research (IJAAR), Vol. 5 Issue 4, April - 2021, Pages: 170-178.

[15] Tamador Almardi Albashier, Mahmoud Hamid Mahmoud Hilo, Abdalsakhi Suliman, Synthesis and Characterization of a Polystyrene (Cork) Doped by Aluminium Oxide (Al2O3) to Improve Its Optical Properties Using the (UV-VIS) Techniques, Journal of Photonic Materials and Technology, 2020; 6(2): 14-20.

[16] Ibtehag Ali Sanosy, Khalid Mohammed. Haroun, Abdalsakhi Suliman Mohammed Hamed, Adam Mohammed Adam Bakheet, Optical Properties of Barium Borate (BaB2O4) Compound for Current Optoelectronic Applications - Journal of Materials & Metallurgical Engineering ISSN: 2231-3818 (Online), ISSN: 2321-4236 (Print) Volume 10, Issue 1 www.stmjournals.com2020; 10(1): 49–58p.