
International Journal of Academic Information Systems Research (IJAISR)

ISSN: 2643-9026

Vol. 6 Issue 12, December - 2022, Pages: 1-64

www.ijeais.org/ijaisr

Clean Code in Practice Developers’ perception of clean code
Mohammed Yousef Abu Hassan

E-mail: medo94125@gmail.com

Abstract: Context. There is a need for developers to write clean code and code that adheres to a high-quality standard. We need

developers not to introduce technical debt and code smells to the code. From a business perspective, developers that introduce

technical debt to the code will make the code more difficult to maintain, meaning that the cost for the project will increase.

Objectives. The main objective of this study is to gain an understanding about the perception the developers have about clean code

and how they use it in practice. There is not much information about how clean code is perceived by developers and applied in

practice, and this thesis will extend the information about those two areas. It is an effort to understand developers' perception of

clean code in practice and what they think about it. Realization (Method). To understand the state-of-the-art in the area of clean

code, we first performed a literature review using snowballing. To delve into developers' perception about clean code and how it is

used in practice. We have developed and sent out a questionnaire survey to developers within companies and shared the survey via

social networks. We ask if developers believe that clean code eases the process of reading, modifying, reusing, or maintaining code.

We also investigate whether developers write clean code initially or refactor it to become clean code, or do none of these. Finally,

we ask developers in practice what clean code principles they agree or disagree with. Asking this will help identify which clean

code principles developers think are helpful and which are not. Results. The results from the investigation are that the developers

strongly believe in clean code and that it affects reading, modifying, reusing, and maintaining code, positively. Also, developers do

not write clean code initially but rather refactor unclean code to become clean code. Only a small portion of developers write

clean code initially, and some do what suits the situation, while some do neither of these. The last result is that developers agree

with most of the clean code principles listed in the questionnaire survey and that there are also some principles that they discard,

but these fewer. Conclusions. From the first research question, we know that developers strongly believe that clean code makes the

code more readable, understandable, modifiable, or reusable. Also, developers check that the code is readable using code reviews,

peer reviews, or pull requests. Regarding the second research question, we know that developers mostly refactor unclean code

rather than write clean code initially. The challenges are that to write clean code initially, a developer must have a solid

understanding of the problem and obstacles in advance, and a developer will not always know what the code should look like in

advance. The last research question showed that most developers agree with most of the clean code principles and that only a

small portion of developers disagree with some of them. Static code analysis and code quality gates can ensure that developers

follow these clean code practices and principles.

Keywords: clean code, code quality, technical debt, refactoring

Clean Code in Practice

Developers’ perception of clean code

Mohammed Yousef Abu Hassan

1, January, 2023

Contact Information:

Author:

Name: Mohammed Yousef Abu Hassan

E-mail: medo94125@gmail.com

ii

ABSTRACT

Context. There is a need for developers to write clean code and code that adheres to a high-quality

standard. We need developers not to introduce technical debt and code smells to the code. From a

business perspective, developers that introduce technical debt to the code will make the code more

difficult to maintain, meaning that the cost for the project will increase.

Objectives. The main objective of this study is to gain an understanding about the perception the

developers have about clean code and how they use it in practice. There is not much information about

how clean code is perceived by developers and applied in practice, and this thesis will extend the

information about those two areas. It is an effort to understand developers' perception of clean code in

practice and what they think about it.

Realization (Method). To understand the state-of-the-art in the area of clean code, we first performed

a literature review using snowballing. To delve into developers' perception about clean code and how it

is used in practice. We have developed and sent out a questionnaire survey to developers within

companies and shared the survey via social networks. We ask if developers believe that clean code eases

the process of reading, modifying, reusing, or maintaining code. We also investigate whether developers

write clean code initially or refactor it to become clean code, or do none of these. Finally, we ask

developers in practice what clean code principles they agree or disagree with. Asking this will help

identify which clean code principles developers think are helpful and which are not.

Results. The results from the investigation are that the developers strongly believe in clean code and

that it affects reading, modifying, reusing, and maintaining code, positively. Also, developers do not

write clean code initially but rather refactor unclean code to become clean code. Only a small portion

of developers write clean code initially, and some do what suits the situation, while some do neither of

these. The last result is that developers agree with most of the clean code principles listed in the

questionnaire survey and that there are also some principles that they discard, but these fewer.

Conclusions. From the first research question, we know that developers strongly believe that clean code

makes the code more readable, understandable, modifiable, or reusable. Also, developers check that the

code is readable using code reviews, peer reviews, or pull requests. Regarding the second research

question, we know that developers mostly refactor unclean code rather than write clean code initially.

The challenges are that to write clean code initially, a developer must have a solid understanding of the

problem and obstacles in advance, and a developer will not always know what the code should look like

in advance. The last research question showed that most developers agree with most of the clean code

principles and that only a small portion of developers disagree with some of them. Static code analysis

and code quality gates can ensure that developers follow these clean code practices and principles.

Keywords: clean code, code quality, technical debt,

refactoring

iii

CONTENTS

ABSTRACT .. I

CONTENTS ... II

1 INTRODUCTION .. 4

1.1 BACKGROUND .. 4

1.1.1 Clean code ... 4

1.1.2 Code quality .. 4

1.1.3 Code smells ... 4

1.1.4 Technical Debt .. 5

1.1.5 Refactoring .. 5

1.2 PURPOSE .. 5

1.3 SCOPE .. 6

2 RESEARCH QUESTIONS .. 7

3 RESEARCH METHOD ... 8

3.1 LITERATURE REVIEW ... 8

3.2 QUESTIONNAIRE SURVEY ... 9
3.2.1 Participant recruiting and survey overview... 9

3.2.2 Data collection .. 9

3.2.3 Data Analysis .. 9

3.3 ALTERNATIVE METHODS .. 10

4 LITERATURE REVIEW RESULTS ... 11

4.1 DEVELOPERS’ BELIEF IN CLEAN CODE ... 15

4.2 WRITING CLEAN CODE INITIALLY OR REFACTORING CODE TO CLEAN CODE 15

4.2.1 Proactive versus Reactive refactoring ... 15

4.2.2 The Reasons to Why Developers Refactor Code .. 15

4.2.3 Refactoring Tools in Practice .. 16

4.3 CLEAN CODE PRINCIPLES AND PRACTICES FOUND ... 16

4.3.1 Static Code Analysis and Quality Gates .. 19

4.4 LITERATURE REVIEW CONCLUSION .. 19

5 SURVEY RESULTS .. 20

5.1 DEMOGRAPHICS ... 20

5.2 DEVELOPERS’ BELIEF IN CLEAN CODE .. 21

5.2.1 Thematic analysis .. 23
5.3 CLEAN CODE INITIALLY OR UNCLEAN CODE FIRST .. 23

5.3.1 Thematic analysis .. 26

5.4 PROMINENT CLEAN CODE PRINCIPLES ... 26

5.4.1 Thematic analysis .. 31

6 ANALYSIS.. 33

6.1 DEMOGRAPHICS ... 33

6.2 DEVELOPERS’ BELIEF IN CLEAN CODE .. 33

6.3 CLEAN CODE INITIALLY OR UNCLEAN CODE FIRST .. 34

6.4 PROMINENT CLEAN CODE PRINCIPLES ... 34

7 CONCLUSION ... 35

8 VALIDITY THREATS .. 36

9 FUTURE WORK ... 37

iv

10 REFERENCES ... 38

11 APPENDIXES .. 41

11.1 APPENDIX A ... 41

11.2 APPENDIX B ... 43

11.3 APPENDIX C ... 49

11.3.1 Likert scale questions .. 49

11.3.2 Other question types ... 54

11.4 APPENDIX E ... 57

11.4.1 RQ1: Thematic analysis .. 57

11.4.2 RQ2: Thematic analysis .. 58

11.4.3 RQ3: Thematic analysis .. 60
11.5 APPENDIX F .. 61

4

1 INTRODUCTION

1.1 Background

1.1.1 Clean code

Clean code [1] advocates for writing readable code so that other people can know the code’s

intent almost directly. It should be easy to follow someone else’s logic when reading clean

code. Easily readable code will make other programmers understand the code better, leading

to increased code maintainability [2]. If other programmers understand the code by just reading

it, it will also be easier for the programmers to modify it when needed since they understand

what it does. For example, clean code deals with naming, structuring, formatting, refactoring,

testing, etc.

The “Clean Code” movement has defined principles and practices that will help programmers

write improved code [3], such as using meaningful names, indentation, avoiding duplication,

and many more. Most developers have probably been at the stage where they name a variable

horribly, and it does not convey any meaning, and they are only using it at the current moment.

The developers know what the name means right now, but they will probably not know why

it is there if they had to read it about one year. It may not even be the same developers that re-

read and modify the code. Some other developers may continue to maintain the code that the

previous developers wrote. Hence, we must write code that is understandable to other

developers. Developers should not have to think a lot to understand the code written by others.

They should know what the code does just by reading it.

1.1.2 Code quality

Code quality is heavily related to clean code, but those two concepts are not the same.

According to Börstler et al. [4], people perceive code quality as having software metrics to

measure a system’s quality. When talking about code quality, we mean code that is of high

quality. What high-quality code is considered is dependent on the context and the team we are

working within, and there is no definitive set of metrics we can combine to characterize what

code quality is [5]. Everyone has different opinions and different perspectives of what is

considered high-quality code, and we need to reach a consensus about this within the team. If

we are not reaching a common consensus, the team members may follow what they consider

good code. What is considered good or bad code depends on a developer’s experience [4].

According to all participants of the study reported in [4], the top three most concerning code

qualities were the code’s readability, structure, and comprehensibility. In order to maintain

high-quality code, we must ensure that we reduce or remove the code smells of it.

1.1.3 Code smells

Code Smells are symptoms of bad design and implementation choices [6], [7], and can

introduce degradation to the code quality, making it more difficult to understand, change, and

maintain [8]. When accidentally introducing code smells to a system, it can introduce faults

that make the system more troublesome to maintain in the future. Programmers must try to

avoid introducing code smells because of these reasons. Examples of code smells are

Duplicated code, Long method, or Large class. Yamashita and Moonen [8] have studied

whether developers know about code smells in practice, and they found out that about 32% of

5

developers did not know anything about code smells. Showing an evident lack of knowledge

of code smells on the developers’ side. To enable developers to produce code-smells-free code.

We need to raise awareness on what code smells are first. If programmers do not know what

a code smell is, they cannot assess whether a piece of code contains smells and try to remove

them. Code smells have been around since the late mid-nineties, and developers have built

tools that help developers identify the code smells. However, development teams are often

unaware of the significant benefits that a refactoring tool has in practice [9].

1.1.4 Technical Debt

We can avoid introducing some of these code smells by applying the clean code principles and

practices to make it easier to write high-quality code [3]. It will also help to reduce the technical

debt of the code. Technical debt is a metaphor used to discuss (and often quantify) the long-

term consequences of suboptimal decisions taken with the goal of speeding up the

development [10]. It deals primarily with non-visible aspects and issues of software

development and its maintenance. Mistakenly or knowingly introducing technical debt to the

code in the project will make the code more difficult to maintain and enhance. It is leading to

increased cost and time of the development of the product. The longer the project has been

going on, and technical debt has increased, the harder it is to remove [3]. Technical Debt Issues

(TDIs) are an atomic, measurable manifestation form of Technical Debt, and being Code

Smells is one type of TDIs [11].

1.1.5 Refactoring

In case TDIs have already been introduced, then refactoring can be a solution. Refactoring is

a technique used to modify the code without changing the system’s external behavior [12].

External behavior means that the functionality of the system has not changed and still works

as intended. In other words, the changes made to the code by a developer when performing a

refactoring should not change the result of what the code or system did before. In practice,

refactoring is defined differently but is not far from the state-of-the-art definition [12].

Developers do not relate a lot to refactoring to preserve the code’s external behavior.

Developers are more concerned about refactoring in terms of readability, maintainability, or

performance. Refactoring operations are behavior-preserving, but we can refactor the code to

make room for the development of new features, architectural or design changes [13]. Then

the change will not be behavior preserving anymore.

1.2 Purpose

Professional developers do know how to get a program to work correctly and achieve

functional correctness. However, this does not necessarily mean that all developers know how

to write code that is easy to read, modify, reuse, and maintain, but some developers might

know. Therefore finding out what the clean code principles experienced developers agree with

can be helpful to support less experienced developers when writing code that is more readable

and understandable. Companies need developers who can write code that is easy to be read,

modified, reused, and maintained. Developers who can do this will help reduce friction in the

development process, making it possible to smoothly introduce changes to the software while

avoiding introducing technical debt into the code. Therefore, this thesis aims to determine the

perception the developers have about using clean code in practice.

6

1.3 Scope

The scope of this thesis focuses on whether developers believe in clean code from a practical

perspective. We will check if they believe clean code contributes to more readable,

understandable, modifiable, or reusable code. Only a few attributes from the ISO 25010

standard are selected because most of the other quality attributes are not concerned with clean

code. We also focus on analyzing how clean code is produced in practice: writing clean code

initially or writing not so clean code to be refactored later. It is about if developers do refactor

source code to become clean code. It is not in the scope of the thesis to analyzing refactoring

code for other purposes than making the code clean. Refactoring operations (e.g., Rename,

Extract Method, Move Method, Pull Up Members) will not be discussed in depth. However,

tools such as static code analyzers and quality gates will be discussed in the context of its usage

to write clean code. Finally, in the last section, we focus on the practices and principles of

clean code.

7

2 RESEARCH QUESTIONS

The main objective of this study is to gain an understanding about the perception the

developers have about using clean code in practice. To achieve this goal, we have defined the

following research questions:

► RQ1: Do developers believe that clean code eases the process of reading,

understanding, modifying, or reusing code?

► RQ2: Do developers initially write clean code or write unclean code that later on

needs refactoring to become clean code?

► RQ3: What are the most prominent clean code principles developers need to use in

practice to write clean code, which makes code easy to read, modify, reuse, and

maintain?

The first research question is about whether developers believe that clean code affects easing

the process of reading, understanding, modifying, or reusing code. We are investigating if

developers believe in clean code or not. Developers will have a chance to state their opinions

about why they do or why they do not believe in clean code.

The second research question aims to understand whether developers in practice can write

clean code initially or if they write more messy code at first that will need refactoring later on

to become clean code. We are investigating the challenges with writing clean code initially or

refactoring unclean code to become clean code.

Finally, the third research question is about what prominent practices and principles

developers use in practice. To answer the first research question, we will complete a systematic

literature study to find relevant practices and principles and then use a questionnaire survey to

see what the developers think about these. Developers will agree and disagree with some

principles, which will hopefully help us sort out what principles most developers see as

prominent.

8

3 RESEARCH METHOD

3.1 Literature Review

To understand the state-of-the-art in the area of clean code, we performed a literature review

using snowballing, following the guidelines by Wohlin [14], combining a database search to

define the start seed with snowballing iterations doing citation and references analysis.

To define the start set (seed), we carried out a database search using Google Scholar with the

search string allintitle: clean code but realized that this resulted in very few relevant papers.

Therefore, we used another search string: “clean code” OR “code quality” to find more

relevant papers. We were looking for papers reporting if clean code is used in practice or

papers that report the impact of clean code principles and practices on code quality.

We performed both forward- (citations analysis) and backward- (references analysis)

snowballing iterations starting with the seed. Forward snowballing (citations analysis) is the

process of searching for potential papers which cited a particular paper using a citation

database, i.e., in our case Google Scholar. Backward snowballing is the process of looking at

the references of a given paper to find new potential papers:

We defined the following inclusion criteria that we applied to consider a paper as relevant

 Is the paper published in an English journal, conference, or workshop proceedings

indexed in Google Scholar?

 Is the paper published after 2010?

 Does the paper include the terms “clean code” or “code quality” in the title, abstract,

or full text?

 Does the paper define principles and practices of clean code or report their usage in

practice?

We applied the abovementioned acceptance criteria both to define the start set and during the

snowballing iterations. We have excluded papers talking only about static analysis techniques

unless there is a strong emphasis on their use in practice.

The publication date for the book about clean code is 2009, and we exclude papers published

less than or equal to the year 2009. The publication date’s acceptance criteria are that it has to

be equal to or greater than 2010. Due to that the Clean Code book is the foundational work for

clean code. Since it is was published year 2009, we set the publication date 2010, since many

people might not have read it the year it was published.

In some rare cases, when doing forward snowballing, the citations were more than 100 for the

current paper, so to remove noise, we filtered the results using the search string “clean code”

OR “code quality” to find the candidate papers. In other words, we used Google Scholar to

look for citations on the current paper and then search once deeper with the previous search

string.

The snowballing procedure goes on until reaching saturation which means we do not find any

more relevant papers.

Only papers that have been peer-reviewed such as conferences, journals, magazines, and

workshops, are included as relevant papers. The only exception the Clean Code book [1]

written by Martin, which we included as grey literature since it is the foundational work, and

we will be using it as a reference.

9

3.2 Questionnaire Survey

3.2.1 Participant recruiting and survey overview
We used a questionnaire survey sent out to developers within different companies and shared

it on social media and forums. The survey included questions related to the research questions

about clean code and dividing the survey into sections mapped to these research questions.

The setup for the thesis was to have sub-questions in the questionnaire to each of the research

questions. The participants we aim for are developers that have practical experience in

programming or experience in the software industry.

3.2.2 Data collection
The data collection was performed through an online questionnaire developed using the

QuestBack survey tool. The questionnaire was distributed using social networks, but also

spread out to contacts within some companies that redistributed the survey within their

respective organizations, therefore we used convenience sampling.

Most of the questions in the survey consist of a seven-point Likert scale ranging from 1 to 7.

We choose this Likert scale to avoid the central tendency due to cultural aspects (in Sweden,

we can refer to it as Lagom effect), or the cultural tendency to “not too much, not too little”

[15]. Questions from strongly disagree to strongly agree. Other questions were yes or no, short

text, or drag and drop ranking.

Since some of the questions are regarding specific clean code principles, we included a short

description of each of them, in case developers were unfamiliar with some specific principles.

However, if this was not enough for the developer to understand the principle, we provided a

link called “more info” behind the name of each principle. Developers could click on that link

to get more info about a specific principle, and a new window would open to explain the

principle further.

When designing the questions for the practices and principles, we decided to use a question

matrix, to avoid having a question per principle. However, we noticed that having all principles

in the same matrix question was unpleasant for the participants (i.e., the participants will have

an extremely long question with more than 30 principles and will have to scroll down to

provide the answers). Therefore, we divided this large question into sections according to

which chapter the principles belonged to in the Clean Code book [1]. We grouped the

principles into the general category for principles that were not clear which chapter they

belonged to or were coming from other sources.

3.2.3 Data Analysis

The closed questions are analyzed using different types of diagrams (e.g., diverged stacked

bar, pie chart) that summarize the developers’ response to the question. To analyze whether to

include or exclude a principle, the Wilcoxon p-value test will be used to check if the answers

were significantly higher than the neutral value 5, if p-value is less than 0.05, means that it is

statistically significant bigger [16]. If p < 0.05, then we include the principle, and otherwise,

we exclude it.

The open-ended questions are analyzed using thematic analysis [17]. Thematic analysis is a

systematic framework for coding analyzing qualitative data to identify patterns emerging from

datasets in response to research questions [17]. We applied an inductive (bottom-up), in which

the themes emerge and are linked to the data [18].

For the thematic analysis process, we began with coding and identifying themes that we could

group, as illustrated in Figure 3.2.1. To ensure that the coding and identifying of themes have

been adequately done, we have iterated through the process some more times. Once the themes

seem to have been found and grouped correctly, the process is ended. Also, mind maps will

10

be used for each thematic analysis section to present the findings visually to the readers. Each

mind map will have the research question it is investigating in the center.

Figure 3.2.1: Thematic analysis process

3.3 Alternative methods

Our approach for searching for references was to use Google Scholar and then do a literature

review using the snowballing procedure. We could also have had defined databases that we

could use to search within. If using a database, we would get very few hits on clean code, and

we would probably miss papers to include due to a strict search query. In contrast, we would

get too many papers about clean code if defining a search query that is too general.

Our main research method was to create a questionnaire survey to collect information since

this felt appropriate since we can send it via the internet to the developers, and they only have

to answer it. This way, it is easier to get many participants. As an alternative, we could have

interviewed developers via video conference calls and then recorded the interview to clean up

later and transcribe it. Preferably recording both video and audio, but excluding video if

participants are hesitant toward it. Only in case, we got permission from the participants, of

course. The advantage of interviews is that we would have gotten a broader perspective of

what the participants think about clean code and get more insight into it. The disadvantage is

that it is harder to find participants that want to do an interview, and besides, after interviewing

them, we do not know how much analysis we have to do.

Regarding data analysis, thematic analysis seemed suitable since the theory about clean code

is not entirely new [19]. There is evidence of it in literature. Thematic analysis is more about

grouping collected data to conclude when there is a context to the questions asked [19]. We,

therefore, did not need to build an entirely new theory upon the open-ended answers like we

could have done if using Grounded Theory. We also ask more specific questions that are not

so general, and Ground Theory is more suitable for more general questions.

11

4 LITERATURE REVIEW RESULTS

We used the snowballing procedure to find literature about clean code. We did both forward

and backward snowballing iterations to find relevant papers. We kept on doing this until we

reached saturation, i.e., when we did not find any more relevant papers to add.

To identify papers in the start set iteration, we used the papers’ with the criteria that the papers

mentioned “clean code” and “code quality” either in the title, abstract, or full text. The papers

must have been peer-reviewed and be of the type conference, journal, magazine, or workshop.

Since the search query “clean code” AND “code quality” on Google Scholar found about 723

papers, most of them did not apply to the type criteria, making it easier to exclude many of

them. Papers in the start set iteration are often tricky to select. We looked carefully at the title.

If not sure to include or exclude from reading the title, whether the title had “clean code” or

“code quality” in it. Also, if the title had anything regarding clean code in practice, we opened

the paper and read the abstract, introduction, and conclusion. Mainly to find whether any of

the previously mentioned sections said anything about “clean code” or “code quality”, but also

clean code in practice. To decide whether to include the paper in the identified start set. In the

start set, we found 9 papers that we included in the start set.

In iteration one of the snowballing procedure, we continued to adhere to the criteria we had

set. In this iteration, we found a total of 11 papers to include. We did not find any more papers

that we thought were relevant using the snowballing procedure for some of the papers’ start

set. In iteration two, we found six papers to include. However, some of these papers sometimes

had way over 100 citations, and it is not easy to look at over 100 cited papers and decide

whether to include or exclude them. It would take a long time to do so. We needed to search

within the citations using a Google Scholar search query such as “clean code” OR “code

quality” to make the citations manageable. Otherwise, the snowballing procedure could have

gone on for a very long time. Adding the new criterion that if the papers have very many

citations, then, in that case, the search query will be used in further snowballing iterations. In

iteration three, we only found three papers that were relevant to include. We did not find any

more relevant papers in iteration four of the snowballing procedure and reached saturation.

Table 4.1 shows the papers that we have found in the seed and iterations. The table shows the

total papers that we found, including discarded ones. It also shows which papers that we

included in which iteration.

Seed or iteration Number of citations and

references screened

Included papers

Seed S01, S02, S03, S04, S05,

S06, S07, S08, S09

Iteration 1 23 references and 6 citations P1, P2, P3, P4, P5, P6, P7,

P8, P9, P10, P11
Iteration 2 10 references and 6 citations P12, P13, P14, P15, P16

Iteration 3 0 references and 3 citations P17, P18, P19

Iteration 4 0 references and 0 citations

Table 4.1: Snowballing iterations

See Table 4.2 below, which shows the papers found in the seed and the iterations. It shows

how the papers are related and the connections between how a particular paper was found. The

paper reference for a seed paper is, for example, S01. Papers are just given paper references

in the way the list was ordered. The paper references for iterations is, for example, P1. The

references column is if the new paper was found when looking at the references of the current

paper, called backward snowballing. The cited column is if the current paper was searched for

on Google Scholar and then clicked on how many cited the paper, called forward snowballing.

After having included papers that might be used as references, we also denoted whether the

12

papers are empirical or not. Checking what research method the papers are using to do their

study. Also, explaining with a short description what the main contribution of each paper is.

Rigor and relevance We used rigor and relevance method [20] to evaluate the papers

included. Rigor and relevance scores were used to assess the quality of the papers. Rigor is a

scale that discusses how well the context, study design, and validity of the papers are described

with possible values 0, 0.5, and 1. To calculate the rigor value, we sum the numbers for context,

study design, and validity to get a total rigor score for the paper. The context column is

supposed to describe the context to the reader. The study design is how the study was planned,

designed, executed. The study design is if the reader can replicate the same study from reading

the paper. Finally, validity is about the threats to the paper’s validity, such as internal validity,

external validity, and construct validity, if applicable.

We identify how relevant a paper is by using the relevance score. In relevance, unlike rigor,

we have four variables instead of three, and these four columns are subjects, context, scale,

and research method. When evaluating the columns in relevance, we only use 0 to 1 as a score

to put on a specific paper. Then we added these four values from the relevance columns to get

the total relevance score. It may be unclear what subjects column are, but that is just if the

users are the intended users (e.g., programmers, developers, software engineers) or not in the

paper. The context column is about whether it was done in the right environment setting or

not—the developers developing a big project from an industrial perspective. Scale is about the

size of the application or code used in the paper, whether it is of realistic size or not.

The research methods contributing to relevance are the following:

 Action research

 Lessons learned

 Case study

 Field study

 Descriptive/Explorative study

13

Paper

[ref]

Found

in
Refs Cited Rigor Relevance Empirical Main contribution

S01 [3] Seed 1 1 No, experience report Software platform prototype for SME. Trying to incorporate DevOps
principles to the industrial domain

S02 [2] Seed P1,

P2,

P3

 2,5 2 Yes, semi-structured

interview

Focus more on people related aspects to write high quality code

S03 [4] Seed P4,
P5,

P6

 3 2 Yes, survey and

interview

Perception of code quality divided amongst students,

professional developers

educators, and

S04 [21] Seed 2 4 Yes, case study Refactoring game code in C# to remove code smells

S05 [22] Seed P7 3 4 Yes, case study Add, modify, delete. Clean code to reduce Technical Debt Density

S06 [23] Seed 2 1 Yes, experiment Classify source code as bad smell, ambiguous, clean code

S07 [24] Seed P10 P8,

P9

3 1 Yes, experiment Impact of refactoring. Negative/Positive effects

S08 [25] Seed P11 1 4 Yes, case study Using a refactor tool helps developers resolve issues with naming,

unnecessary code, etc.

S09 [26] Seed 1 3 Yes, experience report Using practices from Agile, DevOps, Software Craftsmanship helping teams

define requirements more accurately

P1 [27] Iter 1 3 4 Yes, questionnaire

survey

Focus on OOP concepts and design quality. Also, Clean Code principles such

as SOLID.
P2 [28] Iter 1 1 4 Yes, case study Humans need involvement in the process of evaluating quality, and not

P3 [8] Iter 1 P12,

P13

 3 3 Yes, exploratory, and

descriptive survey

32% of developers did not know about code smells, and the majority of

developers were moderately concerned about code smells.

P4 [29] Iter 1 P14 3 1 No, experiment For-loops harder than ifs, and flat structures are slightly easier than nested
structures

P5 [30] Iter 1 3 2 Yes, controlled

experiment

Difficult to give meaningful names to methods, variables, etc. Comprehension

of parameters and local variables.

P6 [31] Iter 1 2,5 2 No, effect analysis Classification model for more readable or less readable code, and coding
violations

14

P7 [32] Iter 1 2,5 3 Yes, evaluation and

analysis

Adding new features with clean code takes 7% less effort compared to unclean

code

P8 [33] Iter 1 2 1 No, systematic

literature review

Few studies about what refactoring techniques affects what software quality

attributes

P9 [34] Iter 1 2 1 No, literature review Refactoring has positive effect on external and internal software quality

attributes, and lack of empirical studies regarding refactoring techniques

P10 [12] Iter 1 P15 P16 2,5 4 Yes, field study Refactoring in practice is more than just behavior-preserving program

transformations

P11 [35] Iter 1 2,5 1 No, systematic

literature review

Refactoring scenarios can have conflicting results on quality

P12 [36] Iter 2 2,5 1 Yes, exploratory study Use module decay index to calculate if a module is becoming smelly, and

prevent it if so

P13 [9] Iter 2 P16 2 4 Yes, survey Few refactoring tools provides recommendations to developers, and testability
of correctness after refactoring

P14 [37] Iter 2 P18,

P19

 2 1 Yes, experiment Python code snippets read by developers to determine if easy or hard to read

P15 [38] Iter 2 3 3 Yes, large-scale study,
quantitative/qualitative

Developers refactor for code readability, fault-proneness, testability

P16 [39] Iter 2 2 4 Yes, semi-structured

interviews

Appropriate and inappropriate uses of refactoring tools and configuration

overhead for refactoring tools

P17 [40] Iter 3 3 3 Yes, industrial case

study

Refactoring done for many reasons, tests are needed to ensure correctness

after refactoring

P18 [41] Iter 3 3 1 Yes, field study Experienced programmer reviewing and checking code readability using

Code Readability Testing technique

P19 [42] Iter 3 3 2 Yes, controlled

experiment

Minimize nesting, avoid do-while loop to increase readability and

understandability

Table 4.2: Papers found in SLR

15

4.1 Developers’ belief in clean code

For RQ1, we have not found many papers from the literature review investigating whether

developers believe in clean code and its effect at all. Therefore, this is not easy to answer.

However, most papers such as [3], [32], [22] are talking about clean code, maintenance, and

technical debt. The problem with this is that it does not tell whether developers believe in clean

code. From the literature review, we do not have any proof that developers believe in clean

code or not. This will have to be answered by the results from the questionnaire survey instead.

4.2 Writing clean code initially or refactoring code to

clean code

In the snowballing procedure, we found many papers that talked about both refactoring and

technical debt. To the best of the author’s knowledge, not so many papers studied whether

developers write clean code initially, but many papers talking about refactoring such as [12],

[25], [32], [36], [40], could be found. Therefore, it was not easy to find many papers that

talked precisely about writing clean code initially versus refactoring smelly- or unclean code

to clean code. Most papers only talked about code that was written in a bad state already.

Therefore the code had to be refactored. Arif and Rana [32] mention that writing clean-code

initially would positively affect software developers in the long term since it saves time and

effort. Most papers do not mention anything about writing clean code initially. A refactoring

proposal is discussed in the next section, which may help developers write clean code initially.

4.2.1 Proactive versus Reactive refactoring

There are two types of refactoring which are proactive refactoring and reactive refactoring.

Reactive refactoring is when the code already has code smells that need to be fixed to clean

up the code, while proactive refactoring is when the code smells have not yet been introduced

but are about to be introduced soon [36]. It would be positive if developers can avoid

introducing code smells and sense when they are about to be introduced. However, developers

need to measure if the source code is becoming smelly. According to Sae-Lim, Hayashi, and

Saeki [36], the developers can calculate the module decay index (MDI) to determine if a

module is becoming smelly. Using the proactive method instead of reactive refactoring,

developers can foresee which modules are becoming smelly and take action in advance. The

developers do not have to wait until a module has become smelly to remove the code smell. It

would not be practical to do refactorings on each class or module. Therefore, we have the MDI

that helps with determining what a decaying module is. A decaying module is a module that

does not have any code smells, but the module’s quality is about to degrade, possibly

introducing code smells [36]. The percentage of the decaying modules between each release

seemed to be about 19% on average. A machine learning approach was suggested to more

efficiently predict whether a module is heading toward being decayed in the software’s next

release. This suggestion could be one way for the developers to notice that the code they are

writing is becoming less clean and have a chance to avoid it, meaning that they may have it

somewhat easier to write clean code initially in that case. Then the developers do not need to

refactor the code and can fix it almost directly instead.

4.2.2 The Reasons to Why Developers Refactor Code

There are many reasons to perform refactorings, and we will only name a few of them that are

mentioned in [25], [32], [39]. One of the main reasons is related to the maintainability of the

code [32]. Maintainability is vital for a software system to be maintained in the future.

Reducing the maintainability cost is done by repaying the technical debt introduced in the

code. It is not always that the original developers of the system are maintaining it. It could be

16

other developers, so it is also crucial to write readable and understandable code, which is

another reason for refactoring. Code can sometimes be confusing to read and understand. The

last reason to refactor mentioned by authors is to reduce the human errors made when

programming.

To summarize why developers refactor, some of the reasons are: maintainability, readability,

understandability, reduce technical debt in code, reduce human errors. There are probably

more reasons than only these, but these are some of the reasons developers perform

refactorings. Moving on from here, we investigate how developers perform their refactorings.

Whether developers perform refactoring manually, use a refactoring tool, combining the two

options, or do neither of these.

4.2.3 Refactoring Tools in Practice

Vakilian et al. mention that [39], researchers have found that most developers do not prefer to

use refactoring tools and instead do small changes manually. Introducing large-scale changes

when doing refactoring is often error-prone. Therefore, such manual refactorings and

automated refactorings are avoided by the developers. Developers fear that the refactoring

operations performed by them might break functionality that was working as intended before.

Therefore, Kim, Zimmermann, and Nagappan [12] and Latte, Henning, and Wojcieszak [3]

suggest that developers should write unit tests to confirm whether any functionality is no

longer working—trying to detect if the program’s behavior is still correct and has not changed

because of the refactoring operation. According to the study, it can be understood that

developers do other modifications to the code while refactoring, possibly introducing behavior

changes. It is more error-prone to do refactoring manually since humans are more likely to

make errors than a refactoring tool. A refactoring tool might introduce behavior changes in the

code, but it is more automated and should help the developer avoid introducing as many errors

while refactoring. As shown by studies such as [12], [39], developers do not use the refactoring

tools a lot but are aware that these tools do exist and what refactoring operations the refactoring

tools support. Vakilian et al. [39] mention that 90% of developers performed refactorings

manually. There are many reasons behind developers not using refactoring tools. Some of the

identified reasons developers do not use the refactoring tools as much as possible are due to

the issues with naming, trust, predictability, and configuration [39]. Refactoring operations

sometimes have too complex names that the developers do not understand. The names lead to

the distrust in refactoring tools and the need for predictability to see what a particular

refactoring operation does. Finally, the refactoring tools also have a configuration overhead,

and developers are usually not the ones who configure the refactoring tools.

Refactoring tools in practice also have the problem that they do not have a graphical user

interface design that is simple enough to use [39]. The user interfaces can be too complex for

the developers and make it difficult for them to see how to use the refactoring tool. This

problem makes it unclear to developers if the refactoring tool is worth using. Regarding

usability, the refactoring tool designers need to investigate this so that developers will have it

easier to use the refactoring tools. Usability is important because if a refactoring tool is too

complicated, no one will use it. Even though the refactoring tool could support the

programmers if used within the proper context. Vakilian et al. [39] mention that some

developers may overuse the refactoring tool in the wrong context. A developer that does not

have much experience with programming may be trusting the refactoring tool too much and

cannot verify if the refactoring was performed correctly without introducing behavior changes.

4.3 Clean Code Principles and Practices Found

For RQ3, we used the Clean Code book [1] to check what practices and principles existed. In

the iterations, we found some of these clean code practices and principles. From these practices

and principles, we try to pick out the ones that are related to the themes that Robert Martin has

defined. We needed to look for papers talking about the same principles as Martin has

17

mentioned or new ones strongly related to clean code. This chapter lists the principles found.

Most of the principles and practices are from the Clean Code book [1] and named in Table 4.3

below. Below is a summarization of the principles that we have found in the literature review

and what papers reported them. The papers did not report much evidence of practical use for

most of the principles. An extended table with a short description of the principles can be

found in Appendix B.

Table of General
principles

 Table of Naming
principles

Principle Literature Evidence of
its use in
practice

Principle Literature Evidence
of its use
in practice

Boy scout rule B, P2, S05 Use Meaningful
Names

B, S01,
S02, S04,
S06

Minimize nesting P18 Use Intention-
Revealing Names

B

KISS – Keep It
Simple, Stupid!

B, P1, S02 Pronounceable
Names

B

OCP – Open Closed
Principle

B, P1, S06 Searchable
Names

B

Separate
Constructing a
System from Using it

B Avoid
Disinformation

B

 Avoid Mental
Mapping

B

Table of Function
and Method
principles

 Table of
Comment
principles

Principle Literature Evidence of
its use in
practice

Principle Literature Evidence
of its use
in practice

Do One Thing B, P1, S06 Amplification B

Command Query
Separation

B Clarification B

Extract Try-Catch
Block

B Explain Yourself
In Code

B

Have No Side Effects B, S06 Explanation of
Intent

B

DRY – Don’t Repeat
Yourself

B, S02, S07, P9,
P11, P15, P18

 TODO Comments B

Function Arguments B, S06 Warning of
Consequences

B

Structured
Programming

B

Methods/Functions
should be small

B, S06, P1 P1

Table of Formatting
principles

 Table of Object
and Data
Structure
principles

Principle Literature Evidence of
its use in
practice

Principle Literature Evidence
of its use
in practice

Team Coding
Standards

B, S03, S08,
S09, P18

 Data/Object Anti-
Symmetry

B

Horizontal Formatting
– Indentation

B, P14 Law of Demeter B

18

Dependent Functions B

Vertical Distance and
Ordering

B, P14

Organizing for
Change

B

Table of Error
Handling principles

 Table of Unit
Test principles

Principle Literature Evidence of
its use in
practice

Principle Literature Evidence
of its use
in practice

Prefer Exceptions to
Returning Error
Codes

B Keeping Tests
Clean

B

Don’t Pass Null B One Assert per
Test

B

Don’t Return Null B Single Concept
per Test

B

Write Your Try-Catch
Statement First

B

Table of Class
principles

Principle Literature Evidence
of its use
in practice

Class Organization B

High Cohesion B, S02, S03,
S04, S05, P1,
P8, P11, P12,
P15, P17

P1

Low Coupling B, S02, S03,
S04, S05, S06,
S08, P1, P8,
P9, P11, P15,
P17

P1

Encapsulation B, P11, P15

Isolating from
Change

B

SRP – Single
Responsibility
Principle

B, S02, S06,
S07, S08, P1,
P3, P17

P1

Minimal Classes
and Methods

B

One Level of
Abstraction per
Function

B, P4, P15,
P17

P4

Classes should be
small

B, S02, S06,
P1

P1

Table 4.3: Clean code principles and practices found

19

4.3.1 Static Code Analysis and Quality Gates

Static analysis tools are tools that can help programmers with following code quality standards

and rules. It can help programmers adhere to some of the principles in clean code. Human

memory is not perfect, and the adherence to writing high-quality code and clean code is

sometimes easily violated, whether intentional or not. Some static analysis tools can detect

syntax errors, coding mistakes, and security vulnerabilities [3]. Which of these the static

analysis tool can do depends on what the developers have implemented. Latte, Henning, and

Wojcieszak [3] advise developers to integrate the static analysis tool if they can do so since it

will help with syntax highlighting coding violations. This helps the developers avoid violating

some coding practices and principles as would probably have been violated otherwise if they

had to keep the practices and principles in memory. These tools give the developers feedback

directly about the code quality regarding if something needs to be improved. The developers

will know straight away.

Even if developers have a static analysis tool, they can still commit unclean code to the master

branch that may violate some of the coding guidelines. Therefore there is a need to prevent the

developers from knowingly or mistakenly committing such code to a branch. A quality gate

can be configured to check for coding violations and alike and prevent developers from

committing code that does not adhere to the code quality standard [3]. A quality gate can be

used in combination with CI/CD. The suggestion is to use a pipeline script instead of manually

configuring the CI/CD interface. In that case, all developers will have the configuration

immediately instead of manually changing it.

4.4 Literature Review Conclusion
For RQ1, we did not find any empirical evidence in the literature review, as mentioned the

previous section 4.1. One of the reasons in regard to this could be because of only using peer-

reviewed content. Therefore, we cannot conclude whether developers believe in clean code.

As mentioned, it will have to be answered by the survey instead.

Regarding RQ2, it is somewhat the same that we did not find much empirical evidence about

if developers write clean code initially or unclean code initially. Arif and Rana [32] argued

that it would be beneficial to write clean code initially in the long-term since it saves time and

effort for the developers, however. A proactive- versus reactive refactoring approach was

discussed in section 4.2.1. It also discusses a machine learning approach, which can help

developers detect if code is becoming smelly and may help somewhat with writing clean code

initially. We also investigated the reasons why developers refactor code. We found out that

some of the reasons are maintainability, readability, understandability, technical debt, human

errors. Finally, developers do not heavily use the refactoring tools, but developers are aware

of their existence. The reason being the refactoring tools graphical user interfaces being

complex and difficult to understand.

The main findings from the literature review regarding RQ3 are that we did not find many new

clean code principles. We mostly found the principles that Robert Martin had already defined

in the Clean Code book [1] to help developers write high-quality code. The only principle that

we found that is new is the minimize nesting principle [42]. We also looked for clean code

principles and whether developers used them in practice, but very few papers reported clean

code principles used in practice, but some papers did mention the principles that Martin had

mentioned.

We also found static analysis tools that can help avoid coding mistakes and syntax errors. Then

developers can detect the errors that they make and avoid them. The last founding mentioned

is using a quality gate that can help developers prevent committing unclean code that does not

adhere to the code quality standard.

20

5 SURVEY RESULTS

Most of the questions in the survey consist of a 7 item Likert-scale from strongly disagree to

strongly agree, and some questions are open-ended answers. The open-ended answers are

analyzed using thematic analysis. We also map questions to an identifier in Appendix A, when

summarizing the thematic analysis. In the paper by Börstler et al. [4], they used diverging

stacked bar diagrams to analyze the Likert-scale questions, which we will adapt. At first, we

will talk about the demographics of the participants.

5.1 Demographics
The demographics are that we have a total of 38 participants that have entirely completed the

survey, whereby 35 are male, and 3 are female. We then ask participants about their age, as

shown in Figure 5.1.1. We can see that most participants are between 31 and 40 years old. We

are also trying to identify if participants may have worked in practice in software engineering

for a while.

Figure 5.1.1: Age

Since the previous question does not exactly tell us that, we also asked about the years of

programming experience that each participant had. As we can see in Figure 5.1.2, most of the

respondents have more than 20 years of experience in programming, meaning that most

developers have worked with programming for quite some time.

Figure 5.1.2: General programming experience

We also wanted to know the highest education degree that the participants had completed.

Most had completed a Bachelor’s degree, while most other participants had completed

Bachelor’s degree and a Master’s degree, as seen in Figure 5.1.3. It is essential to mention that

in the survey, it said that Bachelor’s degree was up to 3 years of university education and that

Bachelor’s plus Master’s degree was up to 5 years of university education.

21

Figure 5.1.3: Highest education degree

5.2 Developers’ belief in Clean Code

We begin by investigating whether developers believe in the effect of clean code. As illustrated

in Figure A, Figure B, Figure C, and Figure D. As we can see, we have asked developers

whether they believe that clean code eases the process of reading, understanding, reusing, and

maintaining code. It is pretty clear that developers strongly agree with this. Only very few

developers somewhat disagree that clean code eases maintaining the code in Figure D.

Figure E: Developers believe that clean code helps

We investigated if developers believe that clean code helps with readability, understandability,

reusability, and maintainability. As illustrated in Figure E, we see that the result is that

developers strongly agree to believe that clean code helps with these issues.

I do believe that clean code eases the process of
reading code.

I do believe clean code eases the process of understanding code.

-100 -50 0 50 100 -100 -50 0 50 100

I do believe that clean code eases the process of
reusing code.

I do believe that clean code eases the process of maintaining code.

-100 -50 0 50 100 -100 -50 0 50 100

Fi

gu
re

 C

Fi
gu

re
 A

Fi
gu

re
 D

Fi

gu
re

 B

22

Figure F: Developers think clean code takes shorter time than dirty code

We then asked developers if they think it would take a shorter time to read and understand

clean code than with dirty code, which means unclean code. We asked the same question

regarding modifying code and reusing code. As illustrated in Figure F, we see that the result

is that the developers believe that it would take a shorter time to read, understand, modify, and

reuse clean code compared to unclean code.

Figure G: Clean code does not waste time from completing other tasks

In Figure G, we see that the developers strongly disagree with the statement. The statement

mentions that writing readable and understandable code wastes time and prevents a developer

from being productive. This statement shows that the developers think it is very untrue and

that it would not be counterproductive to write clean code, and that it would take time away

from completing tasks.

Figure H: Ranked code quality characteristics

23

As shown in Figure H, we can see a ranking of the code quality characteristics. This question

was adapted from Börstler et al. [4], to rank the code quality characteristics from top to bottom

using drag n drop ranking. The top three ranked are readability, comprehensibility, and

maintainability. The ones in the middle by the most important in the middle first are

correctness, structure, and testability. The bottom three are dynamic behavior, documentation,

and miscellaneous. We must also mention that we used an explanation from the same paper

we adapted the question from so that the code quality characteristics were explained further.

5.2.1 Thematic analysis

Since we asked about readable and understandable code, we also asked developers how they

check that the code is readable and understandable (Q12a), as visualized in the green branch

in Figure RQ1 Part 2. All figures regarding thematic analysis for RQ1 can be found in

Appendix E. The developers answered that checking this is mainly done via code reviews,

peer reviews, or pull requests. Some developers mentioned taking a short break from the code

they wrote to clean the current state of their minds and then re-read it. After re-reading their

code, they will ask another developer if they have time to discuss the code and review it.

Another question that we asked is somewhat related to the previous questions about readability

and understandability. That question was why or why not developers believe clean code helps

with readability and understandability. The point of view that is interesting is that one

respondent mentioned that clean code has a lack of halt criterion and fears overusing it, as

visualized in the red graph of Figure RQ1 Part 1. In comparison, other participants go back to

the definition of clean code or what clean code is. For the most part, not answering why they

think it helps. However, one respondent mentions that clean code should naturally be easier to

reason than unclean code since it is easier to read and understand. Developers also mention

that developers should create good source code since that will typically be the documentation.

Documentation will not exist for all code, and therefore the source code needs to be clean,

making it harder to create bugs in the code. We then go on to ask the same question about

reusability and maintainability instead (Q12e), as visualized in the yellow graph in Figure RQ1

Part 1. Some developers agree that the code is more likely to be reusable if the code is easy to

understand. Therefore, the developers can extend the code more easily if they understand what

the code does and be more confident in doing code changes. Developers have also mentioned

that they believe that clean code helps with reducing coupling and increasing cohesion.

However, one developer argued that, for example, using a library that maintainers clean often

could be less reusable since the maintainers clean it up and that an unclean library, in that case,

would be more reusable. Developers mention that if the code is easy to read, it will be easy to

understand. Therefore, the code will be easier to maintain.

5.3 Clean code initially or unclean code first

Figure A: Most developers refactor unclean code

24

The first question (Q9a) that we asked developers regarding RQ2 is RQ2 itself, as illustrated

in Figure A. It shows that most developers tend to write messy code first and refactor it later

to become clean code. In contrast, some of the developers write clean code initially, and some

do neither.

Figure B: Writing clean code initially is more difficult

According to Q9b illustrated in Figure B, developers seem to think differently about whether

it is more difficult to write clean code initially or not. The majority of developers agree with

the statement, meaning it is more difficult to write clean code initially, while some developers

disagree with the statement. Before making a conclusion, we have to look at the open-ended

answers since they will initially discuss the challenges with writing clean code. We will come

back to this later.

Figure C: Requirements need to be clearly specified to write clean code

Concerning the previous question, we also asked if developers think the requirements need to

be clear to write clean code. As illustrated in Figure C, most developers agreed with this, and

only a few developers disagreed or had a neutral response. We can say that the requirements,

for the most part, have to be specified clearly in order to write clean code for most developers.

Figure D: Clean code makes it easy to make modifications to the code

We then moved on to ask developers if clean code makes code easy to modify later on. As

illustrated in Figure D, the result is that developers think that writing clean code will make it

easier to modify the code later on. There is no more to say about the result than that.

25

I read and modify source code from other
programmers

I review or comment on other people's code

100 50 0 -50 -100

Other people review or comment the code that I
write

100 50 0 -50 -100

Other people are reading and modifying the
code that I write

Figure E: It is easier to write clean code at the beginning of a project

Since we also wondered whether it is easier to write clean code at the beginning of a project,

we asked developers about it, as illustrated in Figure E. It is not always the case that developers

write new code at the beginning of a project, but it can sometimes be that way. Many

developers agree with the statement in the question, but there is also a pretty large portion of

neutral and disagreeing responses. It is possible to say that it is easier to write clean code at

the beginning of a project since most developers agreed with the statement.

Figure F: Less time to write clean code towards the end

Somewhat related to the previous question, we asked if developers think they have less time

to write clean code toward the end of a project due to deadlines, to which about half of the

developers both agreed and disagreed. Figure F illustrates these responses. It is worth noting

that more developers strongly disagree than developers that strongly agree. We do not think

this is enough proof and will therefore leave it inconclusive.

The questions above illustrated in Figure G, Figure H, Figure I, and Figure J are precisely

replicated from the paper by Börstler et al. [4]. We also adapted the visualization by using a

diverged stacked bar diagram as shown from the paper. The result is quite clear that developers

read, modify, and review other people’s code and get their code read, modified, and reviewed

by other people for the most part.

Fi
gu

re
 I

Fi
gu

re
 G

Fi
gu

re
 J

Fi

gu
re

 H

26

5.3.1 Thematic analysis

We also asked the respondents to give a short text describing what they think are the main

challenges with writing clean code initially (Q9c), as shown in the pink graph in Figure RQ2

Part 1, found in Appendix E. From reading the answers and grouping them, developers seem

to say that the one of the challenges is requiring a solid understanding of the problem and

identifying the obstacles in advance. Developers do not always know what the code should

look like until beginning to write it. According to some of the developers, it is more important

for the developers to achieve functional correctness than having the code clean in the first

place. However, code might need to change when working with it to find the solution, and in

case that happens, the developer might need to restructure his or her code again. Hence, it is

more difficult to foresee how to write the code in advance.

We also asked about challenges refactoring unclean code to become clean code (Q9d), as

shown in the red graph in Figure RQ2 Part 3. According to participants, the challenge with

refactoring unclean code is understanding the unclean code so that no functionality breaks

when changing the code, so it still works as it was intended. Also, if there is a lack of tests, it

will not be easy to verify that the code behaves the same way. The developers need sufficient

amounts of tests to verify that the functional correctness is still intact. The obstacles mentioned

are that developers are sometimes inexperienced and that the code size is large. In terms of

schedule obstacles, it is related to the time it takes to refactor the code and the deadlines that

have a particular impact on whether to refactor or not, shown in the green graph in Figure RQ2

Part 2.

Some developers also added that they do neither write clean code initially nor refactor unclean

code, as illustrated in the purple graph of Figure RQ2 Part 1. One developer mentioned that he

or she writes simple code first, and in case the code did not become simple enough, he or she

would go back and refactor it. Another developer mentioned that it depends on the complexity

of the task. In case the task is simple it is easier to write clean code initially, and vice versa.

We also asked developers about the refactoring techniques and operations that they use.

According to the developers, some refactoring operations or techniques are: renaming things,

apply SOLID principles, fowler refactoring techniques, common sense, mob programming,

separate refactoring commits, extracting code blocks, functions, and classes, as illustrated in

the orange branch Figure RQ2 Part 3. Some participants mention using inbuilt IDE features to

do specific refactorings, while others do not mention any IDE. Presumingly doing the

refactoring manually. However, we asked if they use any IDE or tool that helps with

refactoring (Q9f). The IDE and tools mentioned for refactoring help were IntelliJ, Eclipse,

Visual Studio Code, PyCharm, and ApoCode, as visualized in the blue graph in Figure RQ2

Part 2. Other participants mentioned that they do it manually sometimes or that it depends on

the complexity of the refactoring task, whether they use a feature for refactoring from an IDE

or tool.

5.4 Prominent Clean Code Principles

The third question, RQ3, is investigating which practices and principles that developers think

are most prominent. Prominent in the sense of whether developers agree with a particular clean

code principle a lot. We have tried only to pick the main clean code principles since including

all principles would have extended the survey a lot and would not have been pleasant for the

participants. We have divided the principles into different categories such as general, naming,

function and methods, comment, formatting, object and data structure, error handling, unit

test, and class. Instead of having one large question in the survey about these principles, it is

more pleasant to divide them. There are three different levels of the opacity of green and red.

The darker the green color is to the right, the more the developers agree, and the darker the red

color, the more the developers disagree. In case the color is gray, then developers do neither

agree nor disagree. The negative percentages to the left in the diagrams should be read as

typical percentages without any minus sign. The exact percentages for the closed questions are

27

General principles

The Boy Scout Rule

Minimize nesting

KISS

OCP

Separate Constructing a System from Using It

-100 -50 0 50 100

Naming principles

Use Meaningful Names

Use Intention-Revealing Names

Pronounceable Names

Searchable Names

Avoid Disinformation

Avoid Mental Mapping

-100 -50 0 50 100

shown in Appendix C. To scientifically include or exclude a principle, the Wilcoxon test with

p-value was used. If p < 0.05, then the result is statistically significant, meaning that the

answers by developers are significantly higher than the neutral value equals to 4, and therefore

we include the principle and otherwise exclude it. The table for all the p values for each

principle can be seen in Appendix F.

Figure A: General principles

As illustrated in Figure A, many developers agree with The Boy Scout Rule, Minimize nesting,

and KISS principles. While many developers agree with the OCP and Separate Constructing

a System from Using It, there are also disagreeing or neutral responses. Neutral meaning

people that do neither agree nor disagree. According to the Wilcoxon test, p < 0.05 for all

principles, meaning that the answers by developers are higher than the neutral value equals to

4, and therefore, we include each one of them.

Figure B: Naming principles

Some developers seem to have some neutrality and disagreement towards Pronounceable

Names, Avoid Disinformation, and Avoid Mental Mapping. However, all naming principles

are statistically significant according to the Wilcoxon p-value, so we will include all of them.

28

Comment principles

Amplification

Clarification

Explain Yourself in Code

Explanation of Intent

TODO Comments

Warning of Consequences

-100 -50 0 50 100

Formatting principles

Team Coding Standards

Horizontal Formatting - Indentation

Dependent Functions

Vertical Distance and Ordering

Organizing for Change

-100 -50 0 50 100

Figure C: Function and Method principles

Regarding the function and method principles illustrated in Figure C, there is more variance.

Developers mostly agree with Do One Thing, Command Query Separation, Have No Side

Effects, DRY, and Methods/Functions should be small. Only a small portion of developers

somewhat disagree or have a neutral response towards Extract Try-Catch Block, Structured

Programming, and Function Arguments. The Wilcoxon test states that p < 0.05 for all function

and method principles, therefore we include all of them.

Figure D: Comment principles

As illustrated in Figure D, we can see no principle that is entirely free from disagreement by

developers for the comment principles. The developers’ responses have some neutrality or

disagreement towards each comment principle. The primary response is that developers seem

to agree with the principles, though. The scientific test also tells us that p < 0.05 for all

principles, meaning we include all of them.

Figure E: Formatting principles

Function and Method principles

Do One Thing

Command Query Separation

Extract Try-Catch Block

Have No Side Effects

DRY

Function Arguments

Structured Programming

Methods/Functions should be small

-100 -50 0 50 100

29

Object and Data Structure principles

Data/Object Anti-Symmetry

Law of Demeter

-100 -50 0 50 100

Unit Test principles

Keeping Tests Clean

One Assert per Test

Single Concept per Test

-100 -50 0 50 100

The only formatting principle that developers seem to neither agree nor disagree with is

Dependent Functions, as illustrated in Figure E. Most other principles they seem to agree with.

However, the Wilcoxon test also states that this is statistically significant and p < 0.05 for all

formatting principles, so we in include all these principles.

Figure F: Object and Data Structure principles

These two principles showed in Figure F quite many developers agree with. It seems like the

developers have some uncertainty about these. As high as about 26% neutral for Data/Object

Anti-Symmetry, and about 14% for the Law of Demeter. Due to the p-value still being less

than 0.05, we also need to include these principles.

Figure G: Error Handling principles

Moving on to error handling principles as illustrated by Figure G. There is much disagreement

with these principles. According to the Wilcoxon test, the p-value for the Write Your Try-

Catch Statement First is not statistically significant. Therefore, we exclude that principle while

including the remaining principles.

Figure H: Unit Test principles

30

Class principles

Class Organization

High Cohesion

Low Coupling

Encapsulation

Isolating from Change

SRP

Minimal Classes and Methods

One Level of Abstraction per Function

Classes should be small

-100 -50 0 50 100

Now moving on to unit test principles, we see that the only one to exclude is One Assert per

Test, aligned with the Wilcoxon test. Single Concept per Test is almost the opposite to One

Assert per Test illustrated in Figure H. However, we can see that the developers agree with the

principle of Keeping Tests Clean, and single concept per test. The Wilcoxon test shows to

include the other two principles.

Figure I: Class principles

In Figure I, we are showing class principles. Although there are many neutral and some

disagreeing responses to Class Organization, High Cohesion, One Level of Abstraction per

Function, and Classes should be small. According to the Wilcoxon test, the p-value is

statistically significant for all class principles, which means that we include all of them, and

exclude none.

Now when the prominent principles have been sorted out. We move on to the following

questions about refactoring, static analysis tools, and quality gates. These tools may help with

following the prominent clean code principles or make the code clean again.

Figure J: Refactoring to keep code clean and refactoring tools

We then asked participants about static analysis- and refactoring tools, as shown in Figure J.

We asked developers whether they believe that refactoring is a helpful tool to make the code

clean and use refactoring as a technique to keep the code clean. Developers in practice think

that refactoring is a useful tool that helps keep the code clean and that over 90% of developers

use refactoring as a technique to keep the code clean.

31

Figure K: Static analysis tools and automatic means to keep code clean

As shown in Figure K. The other questions in this section are if developers’ organizations have

any static analysis tools that help developers keep the code clean or if the organization has any

automatic means such as a quality gate not to allow committing unclean code to the repository.

Surprisingly, almost half of the developers replied with both yes and no, meaning that some

organizations use static analysis tools and some organizations do not. However, in regards to

the question on the right in Figure K, most developers have stated that their organization does

not have any automatic means that prevents developers from committing unclean code, such

as a quality gate.

5.4.1 Thematic analysis

For the question (Q8a) about principles that will help developers write better quality code, as

mentioned in the pink branch of Figure RQ3 Part 1 and Figure RQ3 Part 2, which can be found

in Appendix E. Some of the answers we got mentioned KISS, The Boy Scout Rule, SRP,

Functions/Methods should be small, etc. Also, to use coding standards and appropriate naming

to increase the code’s readability and understandability. Refactoring was also mentioned as a

technique to do combined with unit tests to check that the external behavior does not change.

One of the other questions was about if developers wrote self-explanatory code and how they

did so or if they needed to use comments (Q8b). The developers responded that they try to

write self-explanatory code by naming things appropriately. One developer mentioned that

self-explanatory code should read like a natural language. In contrast, another developer

mentioned that comments on the function, class, and package level might be necessary to

explain performance and security issues but still agreed to avoid comments on the code block

level. As a follow-up question, we asked what the developers think are the challenges with

writing self-explanatory code (Q8c), as seen in the red graph of Figure RQ3 Part 4. The

developers responded that they must think about naming things appropriately, which can be

time-consuming in some instances, and developers need to meet the deadline. Another

hindrance was that the management is preventing it and prioritizing business requirements as

more critical to implement in particular cases. Also, the tasks or requirements to implement

can sometimes be complex, and a developer needs enough understanding of the problem or

problem domain to write self-explanatory code then.

From a previous question, we know that developers use refactoring as a tool to keep the code

clean. As a follow-up question, we asked how they used refactoring to keep the code clean

(Q8f), as shown in the purple graph in Figure RQ3 Part 3. Developers mention that whenever

the code is unclean, too complex, or has other issues, they will refactor it manually or using

IDE refactoring features, thus following The Boy Scout Rule. After making the code clean,

some developers mention that they verify that the external behavior has not changed by using

unit tests. However, some developers do refactoring that is not behavior preserving and

introduces changes while refactoring.

We have also asked in a previous question about static analysis tools and automatic means to

keep the code clean, as shown in the blue graph in Figure RQ3 Part 4. We asked participants

32

about the name of these tools that they use. The mentioned static analysis tools by participants

are SonarQube, SonarLint, PMD, SpotBugs, ESLint (Q8h). Although most organizations did

not have any automatic means not to allow unclean code to go through (Q8i), the organizations

that use a quality gate or alike use SonarQube or Jenkins (Q8j).

As the last question for this section, we asked the developers if they found anything missing

from a prominent principle or practice (Q8k), illustrated in the yellow graph in Figure RQ3

Part 3. They responded that: code reviews, keeping security in mind, clean commits, they

thought were essential to think about also.

33

6 ANALYSIS

6.1 Demographics
We know that 35 of the participants are male, and 3 are female. We also see from the

demographics that most participants are between 31 to 40 years old and have more than 20

years of general programming experience. Therefore, being relevant participants to the survey.

6.2 Developers’ belief in Clean Code
From the results, we found out that developers do believe in clean code and believe it can help

write more readable, understandable, modifiable, or reusable code. No papers discuss whether

developers believe in clean code and whether they apply it in practice or not, but papers such

as [2], [3], have reported that teams need to reach a common mindset or culture of clean code.

Figure 6.2.1: Showing how we can establish a culture of clean code using the main four people-

related aspects (adapted from [2, p. 135])

According to Rachow, Schröder, and Riebisch [2], developers need to be aware of clean code,

and this paragraph will talk about what Figure 6.2.1 illustrates. Further training will improve

the developers' experience, and it will also improve the knowledge that the developers have.

Knowledge and time can lead to the awareness of code quality, which leads to the motivation

to extend their knowledge about clean code.

In the survey results, developers mention that they use code reviews to check if the code is

readable and understandable. A code review is a process of communication between the author

and the reviewer [2]. Code reviews can also transfer knowledge between developers to

improve their code quality awareness and check that code is readable and understandable.

Code reviews are an effective practice that does affect code quality positively.

Rachow, Schröder, and Riebisch [2] mention that pair programming or code reviews are used

for transferring knowledge about code quality and clean code, as shown in Figure 6.2.1. Pair

programming or code reviews are used for transferring knowledge about code quality and

clean code. In pair programming, the developers get immediate feedback from each other.

While in a code review, the author gets feedback from the reviewer about the problems with

the code written. This approach has the potential to establish solid trust and openness within

the team. Pair programming or code reviews will help improve code quality awareness for the

developers. Adhering to clean code will require developers to establish a culture for clean

code. There are many steps to get to that point, but once code quality awareness and motivation

exist within the team, building the culture for clean code should be easier. Some developers

have the urge to learn about code quality and clean code, but some developers have a

disinterest in extending their knowledge about the topic.

We also asked our participants in the questionnaire survey if they believe that it takes a shorter

time to read, understand, modify, or reuse clean code compared to unclean code. The

respondents strongly agreed with this. Only some developers disagreed that clean code would

take a shorter time to read and understand than unclean code. Arif and Rana [32] mention that

34

if developers remove code smells in advance and make the code clean, it will take 7% less

effort to add new features to the code than with unclean code. Also, Digkas et al. [22] argue

that writing clean code contributes to decreasing the technical debt density in the code, and we

can decrease it by writing new cleaner code. In this study, Digkas et al. analyzed 27 open-

source projects by the Apache Software Foundation. They found that 77% of all revisions had

lower technical debt density, so it is reasonable to argue that the technical debt density is

decreased by writing clean new code.

6.3 Clean code initially or unclean code first
The results regarding if developers write clean code initially are clear. Most developers do

write unclean code initially and refactor it later. Developers responded that they fear breaking

the code's functionality. As mentioned in [8], [22] developers are concerned with breaking the

functionality, especially if an API is used, then developers would avoid refactoring code. The

reason is that developers realized that breaking code that an API is using could affect other

client applications using that API [8].

From the results, we also see that developers in practice use refactoring as a technique to keep

the code clean. According to Digkas et al. [22], one of the more popular techniques to repay

technical debt is refactoring. We can avoid introducing as much technical debt if we do not

introduce as many code smells. According to Sae-Lim, Hayashi, and Saeki [36], proactive

refactoring is an alternative to reactive refactoring. Proactive refactoring can help developers

avoid introduce code smells since developers then can detect if a module is becoming smelly.

This proactive refactoring technique could potentially contribute to more developers writing

clean code initially instead of refactoring unclean code. They will already know that a module

is toward becoming smelly.

6.4 Prominent Clean Code Principles

In the results from the first research question, we investigate the most prominent clean code

principles. We see that developers agree with most of these principles. Only a few principles

developers disagree against. Lucena and Tizzei [26] have extended Scrum with practices and

principles from Agile Modeling, DevOps, and Software Craftsmanship. Software

Craftsmanship includes clean code practices and principles. They mention that following

Martin’s clean code principles is a practical way of showing how to adhere to the quality code

principles of Software Craftsmanship [26].

As shown in our results, we also found that developers agreed that the requirements must be

specified clearly to write clean code. Only a few developers disagreed with the previous

statement. Therefore, the findings from both the literature and the results seem to be aligned.

Lucena and Tizzei [26] also mention that integrating all of the previously mentioned

methodologies can help the development team write down the requirements more precisely. It

also showed that the development had a more sustainable velocity and could deliver a more

valuable project to the customer when applying these practices.

A participant added that developers need to have clean commits when asking if they felt like

any practice or principle was missing. Digkas et al. [22] also mention that the average commits

were cleaner if providing code quality guidelines or recurring board meetings talking about

code quality.

From the survey result, we know that most organizations do not have automatic means such

as a quality gate to prevent committing unclean code, unfortunately. On the other hand, most

organizations do have a static analysis tool that they do use to help developers adhere to coding

guidelines, which is aligned with the suggestion in [3]. Doing so can sometimes be forgotten,

and then we can have static code analyzers, quality gates, and continuous integration systems

that will help us with that. It also showed that writing new clean code can help reduce TDIs

and be more efficient and cost-effective [22].

35

7 CONCLUSION

This thesis investigates what developers in practice think about clean code. The first research

question is about if developers believe in clean code. Regarding if clean code can help with

readability, understandability, modifiability, and maintainability. We found out that

developers do believe in the effect of clean code in practice and that they quite strongly seem

to believe in it. We also asked developers how they check that the code is readable, to which

they responded that they use code reviews, peer reviews, or pull requests. Developers also

mentioned that they take a short break from the current code and then read it later to have a

clear state of mind. Therefore, it should not be a problem to establish a common mindset or

culture for clean code if most developers believe in it, meaning that most developers would

follow the clean code paradigm.

The second research question is whether developers in practice write clean code initially or

prefer to write unclean code first and then refactor it to become clean code. We found that

most developers do usually not write clean code initially because it would require them to find

the solution and obstacles in advance. Also, developers mention that they do not always know

how the code should look like before beginning writing it, making it difficult to write clean

code initially. Some developers do write clean code initially, but these are fewer than those

that write unclean code. Some developers do both depending on the complexity and difficulty

level of the task. If the task is simple, it is easier to write clean code initially than if the task

was complex. Some developers also do neither of these three.

The last research question investigates the most prominent clean code principles that

developers think are prominent and which principles we should discard, if any. We found out

that most developers see most clean code principles as prominent and discarding only a few

of them. Also, the developers added a practice about code review as being essential to check

the readability and understandability of the code. Further also explaining that developers

should use coding standards and appropriate naming to increase the code’s readability and

understandability in the open-ended answers. We also asked developers if they write self-

explanatory code instead of using comments, to which most developers responded that they

do. However, in some instances, like for security and performance issues, a comment might

be needed, but developers agreed to use self-explanatory code instead of comments on the

code block level.

36

8 VALIDITY THREATS

Here we will describe the threats to the validity of the literature review and the survey. We are

also describing how we mitigated some threats to validity partially or entirely if any.

Internal validity. A threat to the internal validity is that we only considered some practices

and principles, which means that we may have missed principles and practices that the

developers would otherwise have found prominent. We mitigated this threat by: 1) doing an

SLR to identify principles and practices, and 2) including an optional question asking whether

we missed any practice or principle that the developer considers prominent. This fix only

partially mitigates this risk. Another threat is that no respondents disagreed with some of the

questions, such as The Boy Scout Rule: a developer should leave the code cleaner than they

found it [1]. Developers know that this is something they should do, so they might have agreed

with it because of that, and not because that they follow The Boy Scout Rule. The same goes

for another question which was about if they use refactoring to clean up the code.

External validity is about whether it is possible to generalize the results. The survey was

shared using social networks and internally within some companies. Unfortunately, we only

have 38 respondents who entirely completed the survey, which means that the results cannot

be generalized. However, 30 of the respondents are from different companies and have worked

within the software engineering field, having more than three years of experience as

developers. Therefore, the results are still relevant. Another threat is that the completion rate

of the survey is only 6.11% which is relatively low.

Construct validity is concerned with the relationship between the theoretical and empirical

parts. Another threat to validity is that a respondent did not understand the clean code principle

that we showed. When showing the clean code principles, we display its name and then a short

description of it underneath its name. We also had a link that participants could click on to get

more info about a specific principle if needed if a participant did not understand the principle.

This risk was further mitigated by sending the survey to a beta tester with experience within

surveys and then correcting the survey according to the beta tester’s feedback and using the

feedback to fix questions that were difficult to interpret or had other issues. Hopefully, this

helped mitigate the risk of a participant not understanding a principle. However, there is

always a risk that a participant read the explanation too fast and interpreted a principle

differently.

It is also that participants might be reluctant to give answers that do not represent professional

or ethical attitudes. For example, if participants do not care about some questions, they might

not want to answer that they do not care since this does not represent professionalism even if

they think it does not matter.

It is also not certain that the participants are native English speakers, so it can generate

unclarities in the responses, making it more difficult to interpret the answer to the question.

Reliability validity was improved by assessing the seed and iterations in the literature review.

The researchers did this separately in parallel and then discussed which clean code principles

should be included after reaching a consensus.

37

9 FUTURE WORK

From the analysis of the second research question. We learned that developers either write

clean code initially, refactor unclean code, do both depending on the context, or do neither.

We do not know anything about how the developers achieve to write clean code initially. We

only asked about the challenges with writing clean code initially. A possible area of further

research might focus on expanding upon what developers do to write clean code initially to

achieve this. We could also investigate when developers find it suitable to write clean code

initially and when they find it more suitable to write unclean code and refactor it to become

clean code later — investigating the trade-off between which way works best scenarios.

Another alternative for future research regarding the second research question is to use a

machine learning approach that was suggested in the paper written by Sae-Lim, Hayashi, and

Saeki [36]. This approach was suggested to identify if a module is becoming smelly and

prevent it in advance more efficiently using a machine-learning algorithm. If developers can

use a machine-learning algorithm to prevent code smells, this may help to decrease the

technical debt introduced to the code. A machine-learning algorithm might predict what will

happen to the code if it has enough data collected to analyze. Therefore, it may help developers

write clean code initially without needing to refactor unclean code as much if that is the case.

Regarding the last research question, the future questions that can be studied as follow-ups to

this thesis are how developers would use the prominent practices and principles in practice,

gaining a better understanding of why these practices and principles are prominent to

developers' in practice. Understanding how the developers use these principles and practices

is the next step to see how it can help, preferably interviewing developers about these

principles and practices or conducting an experiment on how developers use these principles

and practices.

Another option is that we can continue investigating the clean code principles using an

experiment as future research. Code snippets can be given to participants to rate which code

snippets are cleaner. To investigate whether participants know what clean code and unclean

code are and see their differences. We can also ask them to clean up unclean code to identify

the strategy that they use. First, we identify the strategy they use to clean up the code without

introducing the clean code principles and then analyzing how they fixed it. Then we do the

same thing again but introduce the clean code principles this time to compare if it has a positive

effect on cleaning up the code.

We could also investigate how the code gets cleaner. A possible approach to do this would be

to use either case studies or static analyzers to assess the code quality. We will need developers

that have experience in development to continue with this investigation. Using static analyzers,

we can probably check if the commits are becoming cleaner and automate the process and

avoid researcher bias.

38

10 REFERENCES

[1] R. C. Martin, Clean Code: A Handbook of Agile Software Craftsmanship, Stoughton,

MA, USA: Pearson Education, 2009.

[2] P. Rachow, S. Schröder and M. Riebisch, "Missing Clean Code Acceptance and

Support in Practice - An Empirical Study," in 2018 25th Australasian Software

Engineering Conf. (ASWEC), Adelaide, SA, Australia, 2018.

[3] B. Latte, S. Henning and M. Wojcieszak, "Clean Code: On the Use of Practices and

Tools to Produce Maintainable Code for Long-Living Software," in EMLS 2019: 6th

Collaborative Workshop on Evolution and Maintenance of Long-Living Systems,

Stuttgart, 2019.

[4] J. Börstler, H. Störrle, D. Toll, J. Assema, R. Duran, S. Hooshangi, J. Jeuring, H.

Keuning, C. Kleiner and B. MacKellar, "“I know it when I see it” – Perceptions of

Code Quality," in Proc. 2017 ITiCSE Conf. Working Group Reports, Bologna, Italy,

2017.

[5] P. J, Lanza, M and B. G, "Improving Code: The (Mis)perception of Quality Metrics,"

in 2018 IEEE International Conf. Software Maintenance and Evolution (ICSME),

Madrid, Spain, 2018.

[6] W. H. Brown, R. C. Malveau, H. W. McComick and T. J. Mowbray, AntiPatterns:

Refactoring Software, Architectures, and Projects in Crisis, Wiley, 1998.

[7] M. Fowler, K. Beck, J. Brant, W. Opdyke and D. Roberts, Refactoring: Improving the

Design of Existing Code, Addison-Wesley, 1999.

[8] A. Yamashita and L. Moonen, "Do developers care about code smells? An exploratory

survey," in 2013 20th Working Conf. Reverse Engineering (WCRE), Koblenz,

Germany, 2013.

[9] S. Tushar, S. Girish and S. Ganesh, "Challenges to and Solutions for Refactoring

Adoption: An Industrial Perspective," IEEE Software, vol. 32, no. 6, pp. 44-51, 2015.

[10] P. Avgeriou, P. Kruchten, I. Ozkaya and C. Seaman, "Managing Technical Debt in

Software Engineering (Dagstuhl Seminar 16162)," Dagstuhl Reports, vol. 6, no. 4,

Oct., pp. 110-138, 2016.

[11] P. Kruchten, R. Nord and I. Ozkaya, Managing Technical Debt: Reducing Friction in

Software Development, Pittsburgh, Pennsylvania, US: Pearson, 2019.

[12] M. Kim, T. Zimmerman and N. Nagappan, "A Field Study of Refactoring Challenges

and Benefits," in FSE '12: Proc. ACM SIGSOFT 20th International Symposium on the

Foundations of Software Engineering, Cary, North Carolina, US, 2012.

[13] E. Zabardast, J. Gonzalez-Huerta and D. Šmite, "Refactoring, Bug Fixing, and New

Development Effect on Technical Debt: An Industrial Case Study," in 2020 46th

Euromicro Conf. Software Engineering and Advanced Applications (SEAA), Portoroz,

Slovenia, 2020.

[14] C. Wohlin, "Guidelines for snowballing in systematic literature studies and a

replication in software engineering," in EASE '14: Proc. 18th International Conf.

Evaluation and Assessment in Software Engineering, 2014.

[15] L. Cohen, L. Manion and K. Morrison, Research Methods in Education, 7th ed.

Reading, NY: Routledge, 2011. [E-book] Available: ProQuest Ebook Central.

[16] A. Bhatia and C. Yu-Wei, Machine Learning with R Cookbook, Birmingham, UK:

Packt Publishing, 2017.

[17] V. Braun and V. Clarke, "What can “thematic analysis” offer health and wellbeing

researchers?," International Journal of Qualitative Studies on Health and Well-being ,

vol. 9, no. 1, pp. 1-2, 2014.

39

[18] V. Braun and V. Clarke, "Using thematic analysis in psychology," Qualitative

Research in Psychology , vol. 3, no. 2, pp. 77-101, 2008.

[19] A. Sundelin, J. G. Huerta, K. Wnuk and T. Gorschek, "Towards an Anatomy of

Software Craftsmanship," Transactions on Software Engineering Methodology,

accepted, to appear, 2021.

[20] M. Ivarsson and T. Gorschek, "A method for evaluating rigor and industrial relevance

of technology evaluations," Empirical Software Engineering, vol. 16, pp. 365-395, 6

Oct 2011.

[21] P. Lerthathairat and N. Prompoon, "An Approach for Source Code Classification to

Enhance Maintainability," in 2011 Eighth International Joint Conf. Computer Science

and Software Engineering (JCSSE), Nakhonpathom, Thailand, 2011.

[22] G. Digkas, A. Chatzigeorgiou, A. Ampatzoglou and P. Avgeriou, "Can Clean New

Code reduce Technical Debt Density?," IEEE TRANSACTIONS ON SOFTWARE

ENGINEERING, accepted, to appear, 2020.

[23] P. Lerthathairat and N. Prompoon, "An Approach for Source Code Classification

Using Software Metrics and Fuzzy Logic to Improve Code Quality with Refactoring

Techniques," in International Conf. Software Engineering and Computer Systems,

2011.

[24] E. Ammerlaan, W. Veninga and A. Zaidman, "Old Habits Die Hard: Why Refactoring

for," in 2015 IEEE 22nd International Conf. Software Analysis, Evolution, and

Reengineering (SANER), Montreal, QC, Canada, 2015.

[25] C. Dibble and P. Gestwicki, "REFACTORING CODE TO INCREASE

READABILITY AND MAINTAINABILITY: A CASE STUDY," Journal of

Computing Sciences in Colleges, vol. 30, no. 1, pp. 41-51, 2014.

[26] P. Lucena and L. P. Tizzei, "Applying Software Craftsmanship Practices to a Scrum

Project: an Experience Report," in Proc. 2016 Workshop on Social, Human and

Economics Aspects of Software, 2016.

[27] J. Stevenson and M. Wood, "Recognising object-oriented software design quality: a

practitioner-based questionnaire survey," Software Quality Journal, vol. 26, pp. 321-

365, 2017.

[28] D. Steidl, F. Deissenboeck, M. Poehlmann, R. Heinke and B. Uhink-Mergenthaler,

"Continuous Software Quality Control in Practice," in 2014 IEEE International Conf.

Software Maintenance and Evolution, Victoria, BC, Canada, 2014.

[29] S. Ajami, Y. Woodbridge and D. G. Feitelson, "Syntax, predicates, idioms — what

really affects code," Empirical Software Engineering, vol. 24, pp. 287-328, 2018.

[30] E. Avidan and D. G. Feitelson, "Effects of Variable Names on Comprehension: An

Empirical Study," in 2017 IEEE 25th International Conference on Program

Comprehension (ICPC), Buenos Aires, Argentina, 2017.

[31] T. Lee, J.-B. Lee and H. P. IN, "Effect Analysis of Coding Convention Violations on

Readability of Post-Delivered Code," IEICE TRANS. INF. & SYST, Vols. E98-D, no. 7,

pp. 1286-1296, 2015.

[32] A. Arif and Z. Rana, "Refactoring of Code to Remove Technical Debt and Reduce

Maintenance Effort," in 2020 14th International Conf. Open Source Systems and

Technologies (ICOSST), Lahore, Pakistan, 2020.

[33] A. Almogahed, M. Omar and N. Zakaria, "Categorization Refactoring Techniques

based on their Effect on Software Quality Attributes," International Journal of

Innovative Technology and Exploring Engineering (IJITEE), vol. 8, no. 8S, pp. 439-

445, 2019.

[34] A. Almogahed, M. Omar and N. Zakaria, "Impact of Software Refactoring on Software

Quality in the Industrial Environment: A Review of Empirical Studies," in Knowledge

Management International Conf. (KMICe) 2018,, Miri Sarawak, Malaysia, 2018.

40

[35] J. A. Dallal and A. Abdin, "Empirical Evaluation of the Impact of Object-Oriented

Code Refactoring on Quality Attributes: A Systematic Literature Review," IEEE

TRANSACTIONS ON SOFTWARE ENGINEERING, vol. 44, no. 1, pp. 44-69, 2018.

[36] N. Sae-Lim, S. Hayashi and M. Saeki, "Toward Proactive Refactoring: An Exploratory

Study on Decaying Modules," in 2019 IEEE/ACM 3rd International Workshop on

Refactoring (IWoR), Montreal, QC, Canada, 2019.

[37] M. Hansen, R. Goldstone and A. Lumsdaine, "What Makes Code Hard to

Understand?," https://arxiv.org/abs/1304.5257, 2013.

[38] P. Jevgenija, Z. Fiorella, S. Simone, P. Valentina and O. Rocco, "Why Developers

Refactor Source Code: A Mining-based Study," ACM Transactions on Software

Engineering and Methodology, vol. 29, no. 4, pp. 1-30, 2020.

[39] M. Vakilian, N. Chen, S. Negara, B. A. Rajkumar, B. P. Bailey and R. E. Johnson,

"Use, Disuse, and Misuse of Automated Refactorings," in 2012 34th International

Conf. Software Engineering (ICSE), Zurich, Switzerland, 2012.

[40] E. A. AlOmar, H. AlRubaye, M. W. Mkaouer, A. Ouni and M. Kessentini,

"Refactoring Practices in the Context of Modern Code Review: An Industrial Case

Study at Xerox," in 2021 IEEE/ACM 43rd International Conf. Software Engineering:

Software Engineering in Practice (ICSE-SEIP), Madrid, Spain, 2021.

[41] T. Sedano, "Code Readability Testing, an Empirical Study," in 2016 IEEE 29th

International Conf. Software Engineering Education and Training, Dallas, TX, USA,

2016.

[42] J. Johnson, S. Lubo, N. Yedla, J. Aponte and B. Sharif, "An Empirical Study Assessing

Source Code Readability in Comprehension," in 2019 IEEE International Conf.

Software Maintenance and Evolution (ICSME), Cleveland, OH, USA, 2019.

[43] E. Avidan and D. Feitelson, "Effects of variable names on comprehension an empirical

study," in Proc. 25th International Conf. Program Comprehension, Buenos Aires,

Argentina, 2017.

41

11 APPENDIXES

11.1 Appendix A

Survey with the questions.

Demographics

ID Question text Answer format

Q1 To which gender identity you most identify? M / F / Other

Q2 What age group do you belong to? List of number groups

Q3 What is your highest education degree? List of education degrees

Q4 How many years of programming experience do you have? List of number groups

Q5 I am comfortable programming in [language] 7-item Likert-scale matrix

Q6 What area do you work within? Short text (Optional)

RQ1

ID Question text Answer format

Q7a This survey is about Clean Code. When you write your

answers about Clean Code: What programming language do

you have in mind?

List of programming languages

+ other programming language

Q7b I have heard of some of the essential Clean Code practices

and principles before.

7-item Likert-scale

Q7c General principles
Do you agree with the clean-code [principle]

7-item Likert-scale

Q7d Naming principles
Do you agree with the clean-code [principle]

7-item Likert-scale

Q7e Function and Method principles
Do you agree with the clean-code [principle]

7-item Likert-scale

Q7f Comment principles
Do you agree with the clean-code [principle]

7-item Likert-scale

Q7g Formatting principles
Do you agree with the clean-code [principle]

7-item Likert-scale

Q7h Object and Data Structure principles
Do you agree with the clean-code [principle]

7-item Likert-scale

Q7i Error Handling principles
Do you agree with the clean-code [principle]

7-item Likert-scale

Q7j Unit Test principles
Do you agree with the clean-code [principle]

7-item Likert-scale

Q7k Class principles
Do you agree with the clean-code [principle]

7-item Likert-scale

RQ1a

ID Question text Answer format

Q8a What are the essential clean code practices and principles

you think will help developers write better quality code, and

why?

Short text

Q8b What do you do to write self-explanatory code? Or do you

need to use comments to explain the code?

Short text

Q8c What are the challenges or hindrances with writing self-

explanatory code, if any?

Short text

Q8d I think refactoring is a useful tool to make code clean. 7-item Likert-scale

Q8e Do you use refactoring as a technique to keep the code clean? Yes / No

42

Q8f How do you use refactoring as a technique to keep the code

clean?

Short text (Optional)

Q8g My organization has static analysis tools in place to keep the

code clean

Yes / No

Q8h Describe your organization’s static analysis tool or tools in
place to keep the code clean

Short text (Optional)

Q8i My organization has automatic means not to allow unclean

code to go through (e.g., Quality Gate).

Yes / No

Q8j Which is the automatic tool within the organization used to

prevent developers from committing unclean code?

Short text (Optional)

Q8k Any practice or principle that you see as essential for keeping

the code clean, and that has not been mentioned?

Short text (Optional)

RQ2

ID Question text Answer format

Q9a Do you write clean code initially or write “messy” code that
you refactor later?

Initially, Refactor it, None of

these
Q9b It is more difficult to write clean code initially 7-item Likert-scale

Q9c What do you think are/would be the challenges with writing

clean code initially?

Short text

Q9d What do you think are/would be the challenges with

refactoring unclean code to become clean code?

Short text

Q9e What operations or techniques do you usually use to refactor

code when needed?

Short text

Q9f Do you use any IDE/tool that helps with refactoring? Short text

Q9g I do believe refactoring has a positive effect on the quality of

code.

7-item Likert-scale

Q9h To write clean code initially, the requirements have to be
clearly specified

7-item Likert-scale

Q9i It is/would be easier to write clean code at the beginning of a

project

7-item Likert-scale

Q9j Writing clean code make it easier to make modifications to

the code later on

7-item Likert-scale

Q9k I have less time to write clean code towards the end of a

project due to deadlines

7-item Likert-scale

RQ2a

The questions in the table below are replicated exactly from the reference [4]

ID Question text Answer format

Q10a I read and modify source code from other programmers 7-item Likert-scale

Q10b I review or comment on other people’s code 7-item Likert-scale

Q10c Other people are reading and modifying the code that I write 7-item Likert-scale

Q10d Other people review or comment the code that I write 7-item Likert-scale

RQ3

The first question in the table below are adapted from the reference [4]
ID Question text Answer format

Q11a Rank the code quality characteristics from most important at

the top to least important at the bottom

Drag and Drop Ranking

Q11b I do believe clean code eases the process of reading code. 7-item Likert-scale

Q11c I do believe clean code eases the process of understanding

code.

7-item Likert-scale

Q11d I do believe clean code eases the process of reusing code. 7-item Likert-scale

43

Q11e I do believe clean code eases the process of maintaining

code.

7-item Likert-scale

Q11f Writing readable and understandable code is wasting time,

and prevents you from being productive and completing

tasks.

7-item Likert-scale

RQ3a

ID Question text Answer format

Q12a How do you check that your code is readable and

understandable by others?

Short text

Q12b Do you believe that clean code helps with the readability and

understandability of code?

7-item Likert-scale

Q12c Why or why not do you believe clean code helps with
readability and understandability?

Short text

Q12d Do you believe that clean code helps with the reusability and

maintainability of code?

7-item Likert-scale

Q12e Why or why not do you believe clean code helps with
reusability and maintainability?

Short text

Q12f Reading and understanding clean code takes shorter time

than reading and understanding the same dirty code.

7-item Likert-scale

Q12g Reusing clean code takes shorter time than reusing the same
dirty code.

7-item Likert-scale

Q12h Modifying clean code takes shorter time than modifying the

same dirty code.

7-item Likert-scale

11.2 Appendix B

Most of the explanations for the short description we reference the Clean Code book [1]

denoted as B in the table. The exception is the minimizing nesting principle which we

reference by using the paper from Johnson et al. [42].

44

Table of General

principles

 Table of Naming

principles

Principle Short description (2

lines)

Literature Evidence

of its use

in practice

Principle Short description (2 lines) Literature Evidence

of its use

in practice

Boy scout rule Leave the code cleaner

than it was when you

arrived

B, P2, S05 Use Meaningful

Names

Names should mean something

to the developers

B, S01,

S02, S04,

S06

Minimize nesting Try not to use nested

code blocks

P18 Use Intention-

Revealing Names

Reveal the intent of what it does

or how it is used

B

KISS – Keep It

Simple, Stupid!

Keep the code simple,

avoid complexity

B, P1, S02 Pronounceable

Names

Easy to say orally B

OCP – Open Closed

Principle

Function, class, module,

etc. open for extension

but closed for

modification

B, P1, S06 Searchable Names Find the name when searching

for it

B

Separate

Constructing a

System from Using it

The logic for creating

objects, and logic for

using objects, is

separated

B Avoid

Disinformation

False names, obscuring the logic B

 Avoid Mental

Mapping

Do not use another name for

concepts developers already

know

B

Table of Function

and Method

principles

 Table of

Comment

principles

Principle Short description (2

lines)

Literature Evidence

of its use

in practice

Principle Short description (2 lines) Literature Evidence

of its use

in practice

45

Do One Thing Do one thing, and not

multiple things

B, P1, S06 Amplification Explain why a specific change is

significant

B

Command Query

Separation

Do something or

answer something, but

not both [7]

B Clarification If it is unclear what the code

does, then use a comment to

explain what it does

B

Extract Try-Catch

Block

Put the try-catch block

in a function of its own

B Explain Yourself

In Code

Try to explain in code without

using comments if possible

B

Have No Side Effects Do one thing, and not

multiple other things,

also

B, S06 Explanation of

Intent

When the intent is not self-

explained by the code, write a

comment

B

DRY – Don’t Repeat

Yourself

No duplication or alike

(e.g., almost identical

blocks of code)

B, S02, S07,

P9, P11, P15,

P18

 TODO Comments Leave TODO comments when

you think something should be

done, but you cannot implement

it at the moment

B

Function Arguments Only 1 – 3 arguments

passed to a function

B, S06 Warning of

Consequences

Warn other developers about

running the code for some

reason

B

Structured

Programming

Large functions have

one entry, one exit.

Avoid break, continue,

and goto

B

Methods/Functions

should be small

The size/length of a

function or method

should be small

B, S06, P1 P1

Table of Formatting

principles

 Table of Object

and Data

Structure

principles

46

Principle Short description (2

lines)

Literature Evidence

of its use

in practice

Principle Short description (2 lines) Literature Evidence

of its use

in practice

Team Coding

Standards

Reach a consensus

about the coding

standard

B, S03, S08,

S09, P18

 Data/Object Anti-

Symmetry

Objects should hide

implementations, but data

structures should expose their

data

B

Horizontal

Formatting –

Indentation

Use indentation (e.g.,

tabs or spaces)

B, P14 Law of Demeter Do not invoke more than one

method upon a method that

returns an object. If a method

returns an object [7], then do not

call methods on that object if it

is possible to do so.

B

Dependent Functions “The caller should be

above the callee, if at all

possible.” [7]

B

Vertical Distance and

Ordering

Blank lines, close

related lines, order of

lines

B, P14

Organizing for

Change

Classes should not be

sensitive to code

changes

B

Table of Error

Handling principles

 Table of Unit Test

principles

47

Principle Short description (2

lines)

Literature Evidence

of its use

in practice

Principle Short description (2 lines) Literature Evidence

of its use

in practice

Prefer Exceptions to

Returning Error

Codes

Throw exceptions rather

than returning error

codes

B Keeping Tests

Clean

Tests needs to be kept clean,

because they become sort of a

mess otherwise

B

Don’t Pass Null Do not pass NULL as

an argument to a

function

B One Assert per

Test

One assert in each test, not

multiple asserts

B

Don’t Return Null Do not return NULL

from a function

B Single Concept

per Test

One or multiple asserts, but for

single concept is OK

B

Write Your Try-

Catch Statement First

Begin with writing your

try-catch statement to

think about error

handling

B

Table of Class

principles

Principle Short description (2

lines)

Literature Evidence

of its use in

practice

48

Class Organization Throw exceptions rather

than returning error

codes

B

High Cohesion High cohesion is

concerned with how

closely related the

connections are within a

module or a class

B, S02, S03,

S04, S05, P1,

P8, P11, P12,

P15, P17

P1

Low Coupling Low coupling refers to

a module or class that

does not have many

connections to other

classes or modules

B, S02, S03,

S04, S05, S06,

S08, P1, P8,

P9, P11, P15,

P17

P1

Encapsulation A class should hide

some of its behavior,

and data should be kept

private (unless it is a

data class)

B, P11, P15

Isolating from

Change

Create interfaces or

abstract classes to cope

with change

B

SRP – Single

Responsibility

Principle

A class or module

should only have one

responsibility

B, S02, S06,

S07, S08, P1,

P3, P17

P1

Minimal Classes and

Methods

Do not create too many

classes and methods

B

One Level of

Abstraction per

Function

High-abstraction or

low-abstraction. Do not

intermix these.

B, P4, P15, P17 P4

49

Classes should be

small

The responsibilities of a

class should be kept low

B, S02, S06, P1 P1

11.3 Appendix C

Exact percentages or numbers from the closed-questions.

11.3.1 Likert scale questions

Strongly disagree = SD Strongly agree = SA

Disagree = D Agree = A

Somewhat disagree = SWD Somewhat agree = SWD

Neither agree or disagree = NAD

11.3.1.1 RQ1

ID Question text SD D SWD NAD SWA A SA

Q7b I have heard of some of the essential Clean Code

practices and principles before.

0% 0% 0% 3.7% 18.52% 22.22% 55.56%

Q7c General principles

Do you agree with the [principle]
SD D SwD NAD SwA A SA

 Separate Constructing a System from Using
It

OCP

0

0

5.26

5.26

0

10.53

7.89

7.89

10.53

15.79

44.74

36.84

31.58

23.69

 KISS 0 0 0 5.26 5.26 28.95 60.53
 Minimize nesting 0 0 2.63 0 5.26 31.58 60.53

50

 The Boy Scout Rule 0 0 0 0 13.16 28.95 57.89

Q7d Naming principles
Do you agree with the [principle]

SD D SwD NAD SwA A SA

 Avoid Mental Mapping 0 0 2.63 5.26 13.16 31.58 47.37

 Avoid Disinformation 0 0 0 2.63 0 15.79 81.58

 Searchable Names 0 0 2.7 5.41 13.51 24.32 54.05

 Pronounceable Names 0 0 2.63 15.79 18.42 28.95 34.21

 Use Intention-Revealing Names 0 0 0 2.63 5.26 21.05 71.05

 Use Meaningful Names 0 0 0 0 5.26 13.16 81.58

Q7e Function and Method principles
Do you agree with the [principle]

SD D SwD NAD SwA A SA

 Methods/Functions should be small 0 0 2.63 7.89 13.16 34.21 42.11

 Structured Programming 2.63 5.26 7.89 5.26 21.05 44.74 13.16

 Function Arguments 0 5.41 0 10.81 32.43 35.14 16.22

 DRY 0 0 5.26 5.26 26.32 23.68 39.47

 Have No Side Effects 0 0 0 5.26 13.16 28.95 52.63

 Extract Try-Catch Block 0 2.63 15.79 26.32 23.68 26.32 5.26

 Command Query Separation 0 0 5.26 2.63 23.68 26.32 5.26

 Do One Thing 0 0 0 2.63 15.79 36.84 44.74

Q7f Comment principles
Do you agree with the [principle]

SD D SwD NAD SwA A SA

 Warning of Consequences 2.63 2.63 2.63 18.42 21.05 36.84 15.79

 TODO Comments 2.63 7.89 5.26 13.16 10.53 31.58 28.95
 Explanation of Intent 2.63 7.89 0 0 15.79 42.11 31.58

51

 Explain Yourself in Code 2.63 2.63 0 0 5.26 31.58 57.89

 Clarification 2.63 13.16 10.53 2.63 18.42 26.32 26.32

 Amplification 2.7 8.11 2.7 5.41 35.14 27.03 18.92

Q7g Formatting principles
Do you agree with the [principle]

SD D SwD NAD SwA A SA

 Organizing for Change 0 0 0 5.26 13.16 39.47 42.11

 Vertical Distance and Ordering 0 0 0 7.89 26.32 36.84 28.95

 Dependent Functions 0 0 2.63 21.05 28.95 31.58 15.79

 Horizontal Formatting - Indentation 0 0 2.63 2.63 2.63 31.58 60.53

 Team Coding Standards 0 0 0 0 2.63 42.11 55.26

Q7h Object and Data Structure principles
Do you agree with the [principle]

SD D SwD NAD SwA A SA

 Law of Demeter 0 0 2.63 15.79 13.16 31.58 36.84

 Data/Object Anti-Symmetry 0 0 5.26 26.32 23.68 21.05 23.68

Q7i Error Handling principles
Do you agree with the [principle]

SD D SwD NAD SwA A SA

 Write Your Try-Catch Statement First 7.89 10.53 10.53 44.74 5.26 13.16 7.89

 Don't Return Null 7.89 13.16 13.16 5.26 18.42 31.58 10.53

 Don't Pass Null 5.26 13.16 10.53 7.89 15.79 34.21 13.16

 Prefer Exceptions to Returning Error Codes 5.26 0 5.26 10.53 13.16 34.21 31.58

Q7j Unit Test principles
Do you agree with the [principle]

SD D SwD NAD SwA A SA

 Single Concept per Test 2.63 2.63 2.63 2.63 5.26 36.84 47.37

52

 One Assert per Test 5.26 18.42 23.68 13.16 13.16 18.42 7.89

Keeping Tests Clean 0 0 0 5.26 5.26 52.63 36.84

Q7k Class principles
Do you agree with the [principle]

SD D SwD NAD SwA A SA

 Classes should be small 0 0 0 13.16 26.32 31.58 28.95

 One Level of Abstraction per Function 0 0 0 13.16 31.58 34.21 21.05

 Minimal Classes and Methods 5.26 5.26 7.89 10.53 34.21 18.42 18.42

 SRP 0 0 2.63 7.89 23.68 26.32 39.47

 Isolating from Change 0 0 2.63 7.89 15.79 28.95 36.84

 Encapsulation 0 0 0 5.26 10.53 36.84 47.37

 Low Coupling 0 0 0 8.11 16.22 37.84 37.84

 High Cohesion 0 2.7 0 16.22 16.22 40.54 24.32
 Class Organization 2.63 0 2.63 21.05 26.32 23.68 23.68

11.3.1.2 RQ1a

ID Question text SD D SWD NAD SWA A SA

Q8b I think refactoring is a useful tool to make code

clean.

0% 0% 0% 2.63% 10.53% 21.05% 65.79%

11.3.1.3 RQ2

ID Question text SD D SWD NAD SWA A SA

Q9b It is more difficult to write clean code initially 5.26% 10.53% 5.26% 13.16% 26.32% 28.95% 10.53%

Q9g I do believe refactoring has a positive effect on the

quality of code.

0% 0% 0% 0% 5.26% 28.95% 65.79%

Q9h To write clean code initially, the requirements

have to be clearly specified

2.63% 5.26% 5.26% 10.53% 18.42% 31.58% 26.32%

53

Q9i It is/would be easier to write clean code at the

beginning of a project

0% 7.89% 10.53% 18.42% 31.58% 18.42% 13.16%

Q9j Writing clean code make it easier to make

modifications to the code later on

0% 0% 0% 2.63% 5.26% 34.21% 57.89%

Q9k I have less time to write clean code towards the

end of a project due to deadlines

10.53% 7.89% 18.42% 26.32% 15.79% 15.79% 5.26%

11.3.1.4 RQ2a

ID Question text SD D SWD NAD SWA A SA

Q10a I read and modify source code from other

programmers

0% 5.26% 5.26% 5.26% 13.16% 21.05% 50%

Q10b I review or comment on other people's code 0% 0% 0% 0% 10.53% 18.42% 71.05%

Q10c Other people are reading and modifying the code

that I write

0% 2.63% 2.63% 5.26% 5.26% 23.68% 60.53%

Q10d Other people review or comment the code that I
write

0% 0% 5.26% 2.63% 5.26% 15.79% 71.05%

11.3.1.5 RQ3

ID Question text SD D SWD NAD SWA A SA

Q11b I do believe clean code eases the process of

reading code.

0% 0% 0% 0% 0% 19.23% 80.77%

Q11c I do believe clean code eases the process of

understanding code.

0% 0% 0% 0% 3.85% 19.23% 76.92%

Q11d I do believe clean code eases the process of reusing

code.

0% 0% 0% 3.85% 7.69% 19.23% 69.23%

Q11e I do believe clean code eases the process of

maintaining code.

0% 0% 3.85% 0% 0% 19.23% 76.92%

54

Q11f Writing readable and understandable code is

wasting time, and prevents you from being
productive and completing tasks.

69.23% 15.28% 3.85% 0% 0% 7.69% 3.85%

11.3.1.6 RQ3a

ID Question text SD D SWD NAD SWA A SA

Q12b Do you believe that clean code helps with the

readability and understandability of code?

0% 0% 0% 0% 3.85% 19.23% 76.92%

Q12d Do you believe that clean code helps with the

reusability and maintainability of code?

0% 0% 0% 0% 0% 38.46% 61.54%

Q12f Reading and understanding clean code takes

shorter time than reading and understanding the
same dirty code.

0% 0% 3.85% 0% 0% 23.08% 73.08%

Q12g Reusing clean code takes shorter time than reusing

the same dirty code.

0% 0% 0% 7.69% 0% 23.08% 69.23%

Q12h Modifying clean code takes shorter time than
modifying the same dirty code.

0% 0% 0% 0% 7.69% 11.54% 80.77%

11.3.2 Other question types

11.3.2.1 RQ1

ID Question text Python JavaScript Java C++ C C# Kotlin Swift Go Scala Other

Q7a This survey is about Clean Code. When

you write your answers about Clean

Code: What programming language do
you have in mind?

2.63% 13.16% 55.26% 0% 0% 7.89% 2.63% 2.63% 7.89% 0% 7.89%

55

11.3.2.2 RQ1a

ID Question text Yes No

Q8e Do you use refactoring as a technique to keep the code clean? 96.30% 3.70%

Q8g My organization has static analysis tools in place to keep the

code clean

59.26% 40.74%

Q8i My organization has automatic means not to allow unclean

code to go through (e.g., Quality Gate)

66.67% 33.33%

11.3.2.3 RQ2

ID Question text Initially Refactor None of these

Q9a Do you write clean code initially or write “messy” code that
you refactor later?

26.32% 26.32% 52.63%

11.3.2.4 RQ3

Q11a. Rank the code quality characteristics from most important at the top to least important at the bottom.

The more 1’s a code quality characteristic has, the higher up it is in the list. The more 9’s it has, the lower it is in the list.

Rank the code quality characteristics () * + , - . / 0

Readability 34% 18% 16% 11% 11% 5% 5% 0% 0%

Structure 11% 19% 11% 14% 16% 8% 16% 3% 3%

Comprehensibility 5% 16% 24% 22% 14% 14% 5% 0% 0%

Maintainability 11% 5% 19% 27% 22% 14% 3% 0% 0%

Correctness 30% 14% 8% 11% 16% 16% 3% 3% 0%

Documentation 0% 3% 0% 3% 0% 8% 22% 46% 19%

Testability 11% 19% 19% 8% 11% 16% 5% 11% 0%

56

Dynamic Behavior 0% 5% 3% 5% 11% 16% 35% 19% 5%
Micellaneous 0% 0% 0% 0% 0% 3% 5% 19% 73%

11.4 Appendix E

11.4.1 RQ1: Thematic analysis

Figure RQ1 Part 1: Thematic analysis mind map of RQ1

Figure RQ1 Part 2: Thematic analysis mind map of RQ1

11.4.2 RQ2: Thematic analysis

Figure RQ2 Part 1: Thematic analysis mind map of RQ2

Figure RQ2 Part 2: Thematic analysis mind map of RQ2

Figure RQ2 Part 3: Thematic analysis mind map of RQ2

11.4.3 RQ3: Thematic analysis

Figure RQ3 Part 1: Thematic analysis mind map of RQ3

Figure RQ3 Part 2: Thematic analysis mind map of RQ3

Figure RQ3 Part 3: Thematic analysis mind map of RQ3

Figure RQ3 Part 4: Thematic analysis mind map of RQ3

11.5 Appendix F

The Wilcoxon p-value test is used to check if the answers were significantly higher

than the neutral value 5, if p-value is less than 0.05, means that it is statistically

significant bigger [16]. If p < 0.05, then we include the principle, and otherwise, we

exclude it.

General principles p < 0.05 INCLUDE OR

EXCLUDE

The Boy Scout Rule 3.90E-16 INCLUDE

Minimize nesting 1.06E-14 INCLUDE

KISS 5.10E-15 INCLUDE

OCP 6.91E-07 INCLUDE

Separate Constructing a

System from Using It

1.82E-11 INCLUDE

Naming principles p < 0.05 INCLUDE OR

EXCLUDE

Use Meaningful Names 2.20E-16 INCLUDE

Use Intention-Revealing

Names

7.36E-16 INCLUDE

Pronounceable Names 3.45E-11 INCLUDE

Searchable Names 4.85E-12 INCLUDE

Avoid Disinformation 2.92E-16 INCLUDE

Avoid Mental Mapping 2.29E-13 INCLUDE

Function and Method

principles

p < 0.05 INCLUDE OR

EXCLUDE

Do One Thing 2.20E-15 INCLUDE

Command Query Separation 1.81E-12 INCLUDE

Extract Try-Catch Block 0.001383 INCLUDE

Have No Side Effects 2.29E-13 INCLUDE

DRY 6.20E-12 INCLUDE

Function Arguments 1.13E-9 INCLUDE

Structured Programming 2.50E-07 INCLUDE

Methods/Functions should be

small

8.65E-13 INCLUDE

Comment principles p < 0.05 INCLUDE OR

EXCLUDE

Amplification 2.69E-07 INCLUDE

Clarification 0.0003011 INCLUDE

Explain Yourself in Code 3.18E-13 INCLUDE

Explanation of Intent 1.83E-10 INCLUDE

TODO Comments 4.33E-06 INCLUDE

Warning of Consequences 2.62E-08 INCLUDE

Formatting principles p < 0.05 INCLUDE OR

EXCLUDE

Team Coding Standards 3.48E-16 INCLUDE

Horizontal Formatting -

Indentation

3.97E-14 INCLUDE

Dependent Functions 3.20E-10 INCLUDE

Vertical Distance and

Ordering

3.73E-14 INCLUDE

Organizing for Change 8.42E-15 INCLUDE

Object and Data Structure

principles

p < 0.05 INCLUDE OR

EXCLUDE

Data/Object Anti-Symmetry 4.08E-08 INCLUDE

Law of Demeter 3.29E-11 INCLUDE

Error Handling principles p < 0.05 INCLUDE OR

EXCLUDE

Prefer Exceptions to

Returning Error Codes
1.56E-08 INCLUDE

Don’t Pass Null 5.12E-03 INCLUDE

Don’t Return Null 0.03262 INCLUDE

Write Your Try-Catch

Statement First

0.8072 EXCLUDE

Unit Test principles p < 0.05 INCLUDE OR

EXCLUDE

Keeping Tests Clean 6.46E-15 INCLUDE

One Assert per Test 0.05157 EXCLUDE

Single Concept per Test 2.95E-11 INCLUDE

Class principles p < 0.05 INCLUDE OR

EXCLUDE

Class organization 5.48E-09 INCLUDE

High cohesion 6.10E-10 INCLUDE

Low coupling 9.10E-13 INCLUDE

Encapsulation 7.71E-15 INCLUDE

Isolating from Change 5.45E-09 INCLUDE

SRP 9.50E-13 INCLUDE

Minimal Classes and

Methods

2.95E-11 INCLUDE

One Level of Abstraction per

Function

4.60E-13 INCLUDE

Classes should be small 4.74E-13 INCLUDE

	IJAIS230101
	IJAISR-mohammedyousefabuhasssan

