$\boldsymbol{\delta}$ -Dot Cubic Ideals of BZ-algebra

Dr. Areej Tawfeeq Hameed¹ and Huda Ali Abdul-hussein Almwail²

¹Department of Mathematics, Faculty of Education for Girls, University of Kufa, Iraq. E-mail: <u>areej.tawfeeq@uokufa.edu.iq</u> ²Department of Mathematics, Faculty of Education for Girls, University of Kufa, Iraq.

E-mail: areej238@gmail.com

Abstract: In this paper, the notions of δ -dot cubic ideals and δ -dot cubic subalgebra s in BZ-algebras are introduced and several properties are investigated. The image and inverse image of them in BZ-algebras are defined and studied.

Keywords— BZ-algebras, δ -dot cubic ideal s, δ -dot cubic subalgebra s, of δ -dot cubic ideal s, homomorphism of BZ-algebra. product.

1. Introduction

K. Is'eki and S. Tanaka [22] studied ideals and congruences of BCK-algebras. S. M. Mostafa and et al. [26] were introduced a new algebraic structure which is called KUSalgebras and investigated some related properties. The concept of a fuzzy set, was introduced by L.A. Zadeh [30]. O.G. Xi [28] applied the concept of fuzzy set to BCK-algebras and gave some of its properties. Y. B. Jun and et al. [23] were introduced the notion of cubic ideals in BCK-algebras, and they discussed some related properties of it. In [21], A.T. Hameed and et al. introduced the notion of cubic KUS-ideals of KUS-algebra and they were studied the homomorphic of cubic KUS-ideals. In [1], A.T. Hameed and et al. introduced the notion of cubic AT-ideals of AT-algebra and they discussed some related properties of it. In this paper, we introduce the notion of cubic ideal s of BZ-algebra and we study the homomorphic image and inverse image of cubic ideal s of BZ-algebra.

2. Preliminaries

In this section, we give some basic definitions and preliminaries proprieties of ideal s and fuzzy ideal s in BZalgebra such that we include some elementary aspects that are necessary for this paper.

Definition 2.1([2-4]) Let X be a set with a binary operation * and a constant 0. Then $(X;*, \supseteq)$ is called **an BZ-algebra** if the following axioms satisfied: for all k, y, z $\in X$,

 $\begin{array}{l} (BZ-1) \left((k * z) * (y * z) \right) * (k * y) = \beth; \\ (BZ-2) k * \beth = k; \end{array}$

(BZ-3) $k * y = \supseteq$ and $y * k = \supseteq$ implies that k = y. Example 2.2([2-4]) Let $X = \{ \supseteq, 1, 2, 3, 4\}$ in which (*) is defined by the following table:

1						
	*	ר	1	2	3	4
	ב	л	ר	л	ר	ב
	1	1	ר	1	ר	ב
	2	2	2	ב	ב	ב
	3	3	3	1	ב	ב
	4	4	3	4	3	ב

Then $(X;*, \supseteq)$ is an BZ-algebra. **Remark 2.3([2-4])** Define a binary relation \leq on BZ-algebra $(X;*, \square)$ by letting $k \leq y$ if and only if k * y = 0.

Proposition 2.4([2-4]) In any BZ-algebra $(X;*, \exists)$, the following properties hold: for all $k, y, z \in X$, (P-1) $k * ((k * y) * y) = \exists;$ (P-2) $k * k = \exists;$ (P-3) k * (y * z) = y * (k * z);(P-4) ((k * y) * y) * y = k * y;(P-5) $(k * y) * \exists = (k * \exists) * (y * \exists);$

 $(P-6) (k * y) * ((z * k) * (z * y)) = \exists;$

Proposition 2.5([2-4]) Let $(X; *, \supset)$ be an BZ-algebra. *X* is satisfies for all $k, y, z \in X$,

(P-7) $k \leq y$ implies $y * z \leq k * z$; (P-8) $k \leq y$ implies $z * k \leq z * y$. **Definition 2.6([2-4]).** Let $(X; *, \exists)$ be an BZ-algebra and let *S* be a nonempty subset of *X*. *S* is called a **subalgebra of** *X* if $k * y \in S$ whenever $x \in S$ and $y \in S$. **Definition 2.7([2-4]).** A nonempty subset *I* of an BZalgebra $(X; *, \exists)$ is called **an ideal of** *X* if it satisfies the following conditions: for any $x, y, z \in X$, (I₁) $\exists \in I$, (I₂) $(k * y) \in I$ and $k \in I$ imply $y \in I$. **Proposition 2.9 (12-41)**. Every ideal of BZ-algebra is a

Proposition 2.9 ([2-4]). Every ideal of BZ-algebra is a subalgebra.

Proposition 2.8 ([2-4]). Let $\{I_i | i \in \Lambda\}$ be a family of ideal s of BZ-algebra (*X*; *, \supseteq). The intersection of any set of ideal s of *X* is also an ideal.

Definition 2.9 ([13,14]). Let $(X ; *, \beth)$ and $(Y ; * `, \beth')$ be nonempty sets. The mapping $f: (X; *, \beth) \rightarrow (Y; * `, \beth')$ is called **a homomorphism** if it satisfies:

f(k * y) = f(k) * f(y), for all $k, y \in X$. The set { $k \in X | f(k) = \Box'$ } is called **the kernel of f** denoted by ker f.

Theorem 2.10 ([2-4]). Let $f: (X; *, \beth) \rightarrow (Y; *`, \beth`)$ be a homomorphism of an BZ-algebra X into an BZ-algebra Y, then:

A. $f(\beth) = \beth'$.

International Journal of Academic Management Science Research (IJAMSR) ISSN: 2643-900X

Vol. 7 Issue 1, January - 2023, Pages: 27-35

B. f is injective if and only if ker $f = \{ \exists \}$. C. $k \le y$ implies $f(k) \le f(y)$.

Theorem 2.11 ([2-4]). Let $f: (X; *, \beth) \rightarrow (Y; *`, \beth`)$ be a homomorphism of an BZ-algebra X into an BZ-algebra Y, then:

(F₁) If S is an subalgebra of X, then f (S) is an subalgebra of Y.

(F₂) If I is an ideal of X, then f (I) is an ideal of Y, where f is onto.

(F₃) If *H* is an subalgebra of Y, then f^{-1} (H) is an subalgebra of *X*.

(F₄) If J is an ideal of Y, then $f^{-1}(J)$ is an ideal of X.

(F₅) ker f is an ideal of X.

(F₆) Im(f) is a subalgebra of Y.

Definition 2.12([30]). Let $(X; *, \beth)$ be a nonempty set, a fuzzy subset μ of X is a function $\mu: X \to [\neg, 1]$.

Definition 2.13 ([29]). Let X be a nonempty set and μ be a fuzzy subset of $(X; *, \beth)$, for $t \in [\square, 1]$, the set $L(\mu, t) = \mu_t = \{k \in X \mid \mu(k) \ge t\}$ is called a **level subset of** μ .

Definition 2.14([5]). Let $(X; *, \Box)$ be an BZ-algebra, a fuzzy subset μ of X is called **a fuzzy subalgebra** of X if for all $k, y \in X$,

 $\mu(k * y) \geq \min\{\mu(k), \mu(y)\}.$

Definition 2.15([5]). Let $(X; *, \supseteq)$ be an BZ-algebra, a fuzzy subset μ of X is called **a fuzzy ideal of** X if it satisfies the following conditions, for all $x, y \in X$,

 $(FBZ_1) \quad \mu(\Box) \geq \mu(k),$

(FBZ₂) $\mu(y) \ge \min \{\mu(k * y), \mu(k)\}.$

Proposition 2.17([5]).

1- The intersection of any set of fuzzy ideal s of BZ-algebra is also fuzzy ideal.

2- The union of any set of fuzzy ideal s of BZ-algebra is also fuzzy ideal, where is chain.

Proposition 2.18([5]). Every fuzzy ideal of BZ-algebra is a fuzzy subalgebra.

Proposition 2.19([5]).

1- Let μ be a fuzzy subset of BZ-algebra $(X; *, \beth)$. If μ is a fuzzy subalgebra of X if and only if for every $t \in [\square, 1], \mu_t$ is a subalgebra of X.

2- Let μ be a fuzzy ideal of BZ-algebra $(X;*, \beth), \mu$ is a fuzzy ideal of X if and only if for every $t \in [\square, 1], \mu_t$ is an ideal of X.

Lemma 2.20([5]). Let μ be a fuzzy ideal of BZ-algebra X and if $\leq y$, then $\mu(x) \geq \mu(y)$, for all $x, y \in X$.

Definition 2.21 ([33]). Let $f: (X; *, \beth) \to (Y; *`, \beth)$ be a mapping nonempty sets *X* and *Y* respectively. If μ is a fuzzy subset of *X*, then the fuzzy subset β of *Y* defined by: $f(\mu)(y) =$

 $\begin{cases} \sup\{\mu(k): x \in f^{-1}(y)\} & if \ f^{-1}(y) = \{k \in X, f(k) = y\} \neq \emptyset \\ \square & otherwise \end{cases}$

is said to be **the image of** μ **under** f.

Similarly if β is a fuzzy subset of , then the fuzzy subset $\mu = (\beta \circ f)$ of X (i.e the fuzzy subset defined by $\mu(x) = \beta(f(x))$, for all

 $k \in X$ is called **the pre-image of** β under f.

Definition 2.22 ([29]). A fuzzy subset μ of a set X has sup property if for any subset T of X, there exist $t_0 \in T$ such that $\mu(t_{\gamma}) = \sup \{\mu(t) | t \in T\}$.

Proposition 2.23 ([5]). Let $f: (X; *, \beth) \to (Y; *`, \beth)$ be a homomorphism between BZ-algebras *X* and *Y* respectively. 1- For every fuzzy subalgebra β of *Y*, $f^{-1}(\beta)$ is a fuzzy subalgebra of *X*.

2- For every fuzzy subalgebra μ of X, f (μ) is a fuzzy subalgebra of Y.

3- For every fuzzy ideal β of Y, $f^{-1}(\beta)$ is a fuzzy ideal of X.

4- For every fuzzy ideal μ of X with sup property, $f(\mu)$ is a fuzzy ideal of Y, where f is onto.

Now, we will recall the concept of interval-valued fuzzy subsets.

Remark 2.24[1,8]. An interval number is $\tilde{a} = [a^-, a^+]$, where

 $\exists \le a^- \le a^+ \le 1$. Let I be a closed unit interval, (i.e., I = [\exists , 1]).

Let D[\supseteq , 1] denote the family of all closed subintervals of I = [\supseteq , 1], that is, D[\supseteq , 1] = { $\tilde{a} = [a^-, a^+] | a^- \le a^+$, for $a^-, a^+ \in I$ }.

Now, we define what is known as refined minimum (briefly, rmin) of two element in D[2,1].

Definition 2.25[1,7]. We also define the symbols (\geq) , (\leq) , (=), rmin and rmax in case of two elements in $D[\Box,$ 1] . Consider two interval numbers (elements numbers) $\tilde{a} = [a^{-}, a^{+}], \tilde{b} = [b^{-}, b^{+}]$ in D[$\Box, 1$] : Then (1) $\tilde{a} \ge \tilde{b}$ if and only if, $a^- \ge b^-$ and $a^+ \ge b^+$, (2) $\tilde{a} \leq \tilde{b}$ if and only if, $a^- \leq b^-$ and $a^+ \leq b^+$, (3) $\tilde{a} = \tilde{b}$ if and only if, $a^- = b^-$ and $a^+ = b^+$, (4) rmin { \tilde{a} , \tilde{b} } = [min { a^- , b^- }, min { a^+ , b^+ }], (5) rmax { \tilde{a}, \tilde{b} } = [max { a^-, b^- }, max { a^+, b^+ }], **Remark 2.26 [1,7].** It is obvious that $(D[\Box, 1], \leq, \lor, \land)$ is a complete lattice with $\tilde{a} = [\Box, \Box]$ as its least element and $\tilde{1} = [1, \Box]$ 1] a sits greatest element. Let $\tilde{a}_i \in D[\Box, 1]$ where $i \in \Lambda$. We define $\operatorname{rinf}_{i\in\Lambda}\tilde{a} = [\operatorname{rinf}_{i\in\Lambda}a^{-}, \operatorname{rinf}_{i\in\Lambda}a^{+}],$ $\operatorname{rsup}_{i \in \Lambda} \tilde{a} = [\operatorname{rsup}_{i \in \Lambda} a^-, \operatorname{rsup}_{i \in \Lambda} a^+].$ Definition 2.27[1,7]. An interval-valued fuzzy subset $\widetilde{\mu}_{A}$ on **X** is defined as $\widetilde{\mu}_A = \{ \langle k, [\mu_A^-(k), \mu_A^+(k)] \rangle | k \in X \}$. Where $\mu_A^-(k)$ $\leq \mu_{A}^{+}(k)$, for all $k \in X$. Then the ordinary fuzzy subsets μ_{A}^{-} : $X \to [\Box, 1]$ and $\mu_A^+: X \to [\Box, 1]$ are called a **lower fuzzy** subset and an upper fuzzy subset of $\tilde{\mu}_A$ respectively. Let $\widetilde{\mu}_A$ (k) = $[\mu_A^-(k), \mu_A^+(k)], \widetilde{\mu}_A \colon X \to D[\Box, 1]$, then A $= \{ < k, \widetilde{\mu}_A (k) > \mid k \in X \}.$ **Definition 2.28**([1,7]). Let $(X;*, \Box)$ be a nonempty set. A cubic set Ω in a structure $\Omega = \{ < k, \tilde{\mu}_{\Omega} (k), \lambda_{\Omega} (k) > \}$

 $k \in X$ }, which is briefly denoted by $\Omega = \langle \tilde{\mu}_{\Omega}, \lambda_{\Omega} \rangle$, where $\tilde{\mu}_{\Omega} : X \to D[\], 1], \tilde{\mu}_{\Omega}$ is an interval-valued fuzzy subset of *X* and $\lambda_{\Omega} : X \to [\], 1], \lambda_{\Omega}$ is a fuzzy subset of *X*.

Definition 2.29([1,7]). For a family $\Omega_i =$

 $\{\langle k, \tilde{\mu}_{Oi}(k) \rangle | k \in X\}$ on fuzzy subsets of X, where $i \in \Lambda$

International Journal of Academic Management Science Research (IJAMSR) ISSN: 2643-900X Vol. 7 Issue 1, January - 2023, Pages: 27-35

and Λ is index set, we define the join (V)and meet (Λ) operations as follows:

$$\begin{split} & \mathsf{V}_{i\in\Lambda}\,\Omega_i = \big(\mathsf{V}_{i\in\Lambda}\,\tilde{\mu}_{\Omega i}\big)(\ \ k) = \sup\{\tilde{\mu}_{\Omega i}(\ \ k)\big|i\in\Lambda\},\\ & \mathsf{\Lambda}_{i\in\Lambda}\,\Omega_i = \big(\mathsf{\Lambda}_{i\in\Lambda}\,\tilde{\mu}_{\Omega i}\big)(\ \ k) = \inf\{\tilde{\mu}_{\Omega i}(\ \ k)\big|i\in\Lambda\}, \end{split}$$

3. δ-dot Cubic Subalgebras of BZ-algebra

In this section, we will introduce a new notion called cubic subalgebra s of BZ-algebra and study several properties of it.

Definition 3.1[19]. Let $(X ; *, \supseteq)$ be an BZ-algebra. A cubic set

 $\Omega = \langle \tilde{\mu}_{\Omega}(k), \lambda_{\Omega}(k) \rangle \text{ of } X \text{ is called cubic}$ subalgebra of X if, for all $x, y \in X$: $\tilde{\mu}_{\Omega}(k * y) \geq rmin\{\tilde{\mu}_{\Omega}(k), \tilde{\mu}_{\Omega}(y)\}, and \lambda_{\Omega}(k * y)$ $\leq max\{\lambda_{\Omega}(k), \lambda_{\Omega}(y)\}.$

Definition 3.2. Let $(X ; *, \Box)$ be an BZ-algebra. A cubic set $\Omega^{\delta} = \langle \tilde{\mu}_{\Omega}^{\delta}(k), \lambda_{\Omega}^{\delta}(k) \rangle$ of X is called δ -dot cubic subalgebra of X if

 $\delta \in (\exists, 1]$, for all $x \in X$, $\tilde{\mu}_{\Omega}^{\delta} = \tilde{\mu}_{\Omega}(x) \cdot \delta$ and $\lambda_{\Omega}^{\delta} = \lambda_{\Omega}(k) \cdot \delta$.

Example 3.3. Let $X = \{ \exists, 1, 2, 3 \}$ in which the operation as in example * be define by the following table:

*	ב	1	2	3	
ב	ב	ב	ב	Л	
1	1	ב	ב	ר	
2	2	2	ב	ר	
3	3	3	3	л	

Then $(X;*, \beth)$ is an BZ-algebra. Define a cubic set $\Omega = \langle \tilde{\mu}_{\Omega}(k), \lambda_{\Omega}(k) \rangle$ of *X* is fuzzy subset $\mu: X \rightarrow [\square, 1]$ by:

$$\tilde{\mu}_{\Omega}(\mathbf{k}) = \begin{cases} [0.3, 0.9] & if \ k = \{ \ \Box, 1 \} \\ [0.1, 0.6] & otherwise \end{cases} \text{ and}$$

 $\lambda_{\Omega} = \begin{cases} 0.1 & if x = \{ \exists, 1 \} \\ 0.6 & otherwise \end{cases}$

Define a cubic set $\Omega^{\delta} = \langle \tilde{\mu}_{\Omega}^{\delta}(k), \lambda_{\Omega}^{\delta}(k) \rangle$ of X and $\delta = 0.5$ as follows:

$$\begin{split} \tilde{\mu}_{\Omega}^{\delta}(k) &= \begin{cases} [& 0.15, & 0.45] & ifx = \{ \ \square, 1 \} \\ [& 0.05, & 0.3] & otherwise \end{cases} \quad \text{and} \quad \lambda_{\Omega}^{\delta}(x) &= \\ \begin{cases} & 0.05 & ifx = \{ \ \square, 1 \} \\ & 0.3 & otherwise \end{cases} . \end{split}$$

The δ -dot cubic set $\Omega^{\delta} = \langle \tilde{\mu}_{\Omega}^{\delta}(k), \lambda_{\Omega}^{\delta}(k) \rangle$ is a δ -dot cubic subalgebra of *X*.

Remark 3.4. Let $(X; *, \supseteq)$ be an BZ-algebra, then it is clearly that

 $\Omega^1 \ = < \tilde{\mu}^1_\Omega \ (\ \ k), \lambda^1_\Omega (\ \ k) \ > = \Omega \ = < \tilde{\mu}_\Omega \ (\ \ k), \lambda_\Omega (\ \ k) \ >$

Proposition 3.5. Let $(X ; *, \ \)$ be an BZ-algebra and $\Omega = \langle \tilde{\mu}_{\Omega} (k), \lambda_{\Omega} (k) \rangle$ is a cubic subalgebra of X such that $\Omega^{\delta} = \langle \tilde{\mu}_{\Omega}^{\delta} (k), \lambda_{\Omega}^{\delta} (k) \rangle$ is δ -dot cubic subalgebra of X, where $\delta \in (\], 1]$, then for all $x, y \in X$, $\tilde{\mu}_{\Omega} (k * y) \cdot \delta \geq man\{\tilde{\mu}_{\Omega} (k), \tilde{\mu}_{\Omega} (y)\} \cdot \delta$, and $\lambda_{\Omega} (k * y) \cdot \delta \leq man\{\lambda_{\Omega}(k), \lambda_{\Omega}(y)\} \cdot \delta$. **Proof.** For all $k, y \in X$, we have $\tilde{\mu}_{\Omega}^{\delta}(x * y) = \tilde{\mu}_{\Omega} (x * y) \cdot \delta \geq rmin\{\tilde{\mu}_{\Omega} (x), \tilde{\mu}_{\Omega} (y)\} \cdot \delta$, $= rmin\{\tilde{\mu}_{\Omega} (x) \cdot \delta, \tilde{\mu}_{\Omega} (y) \cdot \delta\}$ $= rmin\{\tilde{\mu}_{\Omega}^{\delta} (x), \tilde{\mu}_{\Omega}^{\delta} (y)\}$ and $\lambda_{\Omega}^{\delta}(x * y) = \lambda_{\Omega} (x * y) \cdot \delta \leq man\{\lambda_{\Omega}(x), \lambda_{\Omega}(y)\} \cdot \delta$ $= man\{\lambda_{\Omega}(x) \cdot \delta, \lambda_{\Omega}(y) \cdot \delta\}$ $= man\{\lambda_{\Omega}(x), \lambda_{\Omega}^{\delta}(y)\}$. Δ

It is clear that δ -dot cubic subalgebra of an BZ-algebra (*X* ;*, \supseteq) is a generalization of a cubic subalgebra of X and a cubic subalgebra of X is special case, when $\delta = 1$.

Proposition 3.6. Let $\Omega^{\delta} = \langle \tilde{\mu}_{\Omega}^{\delta}(k), \lambda_{\Omega}^{\delta}(k) \rangle$ be a δ -dot cubic subalgebra of BZ-algebra $(X;*, \beth)$, then $\tilde{\mu}_{\Omega}^{\delta}(\square) \geq \tilde{\mu}_{\Omega}^{\delta}(x)$ and $\lambda_{\Omega}^{\delta}(\square) \leq \lambda_{\Omega}^{\delta}(k)$, for all

 $\begin{aligned} x \in X . \\ \textbf{Proof.} \quad \text{For all } x \in X \text{, we have} \\ \tilde{\mu}_{\Omega}^{\delta} (\ensuremath{\square}) &= \tilde{\mu}_{\Omega} (\ensuremath{\square} * x) \cdot \delta \\ &\geqslant rmin\{\tilde{\mu}_{\Omega}^{\delta} ((\ensuremath{\square} * x) * \ensuremath{\square}), \tilde{\mu}_{\Omega}^{\delta}(x)\} \cdot \delta \\ &= rmin\{[\mu_{A}^{-}((\ensuremath{\square} * x) * \ensuremath{\square}), \mu_{A}^{-}(x)], [\mu_{A}^{+}((\ensuremath{\square} * x) * \ensuremath{\square}), \mu_{A}^{+}(x)]\} \cdot \delta \\ &= rmin\{[\mu_{A}^{-}(\ensuremath{\square}), \mu_{A}^{-}(x)], [\mu_{A}^{+}(\ensuremath{\square})]\} \cdot \delta \\ &= [\mu_{A}^{-}(x), \mu_{A}^{+}(x)] \cdot \delta \\ &= [\mu_{\Omega}^{\delta} (x) \cdot \delta \\ &= \tilde{\mu}_{\Omega}^{\delta} (x) . \\ \text{Similarly, we can show that} \\ \lambda_{\Omega}^{\delta} (\ensuremath{\square}) &\leq max\{[\lambda_{\Omega}^{\delta} (\ensuremath{\square}), \lambda_{\Omega}^{\delta} (x)]\} = \lambda_{\Omega}^{\delta} (x) . \end{aligned}$

Proposition 3.7. If a δ -dot cubic set $\Omega^{\delta} = \langle \tilde{\mu}_{\Omega}^{\delta}(k), \lambda_{\Omega}^{\delta}(k) \rangle$ of BZ-algebra $(X ; *, \exists)$ is a δ -dot cubic subalgebra, then $\Omega^{\delta}(k * y) = \Omega^{\delta}(k * ((y * \exists) * \exists)))$, for all $k, y \in X$.

Proof.

Let *X* be an BZ-algebra and *x*, $y \in X$, then we know that $y = (y * \beth) * 0$. Hence, $\tilde{\mu}_{\Omega}^{\delta}(k * y) = \tilde{\mu}_{\Omega}^{\delta}(k * ((y * \beth) * \square))$ and $\lambda_{\Omega}^{\delta}(k * y) = \lambda_{\Omega}^{\delta}(k * ((y * \beth) * \square))$. Therefore $\Omega^{\delta}(x * y) = \Omega^{\delta}(x * ((y * \beth) * \square))$. \triangle **Proposition 3.8.**

Let $(X; *, \ \)$ be an BZ-algebra and $\Omega = \langle \mu_{\Omega}^{\circ}(k), \lambda_{\Omega}(k) \rangle$ is a cubic subset of X such that $\Omega^{\delta} = \langle \mu_{\Omega}^{\delta}(k), \lambda_{\Omega}^{\delta}(k) \rangle$ is δ -dot cubic subalgebra of , for some $\delta \in [\ \], 1]$, then $\Omega = \langle \mu_{\Omega}^{\circ}(k), \lambda_{\Omega}(k) \rangle$ is a cubic subalgebra of X.

Proof.

Assume that $\Omega^{\delta} = \langle \tilde{\mu}_{\Omega}^{\delta}(k), \lambda_{\Omega}^{\delta}(k) \rangle$ is a δ -dot cubic subalgebra of X for some $\delta \in (\exists, 1]$. Let $x, y \in X$, then $\tilde{\mu}_{\Omega}(x * y) \cdot \delta = \tilde{\mu}_{\Omega}^{\delta}(x * y)$ $\geqslant min\{\tilde{\mu}_{\Omega}^{\delta}(x), \tilde{\mu}_{\Omega}^{\delta}(y)\}$ $= min\{\tilde{\mu}_{\Omega}(x) \cdot \delta, \tilde{\mu}_{\Omega}(y) \cdot \delta\}$ $= min\{\tilde{\mu}_{\Omega}(x), \tilde{\mu}_{\Omega}(y)\} \cdot \delta.$ $\tilde{\mu}_{\Omega}(x * y) \ge min\{\tilde{\mu}_{\Omega}(x), \tilde{\mu}_{\Omega}(y)\}$ and so $\lambda_{\Omega}(x * y) \cdot \delta = \lambda_{\Omega}^{\delta}(x * y)$ $\leq max\{\lambda_{\Omega}^{\delta}(x), \lambda_{\Omega}^{\delta}(y)\}$ $= max\{\lambda_{\Omega}(x) \cdot \delta, \lambda_{\Omega}(y) \cdot \delta\}$ $= max\{\lambda_{\Omega}(x), \mu(y)\} \cdot \delta.$ $\lambda_{\Omega}(x * y) \le max\{\lambda_{\Omega}(x), \lambda_{\Omega}(y)\}$ Hence $\Omega = \langle \tilde{\mu}_{\Omega}(k), \lambda_{\Omega}(k) \rangle$ is a cubic subalgebra of X. \Box

Proposition 3.9.

Let $(X ; *, \exists)$ be an BZ-algebra and $\Omega = <$ $\tilde{\mu}_{\Omega}(k), \lambda_{\Omega}(k) > \text{ is a cubic subset of } X \text{ such that } \Omega^{\delta} = <$ $\tilde{\mu}_{\Omega}^{\delta}(k), \lambda_{\Omega}^{\delta}(k) > \text{ is } \delta \text{-dot cubic subalgebra of } X \text{ , for some } \delta \in [\exists, 1], \text{ then then the cubic } \Omega \text{ of } X \text{ is a fuzzy } S \text{-extension of the } \delta \text{-dot cubic } \Omega^{\delta} \text{ of } X.$ **Proof:**

Since $\tilde{\mu}_{\Omega}(x) \ge \mu(x)$. $\delta = \tilde{\mu}_{\Omega}^{\delta}(x)$, and $\lambda_{\Omega}(x) \ge \lambda_{\Omega}(x)$. $\delta = \lambda_{\Omega}^{\delta}(x)$ then

Ω(k) is a fuzzy S-extension of $Ω^{\delta}(k)$, for all k ∈ X and since Ω is a fuzzy subalgebra of *X*, then $Ω^{\delta}$ of μ is a δ-dot cubic subalgebra, by Proposition (3.8). □

Definition 3.10[19].

For a fuzzy subset μ of an BZ-algebra $(X; *, \beth)$, $\delta \in (\square, 1]$, $\tilde{t} \in D[\square, 1]$ and $s \in [\square, 1]$, with $t \le \delta$, let $\tilde{U}(\Omega; \tilde{t}, s) = \{k \in X \mid \tilde{\mu}_{\Omega}(k) \ge \tilde{t}, \lambda_{\Omega}(k) \le s\}.$

Proposition 3.11.

Let $(X; *, \exists)$ be an BZ-algebra. A δ -dot cubic subset $\Omega^{\delta} = \langle \tilde{\mu}_{\Omega}^{\delta}(k), \lambda_{\Omega}^{\delta}(k) \rangle$ of *X* If Ω^{δ} is a δ -dot cubic subalgebra of *X*, then for all $\delta \in (\exists, 1]$, $\tilde{t} \in D[\exists, 1]$ and $s \in [\exists, 1]$, with $t \leq \delta$, then the set $\tilde{U}(\Omega; \tilde{t}, s)$ is a subalgebra of *X*.

Proof.

Assume that $\Omega^{\delta} = \langle \tilde{\mu}_{\Omega}^{\delta}(k), \lambda_{\Omega}^{\delta}(k) \rangle$ is a δ -dot cubic subalgebra of X and let $\tilde{t} \in D[\Box, 1]$ and $s \in [\Box, 1]$, be such that $\tilde{U}(\Omega; \tilde{t}, s) \neq \emptyset$.

Let $k, y \in X$ such that $y \in \tilde{U}(\Omega; \tilde{t}, s)$, then $\tilde{\mu}_{\Omega}^{\delta}(k) \ge \tilde{t} \quad \tilde{\mu}_{\Omega}^{\delta}(y) \ge \tilde{t}$ and

 $\lambda_{\Omega}^{\delta}(k) \leq s, \lambda_{\Omega}^{\delta}(y) \leq s.$ Since Ω^{δ} is a δ -dot cubic subalgebra of X, we get

$$\begin{split} \widetilde{\mu}^{\delta}_{\Omega} (k \ast y) & \succcurlyeq \min\{ \ \widetilde{\mu}^{\delta}_{\Omega} (k), \widetilde{\mu}^{\delta}_{\Omega} (y) \} \succcurlyeq \widetilde{t} \text{ and } \lambda^{\delta}_{\Omega} (k \ast y) \leq \\ \max\{ \lambda^{\delta}_{\Omega} (k), \lambda^{\delta}_{\Omega} (y) \} \leq s. \end{split}$$

Hence the set $\widetilde{U}(\Omega; \tilde{t}, s)$ is a subalgebra of X. \triangle

Proposition 3.12. Let (*X* ;*, \supseteq) be an BZ-algebra. A δ -dot cubic subset

$$\begin{split} \Omega^{\delta} &= < \tilde{\mu}^{\delta}_{\Omega}(k), \lambda^{\delta}_{\Omega}(k) > \text{of} \text{ . If the set } \widetilde{U}(\Omega; \tilde{t}, s) \text{ is a subalgebra} \\ \text{of } X, \text{ for all } \delta \in (\beth, 1] \text{ , } \tilde{t} \in \mathbb{D}[\beth, 1] \text{ and } s \in [\beth, 1], \text{ with } t \leq \delta \text{ ,} \\ \text{then } \Omega^{\delta} \text{ is a } \delta \text{-dot cubic subalgebra of } X. \end{split}$$

Proof.

Suppose that $\widetilde{U}(\Omega; \tilde{t}, s)$ is a subalgebra of X and let $x, y \in X$ be such that $\widetilde{\mu}^{\delta}_{\Omega}(k*y) \prec \operatorname{rmin} \{\widetilde{\mu}^{\delta}_{\Omega}(k), \widetilde{\mu}^{\delta}_{\Omega}(y)\}$ and $\lambda^{\delta}_{\Omega}(k*y) > \max \{\lambda^{\delta}_{\Omega}(k), \lambda^{\delta}_{\Omega}(y)\}$. Consider $\widetilde{\delta} = 1/2 \{ \widetilde{\mu}^{\delta}_{\Omega}(k*y) + \operatorname{rmin} \{\widetilde{\mu}^{\delta}_{\Omega}(k), \widetilde{\mu}^{\delta}_{\Omega}(y)\} \}$ $\delta = 1/2 \{ \lambda^{\delta}_{\Omega}(k*y) + \max \{\lambda^{\delta}_{\Omega}(k), \lambda^{\delta}_{\Omega}(y)\} \}$.

We have $\tilde{\delta} \in D[\Box, 1]$ and $\delta \in (\Box, 1]$, and

 $\tilde{\mu}_{\Omega}^{\delta}(k*y) \prec \tilde{\delta} \prec \min \left\{ \tilde{\mu}_{\Omega}^{\delta}(k), \tilde{\mu}_{\Omega}^{\delta}(y) \right\}, \text{ and}$

 $\lambda_{\Omega}^{\delta}(\ k*y) > \delta > \max \left\{ \lambda_{\Omega}^{\delta}(\ k), \lambda_{\Omega}^{\delta}(y) \right\}.$

It follows that $x, y \in \tilde{U}(\Omega; \tilde{t}, s)$, and $(k*y) \notin$

 $\widetilde{U}(\Omega; \tilde{t}, s)$. This is a contradiction and therefore Ω^{δ} is a δ -dot cubic subalgebra of . \triangle

Theorem 3.13. Let $(X ; *, \Box)$ be an BZ-algebra. A δ -dot cubic subset

 $\Omega^{\delta} = \langle \tilde{\mu}_{\Omega}^{\delta}(k), \lambda_{\Omega}^{\delta}(k) \rangle$ of *X* is a δ -dot cubic subalgebra of *X* if and only if, $\mu^{-\delta}_{\Omega}$, and $\mu^{+\delta}_{\Omega}$ are fuzzy subalgebras of X and $\lambda_{\Omega}^{\delta}$ are anti-fuzzy subalgebra of X. **Proof.** Let $\mu_{\Omega}^{-\delta}$, $\mu_{\Omega}^{+\delta}$ and $\lambda_{\Omega}^{\delta}$ be fuzzy subalgebras of X and $x, y \in X$, then $\mu_{\Omega}^{-\delta}(k*y) \ge \min\{\mu_{\Omega}^{-\delta}(k), \mu_{\Omega}^{-\delta}(y)\}, \quad \mu_{\Omega}^{+\delta}(k*y) \ge 0$ $\min\{\mu_{\Omega}^{+\delta}(k), \mu_{\Omega}^{+\delta}(y)\}$ and $\lambda_{\Omega}^{\delta}(k * y) \leq \max\{\lambda_{\Omega}^{\delta}(k), \lambda_{\Omega}^{\delta}(y)\}.$ Now,
$$\begin{split} \widetilde{\mu}_{\Omega}^{\delta}(k*y) &= [\mu_{\Omega}^{-\delta}(k*y), \mu_{\Omega}^{+\delta}(k*y)] \\ &\geq [\min\{\mu_{\Omega}^{-\delta}(k), \mu_{\Omega}^{-\delta}(y)\}, \end{split}$$
 $\min\{\mu^{+\delta}_{\Omega}(k),\mu^{+\delta}_{\Omega}(y)\}]$ $= \operatorname{rmin} \{ [\mu_{O}^{-\delta} k), \mu_{O}^{+\delta} (k)], [\mu_{O}^{-\delta} (y), \mu_{O}^{+\delta} (y)] \}$ $= \operatorname{rmin} \{ \tilde{\mu}_{O}^{\delta}(k), \tilde{\mu}_{O}^{\delta}(y) \},\$ therefore Ω is a δ -dot cubic subalgebra of *X*. Conversely, assume that Ω^{δ} is a δ -dot cubic subalgebra of X, for any $k, y \in X$, $[\mu_{\Omega}^{-\delta}(k*y), \mu_{\Omega}^{+\delta}(k*y)] = \tilde{\mu}_{\Omega}^{\delta}(k*y) \ge \min\{\tilde{\mu}_{\Omega}^{\delta}(k*y) \ge \min\{\tilde{\mu}_{\Omega}^{\delta}(k*y)\}$ $(k), \tilde{\mu}_{\Omega}^{\delta}(y) \}$ $= \min\{[\mu_{\Omega}^{-\delta}(k), \mu_{\Omega}^{+\delta}(k)], [\mu_{\Omega}^{-\delta}(y), \mu_{\Omega}^{+\delta}(y)]\}$ $= [\min\{\mu_{\Omega}^{-\delta}(y), \mu_{\Omega}^{-\delta}(y)\}$ (k), $\mu^{-\delta}_{\Omega}(k)$, $\min\{\mu^{+\delta}_{\Omega}(y), \mu^{+\delta}_{\Omega}(y)\}].$
$$\begin{split} \mu^{-\delta}_{\Omega} \left(\begin{array}{c} k \ast y \end{array} \right) &\geq \min \ \{ \mu^{-\delta}_{\Omega} \left(\begin{array}{c} k \right), \mu^{-\delta}_{\Omega} \left(\begin{array}{c} k \right) \}, \mu^{+\delta}_{\Omega} \left(\begin{array}{c} k \ast y \end{array} \right) \\ &\geq \min \{ \ \mu^{+\delta}_{\Omega} \left(\begin{array}{c} k \right), \mu^{+\delta}_{\Omega} \left(\begin{array}{c} k \right) \} \ \text{and} \end{split}$$
 $\lambda_{\Omega}^{\delta}(k * y) \leq \max\{\lambda_{\Omega}^{\delta}(k), \lambda_{\Omega}^{\delta}(y)\}.$ Therefore, $\mu_{\Omega}^{-\delta}$ and $\mu_{\Omega}^{+\delta}$ are fuzzy subalgebras of X

Proposition 3.14.

Let $(X; *, \exists)$ be an BZ-algebra and $\Omega = \langle \tilde{\mu}_{\Omega}(k), \lambda_{\Omega}(k) \rangle$ is a cubic subalgebra of X and $\delta_1, \delta_2 \in (\exists, 1]$. If $\delta_2 \geq \delta_1$, then the δ -dot cubic subalgebra Ω^{δ^2} is a fuzzy S-extension of the Ω^{δ^1} δ -dot cubic subalgebra of X.

Proof: For every $k \in X$ and $\delta_1, \delta_2 \in (\Box, 1]$ and $\delta_2 \ge \delta_1$, we have

$$\begin{split} \tilde{\mu}_{\Omega}^{\delta_{2}}(k) &= \tilde{\mu}_{\Omega}(k) . \, \delta_{2} \geq \tilde{\mu}_{\Omega}(k) . \, \delta_{1} = \tilde{\mu}_{\Omega}^{\delta_{1}}(k), \text{ and } \\ \lambda_{\Omega}^{\delta_{2}}(k) &= \lambda_{\Omega}(k) . \, \delta_{2} \geq \lambda_{\Omega}(k) . \, \delta_{1} = \lambda_{\Omega}^{\delta_{1}}(k), \text{ then } \\ \tilde{\mu}_{\Omega}^{\delta_{2}}(k) \geq \tilde{\mu}_{\Omega}^{\delta_{1}}(k), \text{ and } \lambda_{\Omega}^{\delta_{2}}(k) \geq \lambda_{\Omega}^{\delta_{1}}(k), \text{ therefore } \Omega^{\delta_{2}} \\ \text{ is a fuzzy S-extension of } \Omega^{\delta_{1}}. \end{split}$$

Since Ω is a cubic subalgebra of *X*, then Ω^{δ} is a δ -dot cubic subalgebra of μ , by Proposition (3.8). Hence Ω^{δ^2} of *X* is a fuzzy S-extension of the δ -dot cubic subalgebra Ω^{δ^1} of *X*. \Box

4. δ-dot Cubic Ideals of BZ-algebra

In this section, we shall define the notion of δ -dot cubic of ideals, and we study some of the relations, theorems, propositions and examples of δ -dot cubic of ideals of BZ-algebra.

Definition 4.1.

Let $(X; *, \supseteq)$ be an BZ-algebra. A cubic set $\Omega = < \tilde{\mu}_{\Omega}(k), \lambda_{\Omega}(k) > \text{ of } X$ is called **cubic ideal of X** if, for all $x, y \in X$:

- (1) $\tilde{\mu}_{\Omega}(\Box) \geq \tilde{\mu}_{\Omega}(x) \text{ and } \lambda_{\Omega}(\Box) \leq \lambda_{\Omega}(k)$ },
- (2) $\tilde{\mu}_{\Omega}(y) \ge rmin\{\tilde{\mu}_{\Omega}(k * y), \tilde{\mu}_{\Omega}(k)\}$ and
- $\lambda_{\Omega}(y) \leq \max\{\lambda_{\Omega}(k * y), \lambda_{\Omega}(k)\}.$

Definition 4.2.

Let $(X; *, \Box)$ be an BZ-algebra. A cubic set $\Omega^{\delta} = \langle \tilde{\mu}_{\Omega}^{\delta}(k), \lambda_{\Omega}^{\delta}(k) \rangle$ of X is called **\delta-dot cubic ideal of X**

if it satisfies the following conditions: for all $x, y \in X$:

(1) $\tilde{\mu}_{\Omega}^{\delta}(\beth) \geq \tilde{\mu}_{\Omega}^{\delta}(x) \text{ and } \lambda_{\Omega}^{\delta}(\beth) \leq \lambda_{\Omega}^{\delta}(x) \},$ (2) $\tilde{\mu}_{\Omega}^{\delta}(y) \geq rmin\{\tilde{\mu}_{\Omega}^{\delta}(k * y), \tilde{\mu}_{\Omega}^{\delta}(k)\} \text{ and } \lambda_{\Omega}^{\delta}(y) \leq max\{\lambda_{\Omega}^{\delta}(k * y), \lambda_{\Omega}^{\delta}(k)\}.$

Example 4.3. Let $X = \{ \exists, 1, 2, 3 \}$ in which the operation as in example * be define by the following table:

enne of the tonowing table.					
*	* 1		2	3	
ב	ב	ב	ב	ב	
1	1	ב	ב	ב	
2	2	2	ב	ב	
3	3	3	3	ב	

Then $(X;*, \beth)$ is an BZ-algebra. Define a cubic set $\Omega = \langle \tilde{\mu}_{\Omega}(k), \lambda_{\Omega}(k) \rangle$ of X is fuzzy subset $\mu: X \to [\square, 1]$ by:

$$\widetilde{\mu}_{\varOmega} \, (\ \mathbf{k}) = \begin{cases} [& 0.3, & 0.9] & if x = \{ \, \beth, 2 \} \\ [& 0.1, & 0.6] & otherwise \end{cases} \ \text{ and } \label{eq:multiple_eq}$$

 $\lambda_{\Omega} = \begin{cases} 0.1 & if x = \{ \ \exists, 2 \} \\ 0.6 & otherwise \end{cases}.$

Define a cubic set $\Omega^{\delta} = \langle \tilde{\mu}_{\Omega}^{\delta}(k), \lambda_{\Omega}^{\delta}(k) \rangle$ of *X* and $\delta = 0.4$ as follows:

$$\begin{split} \tilde{\mu}_{\Omega}^{\delta}(\ \ k) &= \begin{cases} [& 0.12, & 0.32] & ifx = \{ \ \supseteq, 2 \} \\ [& 0.04, & 0.24] & otherwise \end{cases} \quad \text{and} \quad \lambda_{\Omega}^{\delta} &= \\ \begin{cases} & 0.04 & ifx = \{ \ \supseteq, 2 \} \\ & 0.24 & otherwise \end{cases} . \end{split}$$

The δ -dot cubic set $\Omega^{\delta} = \langle \tilde{\mu}_{\Omega}^{\delta}(k), \lambda_{\Omega}^{\delta}(k) \rangle$ is a δ -dot cubic ideal of *X*.

Theorem 4.4.

If $(X ;*, \square)$ be an BZ-algebra and $\Omega = <$ $\tilde{\mu}_{\Omega}(k), \lambda_{\Omega}(k) > \text{ is a cubic ideal of } X$, then $\Omega^{\delta} = <$ $\tilde{\mu}_{\Omega}^{\delta}(k), \lambda_{\Omega}^{\delta}(k) > \text{ is } \delta$ -dot cubic ideal of X, where $\delta \in$ $(\square, 1]$. **Proof :** Assume that Ω is a δ -dot cubic ideal of X and let $\delta \in$ ($\square, 1]$. Then for all $x, y \in X$. $\tilde{\mu}_{\Omega}(\square) = \tilde{\mu}_{\Omega}(\square).\delta \ge \tilde{\mu}_{\Omega}(k).\delta = \tilde{\mu}_{\Omega}(k)$ and so $\tilde{\mu}_{\Omega}^{\delta}(\square) \ge$ $\tilde{\mu}_{\Omega}^{\delta}(k).$ $\lambda_{\Omega}^{\delta}(\square) = \lambda_{\Omega}(\square).\delta \le \lambda_{\Omega}(k).\delta = \lambda_{\Omega}^{\delta}(k)$ and so $\lambda_{\Omega}^{\delta}(\square) \le$ $\lambda_{\Omega}^{\delta}(k).$

$$\begin{split} \tilde{\mu}_{\Omega}^{0}(\mathbf{y}) &= \tilde{\mu}_{\Omega}(\mathbf{y}).\delta \\ & \geqslant \min\{\tilde{\mu}_{\Omega}(\mathbf{k} * \mathbf{y}), \tilde{\mu}_{\Omega}(k)\}.\delta \\ &= \min\{\tilde{\mu}_{\Omega}(\mathbf{k} * \mathbf{y}).\delta, \tilde{\mu}_{\Omega}(k).\delta\} \\ &= \min\{\tilde{\mu}_{\Omega}^{\delta}(\mathbf{k} * \mathbf{y}), \tilde{\mu}_{\Omega}^{\delta}(k)\}. \text{ And } \\ \lambda_{\Omega}^{\delta}(\mathbf{y}) &= \lambda_{\Omega}(\mathbf{y}).\delta \\ &\leq \max\{\lambda_{\Omega}(\mathbf{k} * \mathbf{y}), \lambda_{\Omega}(k)\}.\delta \\ &= \max\{\lambda_{\Omega}(\mathbf{k} * \mathbf{y}), \delta, \lambda_{\Omega}(k).\delta\} \\ &= \max\{\lambda_{\Omega}^{\delta}(\mathbf{k} * \mathbf{y}), \lambda_{\Omega}^{\delta}(k)\}. \\ \text{ Hence } \Omega^{\delta} &= <\tilde{\mu}_{\Omega}^{\delta}(\mathbf{k}), \lambda_{\Omega}^{\delta}(\mathbf{k}) > \text{ is a } \delta\text{-dot cubic} \end{split}$$

Hence $\Omega^{\delta} = \langle \tilde{\mu}_{\Omega}^{\delta}(k), \lambda_{\Omega}^{\delta}(k) \rangle$ is a δ -dot cubic ideal of X. \Box

Proposition 4.5.

Let $(X; *, \Box)$ be an BZ-algebra and $\Omega = \langle \tilde{\mu}_{\Omega}(k), \lambda_{\Omega}(k) \rangle$ is a cubic subset of X such that $\Omega^{\delta} = \langle \tilde{\mu}_{\Omega}^{\delta}(k), \lambda_{\Omega}^{\delta}(k) \rangle$ is δ -dot cubic ideal of , for some $\delta \in [\Box, 1]$, then $\Omega = \langle \tilde{\mu}_{\Omega}(k), \lambda_{\Omega}(k) \rangle$ is a cubic ideal of X

Proof.

Assume that $\Omega^{\delta} = \langle \tilde{\mu}_{\Omega}^{\delta}(k), \lambda_{\Omega}^{\delta}(k) \rangle$ is a δ -dot cubic subalgebra of X for some $\delta \in (\exists, 1]$. Let $k, y, z \in X$, then $\tilde{\mu}_{\Omega}^{\delta}(\exists) = \tilde{\mu}_{\Omega}(\exists). \delta \geq \tilde{\mu}_{\Omega}(x). \delta = \tilde{\mu}_{\Omega}^{\delta}(x)$ and so $\tilde{\mu}_{\Omega}^{\delta}(\exists) \geq \tilde{\mu}_{\Omega}^{\delta}(k).$ $\lambda_{\Omega}^{\delta}(\exists) = \lambda_{\Omega}(\exists). \delta \leq \lambda_{\Omega}(k). \delta = \lambda_{\Omega}^{\delta}(k)$ and so $\lambda_{\Omega}^{\delta}(\exists) \leq \lambda_{\Omega}^{\delta}(k).$ $\tilde{\mu}_{\Omega}(y) \cdot \delta = \tilde{\mu}_{\Omega}^{\delta}(y) \geq \min\{\tilde{\mu}_{\Omega}(k * y), \tilde{\mu}_{\Omega}^{\delta}(k)\} = \min\{\tilde{\mu}_{\Omega}(k * y), \tilde{\mu}_{\Omega}(k)\} \cdot \delta \}$ $= \min\{\tilde{\mu}_{\Omega}(k * y), \tilde{\mu}_{\Omega}(k)\} \cdot \delta .$ $\tilde{\mu}_{\Omega}(y) \cdot \delta = \lambda_{\Omega}^{\delta}(y) \leq \max\{\lambda_{\Omega}^{\delta}(k * y), \lambda_{\Omega}^{\delta}(k)\}$

www.ijeais.org/ijamsr

International Journal of Academic Management Science Research (IJAMSR) ISSN: 2643-900X Vol. 7 Issue 1, January - 2023, Pages: 27-35

= $max\{\lambda_{\Omega}(\mathbf{k} * \mathbf{y}) \cdot \mathbf{\delta}, \lambda_{\Omega}(\mathbf{k}) \cdot \mathbf{\delta}\}$ $= max\{\lambda_{\Omega}(\mathbf{k} * \mathbf{y}), \lambda_{\Omega}(\mathbf{k})\} \cdot \delta.$ $\lambda_{\Omega}(y) \leq max\{\lambda_{\Omega}(\mathbf{k} * \mathbf{y}), \lambda_{\Omega}(x)\}\$ Hence $\Omega = \langle \tilde{\mu}_{\Omega}(\mathbf{k}), \lambda_{\Omega}(\mathbf{k}) \rangle$ is a cubic ideal of X. П

Proposition 3.6.

Let (*X* ;*, \supseteq) be an BZ-algebra and $\Omega = <$ $\tilde{\mu}_{\Omega}(k), \lambda_{\Omega}(k) > \text{ is a cubic subset of X such that } \Omega^{\delta} = <$ $\tilde{\mu}_{\Omega}^{\delta}(k), \lambda_{\Omega}^{\delta}(k) > \text{ is } \delta \text{-dot cubic ideal of } X$, for some $\delta \in$ [], 1], then then the cubic Ω of X is a fuzzy S-extension of the δ -dot cubic Ω^{δ} of X.

Proof:

Since $\tilde{\mu}_{\Omega}(k) \ge \mu(k)$. $\delta = \tilde{\mu}_{\Omega}^{\delta}(k)$, and $\lambda_{\Omega}(k) \ge \delta$ $\lambda_{\Omega}(k)$. $\delta = \lambda_{\Omega}^{\delta}(k)$ then

 $\Omega(k)$ is a fuzzy S-extension of $\Omega^{\delta}(k)$, for all $k \in X$ and since Ω is a fuzzy ideal of X, then Ω^{δ} of μ is a δ -dot cubic ideal, by Proposition (4.4). \Box

Proposition 4.6.

Let (*X* ;*, \beth) be an BZ-algebra. A δ -dot cubic subset $\Omega^{\delta} = <$ $\tilde{\mu}_{\Omega}^{\delta}(k), \lambda_{\Omega}^{\delta}(k) > \text{of}$. If Ω^{δ} is a δ -dot cubic AB- ideal of X, then for all $\delta \in (\Box, 1]$, $\tilde{t} \in D[\Box, 1]$ and $s \in [\Box, 1]$, with $t \leq \delta$, then the set $\widetilde{U}(\Omega; \tilde{t}, s)$ is an ideal of X.

Proof.

Assume that $\Omega^{\delta} = \langle \tilde{\mu}_{\Omega}^{\delta}(k), \lambda_{\Omega}^{\delta}(k) \rangle$ is a δ -dot cubic ideal of X and let $\tilde{t} \in D[\Box, 1]$ and $s \in [\Box, 1]$, be such that $\widetilde{U}(\Omega; \widetilde{t}, s) \neq \emptyset$.

Let $x, y \in X$ such that $k * y \in \widetilde{U}(\Omega; \tilde{t}, s)$, then $\widetilde{\mu}_{\Omega}^{\delta}(k * y) \geq \widetilde{t} \quad \widetilde{\mu}_{\Omega}^{\delta}(k) \geq \widetilde{t} \text{ and } \lambda_{\Omega}^{\delta}(k * y) \leq s, \lambda_{\Omega}^{\delta}(k)$ \leq s.

Since Ω^{δ} is a δ -dot cubic ideal of X, we get $\tilde{\mu}_{\Omega}^{\delta}(\mathbf{y}) \geq \min\{ \tilde{\mu}_{\Omega}^{\delta}(\mathbf{k} \ast \mathbf{y}), \tilde{\mu}_{\Omega}^{\delta}(\mathbf{k}) \} \geq \tilde{t} \text{ and }$ $\lambda_{\Omega}^{\delta}(y) \leq \max \left\{ \lambda_{\Omega}^{\delta}(-k * y), \lambda_{\Omega}^{\delta}(-k) \right\} \leq s.$ Hence the set $\tilde{U}(\Omega; \tilde{t}, s)$ is an ideal of X. \Box

Proposition 4.7.

k)}}.

Let $(X; *, \Box)$ be an BZ-algebra. A δ -dot cubic subset $\Omega^{\delta} = \langle \tilde{\mu}_{\Omega}^{\delta}(\mathbf{k}), \lambda_{\Omega}^{\delta}(\mathbf{k}) \rangle$ of . If the set $\tilde{U}(\Omega; \tilde{t}, s)$ is an ideal of X, for all $\delta \in (\Box, 1]$, $\tilde{t} \in D[\Box, 1]$ and $s \in [\Box, 1]$, with $t \leq \delta$, then Ω^{δ} is a δ -dot cubic ideal of X. Proof.

Suppose that $\widetilde{U}(\Omega; \tilde{t}, s)$ is an ideal of X and let $x, y \in X$ be such that

 $\tilde{\mu}_{\Omega}^{\,\delta}\left(y\right)\prec rmin\left\{\tilde{\mu}_{\Omega}^{\,\delta}\left(-k\ast y\right)\!\!,\!\tilde{\mu}_{\Omega}^{\,\delta}\left(y\right)\right\} \;\;\text{and}\;\lambda_{\Omega}^{\,\delta}\left(y\right)\!>\!max\left\{\lambda_{\Omega}^{\,\delta}\right.$ $(k * y), \lambda_{\Omega}^{\delta}(k) \}.$

 $Consider ~~ \tilde{\delta} = ~1/2 ~~ \{ ~~ \tilde{\mu}_{\Omega}^{~\delta} ~(y) ~+ rmin \{ \tilde{\mu}_{\Omega}^{~\delta} ~(~~ k*y), ~~ \tilde{\mu}_{\Omega}^{~\delta} ~(~~ k*y)$ k } and

$$\delta = 1/2 \{ \lambda_{\Omega}^{\delta}(y) + \max\{\lambda_{\Omega}^{\delta}(k * y), \lambda_{\Omega}^{\delta}(x + y)\} \}$$

We have $\tilde{\delta} \in D[\Box, 1]$ and $\delta \in (\Box, 1]$, and $\tilde{\mu}_{\Omega}^{\delta}(y) \prec \tilde{\delta} \prec \min \left\{ \tilde{\mu}_{\Omega}^{\delta}(-k * y), \tilde{\mu}_{\Omega}^{\delta}(-k) \right\} \text{ and }$

$$\lambda_{\Omega}^{\delta}(y) > \delta > \max \left\{ \lambda_{\Omega}^{\delta}(-k * y), \lambda_{\Omega}^{\delta}(-k) \right\}.$$

It follows that $x * y, x \in \widetilde{U}(\Omega; \tilde{t}, s)$, and $(y) \notin \widetilde{U}(\Omega; \tilde{t}, s)$. This is a contradiction and therefore Ω^{δ} is a δ -dot cubic ideal of \Box

Theorem 4.8. Let $(X; *, \supseteq)$ be an BZ-algebra. A δ -dot cubic subset

 $\Omega^{\delta} = \langle \tilde{\mu}_{\Omega}^{\delta}(k), \lambda_{\Omega}^{\delta}(k) \rangle$ of *X* is a δ -dot cubic ideal of X if and only if, $\mu^{-\delta}_{\Omega}$ and $\mu^{+\delta}_{\Omega}$ are fuzzy ideal s of X and $\lambda_{\Omega}^{\delta}$ are anti-fuzzy ideal of *X*.

Proof.

Let $\mu_{\Omega}^{-\delta}$, $\mu_{\Omega}^{+\delta}$ and $\lambda_{\Omega}^{\delta}$ be fuzzy ideal s of X and x, $y \in X$, $\begin{aligned} & \mu_{\Omega}^{-\delta}(\mathbf{y}) \geq \min\{\mu_{\Omega}^{-\delta}(\mathbf{k} * \mathbf{y}), \mu_{\Omega}^{-\delta}(\mathbf{k})\}, \\ & \mu_{\Omega}^{+\delta}(\mathbf{y}) \geq \min\{\mu_{\Omega}^{+\delta}(\mathbf{k} * \mathbf{y}), \mu_{\Omega}^{+\delta}(\mathbf{k})\} \text{ and } \\ & \lambda_{\Omega}^{\delta}(\mathbf{y}) \leq \max\{\lambda_{\Omega}^{\delta}(\mathbf{k} * \mathbf{y}), \lambda_{\Omega}^{\delta}(\mathbf{k})\}. \end{aligned}$

$$\begin{split} \widetilde{\mu}_{\Omega}^{\circ}(\mathbf{y}) &= [\mu_{\Omega}^{-\delta}(\mathbf{y}), \mu_{\Omega}^{+\delta}(\mathbf{y})] \\ & \ge [\min\{\mu_{\Omega}^{-\delta}(-\mathbf{k}*\mathbf{y}), \mu_{\Omega}^{-\delta}(-\mathbf{k})\}, \min\{\mu_{\Omega}^{+\delta}(-\mathbf{k}*\mathbf{y}), \mu_{\Omega}^{+\delta}(-\mathbf{k})\}] \end{split}$$

$$= \min\{[\mu_{\Omega}^{-\delta}(k*y), \mu_{\Omega}^{+\delta}(k*y)], [\mu_{\Omega}^{-\delta}(k*y)]\}$$

 $(k), \mu^{+}_{\Omega}(k)]$

 $= \operatorname{rmin} \{ \tilde{\mu}_{\Omega}^{\delta} (k * y), \tilde{\mu}_{\Omega}^{\delta} (k) \}, \text{ therefore } \Omega \text{ is a } \delta \text{-} \text{ dot cubic ideal of } X.$

Conversely, assume that Ω^{δ} is a δ -dot cubic ideal of *X*, for any k, $y \in X$, $[\mu_{\Omega}^{-\delta}(y), \mu_{\Omega}^{+\delta}(y)] = \tilde{\mu}_{\Omega}^{\delta}(y) \ge \min\{\tilde{\mu}_{\Omega}^{\delta}(k + y), \tilde{\mu}_{\Omega}^{\delta}(k + y)\}$ $= \min\{[\mu_{\Omega}^{-\delta}(k + y), \mu_{\Omega}^{+\delta}(k + y)], [\mu_{\Omega}^{-\delta}(k + y)]\}$ $(k), \mu^{+}{}_{\Omega}^{\delta}(k)]$ = [min{ $\mu^{-}{}_{\Omega}^{\delta}(k*y), \mu^{-}{}_{\Omega}(k*y), \mu^{-}{}_{\Omega}(k*y), \mu^{+}{}_{\Omega}^{\delta}(k), \mu^{+}{}_{\Omega}^{\delta}(k)\}].$ Thus
$$\begin{split} & \mu^{-\delta}_{\Omega}(y) \geq \min \ \{\mu^{-\delta}_{\Omega}(-k*y), \mu^{-\delta}_{\Omega}(-k)\}, \\ & \mu^{+\delta}_{\Omega}(y) \geq \min \{ \ \mu^{+\delta}_{\Omega}(-k*y), \mu^{+\delta}_{\Omega}(-k)\} \ \text{and} \end{split}$$
 $\lambda_{\Omega}^{\delta}(y) \leq \max\{\lambda_{\Omega}^{\delta}(k*y), \lambda_{\Omega}^{\delta}(k)\},\$ Therefore, $\mu_{\Omega}^{-\delta}$ and $\mu_{\Omega}^{+\delta}$ are fuzzy ideals of X and $\lambda_{\Omega}^{\delta}$ is anti-fuzzy ideal of X. \Box

Proposition 4.9.

Let (*X* ;*, \beth) be an BZ-algebra and $\Omega = <$ $\tilde{\mu}_{\Omega}(\mathbf{k}), \lambda_{\Omega}(\mathbf{k}) >$ is a cubic ideal of X and $\delta_1, \delta_2 \in (\beth, 1]$. If $\delta_2 \ge \delta_1$, then the δ -dot cubic ideal Ω^{δ_2} is a fuzzy S-extension of the $\Omega^{\delta 1}$ δ -dot cubic ideal of X. **Proof:**

For every $k \in X$ and $\delta_1, \delta_2 \in (\Box, 1]$ and $\delta_2 \ge \delta_1$, we have

 $\widetilde{\mu}_{\Omega}^{\delta_{2}}(x) = \widetilde{\mu}_{\Omega}(x). \,\delta_{2} \geq \widetilde{\mu}_{\Omega}(x). \,\delta_{1} = \widetilde{\mu}_{\Omega}^{\delta_{1}}(x), \text{ and } \lambda_{\Omega}^{\delta_{2}}(x) = \lambda_{\Omega}(x). \,\delta_{2} \geq \lambda_{\Omega}(x). \,\delta_{1} = \lambda_{\Omega}^{\delta_{1}}(x), \text{ then } \lambda_{\Omega}^{\delta_{2}}(x) = \lambda_{\Omega}^{\delta_{1}}(x), \text{ then } \lambda_{\Omega}^{\delta_{1}}(x) = \lambda_{\Omega}^{\delta_{1$

 $\tilde{\mu}_{\Omega}^{\delta_2}(x) \geq \tilde{\mu}_{\Omega}^{\delta_1}(x)$, and $\lambda_{\Omega}^{\delta_2}(x) \geq \lambda_{\Omega}^{\delta_1}(x)$, therefore Ω^{δ_2} is a fuzzy S-extension of Ω^{δ_1} .

Since Ω is a cubic ideal of *X*, then Ω^{δ} is a δ -dot cubic ideal of μ , by Proposition (4.4).

Hence $\Omega^{\delta 2}$ of X is a fuzzy S-extension of the δ -dot cubic ideal $\Omega^{\delta 1}$ of X. \Box

Theorem 4.10.

Every δ -dot cubic ideal of BZ-algebra (X; *, \supseteq) is a δ dot cubic subalgebra of an BZ-algebra $(X; *, \supseteq)$.

Proof: Let (*X* ;*, \supseteq) be an BZ-algebra and $\Omega = <$

 $\tilde{\mu}_{\Omega}(\mathbf{k}), \lambda_{\Omega}(\mathbf{k}) > \text{is a cubic ideal of X and } \Omega^{\delta} = <$

 $\tilde{\mu}_{\Omega}^{\delta}(\mathbf{k}), \lambda_{\Omega}^{\delta}(\mathbf{k}) > \text{ is a } \delta \text{-dot cubic subset of } .$ Since Ω^{δ} is an $\delta \text{-dot cubic ideal of } X$, then by Proposition (4.6), for every $\delta \in (\Box, 1]$, $\tilde{t} \in D[\Box, 1]$ and $s \in [\Box, 1]$, $\widetilde{U}(\Omega; \widetilde{t}, s) = \{ k \in X | \widetilde{\mu}_{\Omega}(k) \ge \widetilde{t}, \lambda_{\Omega}(k) \le s \}$, is ideal of X.

By Proposition (2.9), for every $\delta \in (\Box, 1]$, $\tilde{t} \in D[\Box, 1]$ and $s \in [\Box, 1], \widetilde{U}(\Omega; \tilde{t}, s)$ is subgalgebra of X. \Box

Hence μ is a δ -dot cubic subalgebra of X by Proposition (3.12). □

Remark 4.11. The converse of proposition (4.10) is not true as the following example:

Example 4.12. Let $X = \{ \supseteq, 1, 2, 3, 4 \}$ in which (*) is defined by the following table:

*	ר	1	2	3	4
ב	ב	ב	ב	ב	ב
1 a	1	ר	ב	ב	Г
2	2	ר	ב	ב	Г
3	3	2	1	ב	ב
4	4	3	4	3	ב

Then $(X;*, \beth)$ is an BZ-algebra. Define a cubic set $\Omega = <$ $\tilde{\mu}_{\Omega}(\mathbf{k}), \lambda_{\Omega}(\mathbf{k}) > \text{of } X \text{ is fuzzy subset } \mu: X \to [\Box, 1] \text{ by:}$

$$\begin{split} \tilde{\mu}_{\Omega}(\mathbf{k}) &= \begin{cases} [& 0.3, & 0.9] & ifx = \{ \ \supseteq, 1, 2 \} \\ [& 0.1, & 0.6] & otherwise \end{cases} \quad \text{and} \quad \lambda_{\Omega} = \\ \begin{cases} & 0.1 & ifx = \{ \ \supseteq, 1, 2 \} \\ & 0.6 & otherwise \end{cases} . \end{split}$$

Define a δ -dot cubic set $\Omega^{\delta} = \langle \tilde{\mu}_{\Omega}^{\delta}(k), \lambda_{\Omega}^{\delta}(k) \rangle$ of X and $\delta = 0.4$ as follows:

$$\begin{split} \tilde{\mu}_{\Omega}^{\,\delta} (\ \ \mathbf{k}) &= \begin{cases} [\ \ 0.12, \ \ 0.32] & if x = \{ \ \ \neg, 1, 2 \} \\ [\ \ 0.04, \ \ 0.24] & otherwise \end{cases} \quad \text{and} \quad \lambda_{\Omega}^{\,\delta} &= \\ \begin{cases} \ \ 0.04 & if x = \{ \ \neg, 1, 2 \} \\ 0.24 & otherwise \end{cases} . \end{split}$$

The δ -dot cubic set $\Omega^{\delta} = \langle \tilde{\mu}_{\Omega}^{\delta}(k), \tilde{\mu}_{\Omega}^{\delta}(k) \rangle$ is not a δ -dot cubic subalgebra of X.

Note that λ_{Ω} is not an anti-fuzzy ideal of X since $\lambda_{\Omega} (4 * 2) = \lambda_{\Omega}(4) = 0.24$ > $0.04 = \max\{\lambda_{\Omega}((4 * 1) * 2), \lambda_{\Omega}(1)\}$

 $= \max{\lambda_{\Omega}(3 * 2), \lambda_{\Omega}(1)} =$

 $\max\{\lambda_{\Omega}(1),\lambda_{\Omega}(1)\}=\lambda_{\Omega}(1).$

Hence Ω^{δ} is not δ -dot cubic ideal of X.

5. Homomorphism of δ -dot Cubic ideals (subalgebras) of **BZ-algebra**

In this section, we will present some results on images and preimages of

 δ -dot cubic ideal s of BZ-algebras.

Definition 5.1[3].

Let $: (X;*, \beth) \to (Y;*', \beth')$ be a mapping from the set *X* to a set Y. If $\Omega^{\delta} = \langle \tilde{\mu}_{\Omega}^{\delta}(k), \lambda_{\Omega}^{\delta}(k) \rangle$ is a δ -dot cubic subset of X, then the cubic subset $\beta = \langle \tilde{\mu}_{\beta}, \lambda_{\beta} \rangle$ of Y defined by:

$$f(\tilde{\mu}_{\Omega}^{\delta})(y) = \begin{cases} rsup_{\Omega} \tilde{\mu}_{\Omega}^{\delta}(k)iff^{-1}(y) = \{k \in X, f(k) = y\} \neq \varphi \\ \exists & otherwise \end{cases}$$
$$f(\lambda_{\Omega}^{\delta})(y) = \begin{cases} inf_{X \in f^{-1}(y)} \lambda_{\Omega}^{\delta}(k)iff^{-1}(y) = \{x \in X, f(k) = y\} \neq \varphi \\ 1 & otherwise \end{cases}$$

is said to be **the image of** Ω **under** f. Similarly if $\beta^{\delta} = \langle \tilde{\mu}_{\beta}^{\delta}(k), \lambda_{\beta}^{\delta}(k) \rangle$ is a δ -dot cubic subset of Y, then the cubic subset $\Omega^{\delta} = (\beta^{\delta} \circ f)$ in X (i.e., the δ -dot cubic subset defined by

 $\widetilde{\mu}_{\Omega}^{\,\delta}\left(\begin{array}{c} k \right) = \widetilde{\mu}_{\beta}^{\,\delta}\left(f \left(\begin{array}{c} k \right) \right), \, \lambda_{\Omega}^{\,\delta}\left(\begin{array}{c} k \right) = \lambda_{\beta}^{\,\delta}\left(f \left(\begin{array}{c} k \right) \right), \, \text{for all} \quad k$ $\in X$) is called the preimage of β under f).

Theorem 5.2. A homomorphic preimage of δ -dot cubic subalgebra is also

 δ -dot cubic subalgebra. **Proof.** Let $f: (X; *, \supseteq) \rightarrow (Y; *', \supseteq')$ be homomorphism from

an BZ-algebra *X* into an BZ-algebra *Y*. If $\beta^{\delta} = \langle \tilde{\mu}_{\beta}^{\delta}(k), \lambda_{\beta}^{\delta}(k) \rangle$ is a cubic subalgebra of *Y* and $\Omega^{\delta} = \langle \tilde{\mu}_{\Omega}^{\delta}(k), \lambda_{\Omega}^{\delta}(k) \rangle$ the preimage of β^{δ} under f, then

 $\tilde{\mu}_{\Omega}^{\delta}(k) = \tilde{\mu}_{\beta}^{\delta}(f(k)), \lambda_{\Omega}^{\delta}(k) = \lambda_{\beta}^{\delta}(f(k)), \text{ for all } k$ $\in X$.

Let $k \in X$, then $(\tilde{\mu}_{\Omega}^{\,\delta})(\,\,\square) = \tilde{\mu}_{\beta}^{\,\delta} \,(f \,(\,\,\square)) \geqslant \tilde{\mu}_{\beta}^{\,\delta} \,(f \,(\,\,k)) = \tilde{\mu}_{\Omega}^{\,\delta} \,(\,\,k), \text{ and} \\ (\lambda_{\Omega}^{\,\delta})(\,\,\square) = \lambda_{\beta}^{\,\delta} \,(f \,(\,\,\square)) \le \,\lambda_{\beta}^{\,\delta} \,(f \,(\,\,k)) = \lambda_{\Omega}^{\,\delta} \,(\,\,k).$ Now, let $x, y \in X$, then $\tilde{\mu}_{\Omega}^{\delta}(k*y) = \tilde{\mu}_{\beta}^{\delta}(f(k*y)) = \tilde{\mu}_{\beta}^{\delta}(f(k)*'f(y))$

$$\geqslant \operatorname{rmin} \left\{ \widetilde{\mu}_{\beta}^{\delta}(f(k), \widetilde{\mu}_{\beta}^{\delta}(f(y))) \right\}$$

$$= \operatorname{rmin} \left\{ \widetilde{\mu}_{\Omega}^{\delta}(k), \widetilde{\mu}_{\Omega}^{\delta}(y) \right\}, \text{ and }$$

$$\lambda_{\Omega}^{\delta}(k*y) = \lambda_{\beta}^{\delta}(f(k*y)) = \lambda_{\beta}^{\delta}(f(k), k*y)$$

$$\le \max \left\{ \lambda_{\beta}^{\delta}(f(k), \lambda_{\beta}^{\delta}(f(y))) \right\}$$

$$= \max \left\{ \lambda_{\Omega}^{\delta}(k), \lambda_{\Omega}^{\delta}(y) \right\}. \Box$$

Definition 5.3. Let $f: (X;*, 2) \to (Y;*', 2')$ be a mapping from a set *X* into a set *Y*. $\Omega^{\delta} = \langle \tilde{\mu}_{\Omega}^{\delta}(k), \lambda_{\Omega}^{\delta}(k) \rangle$ is a δ -dot cubic subset of *X* has sup and inf properties if for any subset T of *X*, there exist t, $s \in T$ such that

$$\tilde{\mu}_{\Omega}^{\delta}(t) = \underset{t0\in T}{rsup} \tilde{\mu}_{\Omega}^{\delta}(t0) \text{ and } \lambda_{\Omega}^{\delta}(s) = \underset{s0\in T}{inf} \lambda_{\Omega}^{\delta}(s0).$$

Theorem 5.4. Let $:(X;*, \beth) \to (Y;*', \beth')$ be an epimorphism from an BZ-algebra *X* into an BZ-algebra *Y*. For every δ -dot cubic subalgebra

 $\Omega^{\delta} = \langle \tilde{\mu}_{\Omega}^{\delta}(k), \lambda_{\Omega}^{\delta}(k) \rangle$ of *X* with **sup and inf properties**, then $f(\Omega^{\delta})$ is a

δ-dot cubic subalgebra of *Y*. **Proof.** By definition $\tilde{\mu}_{\beta}^{\delta}(y') = f(\tilde{\mu}_{\Omega}^{\delta})(y') =$ $rsup_{\Omega} \tilde{\mu}_{\Omega}^{\delta}(k)$ and $x \in f^{-1}(y')$ $\lambda_{\beta}^{\delta}(y') = f(\lambda_{\Omega}^{\delta})(y') = \inf_{x \in f^{-1}(y')} \lambda_{\Omega}^{\delta}(x)$ for all y' ∈ Y and rsup(Ø) = [□, □] and inf (Ø) = □. We have prove that $\tilde{\mu}_{\beta}^{\delta}(k'*y') \ge \min\{\tilde{\mu}_{\beta}^{\delta}(k'), \tilde{\mu}_{\beta}^{\delta}(y')\}, \text{ and}$ $\lambda_{\beta}^{\delta}(k'*y') \ge \max\{\lambda_{\beta}^{\delta}(k'), \lambda_{\beta}^{\delta}(y')\}, \text{ for all } k', y' \in Y.$ $\tilde{\mu}_{\beta}^{\delta}(k'*y') = \sup_{t \in f^{-1}(x'*y')} \tilde{\mu}_{\Omega}^{\delta}(t) = \tilde{\mu}_{\Omega}^{\delta}(k_{\square}*y_{\square})$ $\ge rmin\{\tilde{\mu}_{\Omega}^{\delta}(k_{\square}), \tilde{\mu}_{\Omega}^{\delta}(y_{\square})\}, \text{ for all } k', y' \in Y.$ $i \in f^{-1}(x'*y')$ $= rmin\{\tilde{\mu}_{\beta}^{\delta}(k'), \tilde{\mu}_{\beta}^{\delta}(y')\} \text{ and}$ $\lambda_{\Omega}^{\delta}(k'*y') = \inf_{t \in f^{-1}(x'*y')} \lambda_{\Omega}^{\delta}(t)$ $\le \max\{\lambda_{\Omega}^{\delta}(k_{\square}), \lambda_{\Omega}^{\delta}(t), \inf_{t \in f^{-1}(y')} \lambda_{\Omega}^{\delta}(t)\}$ $= \max\{\inf_{t \in f^{-1}(x')} \lambda_{\Omega}^{\delta}(t), \inf_{t \in f^{-1}(y')} \lambda_{\Omega}^{\delta}(t)\}$ Hence, $\Omega^{\delta} = < \tilde{\mu}_{\Omega}^{\delta}(k), \lambda_{\Omega}^{\delta}(k) > \text{ is a δ-dot cubic}$ subalgebra of . □

Theorem 5.5.

A homomorphic pre-image of δ -dot cubic ideal is also δ -dot cubic ideal.

Proof.

Let $f: (X;*, \beth) \to (Y;*', \beth')$ be homomorphism from an BZ-algebra *X* into an BZ-algebra *Y*.

If $\beta^{\delta} = \langle \tilde{\mu}_{\beta}^{\delta}(k), \lambda_{\beta}^{\delta}(k) \rangle$ is a δ -dot cubic ideal of Y and $\Omega^{\delta} = \langle \tilde{\mu}_{\Omega}^{\delta}(k), \lambda_{\Omega}^{\delta}(k) \rangle$ the pre-image of β^{δ} under *f*, then $\tilde{\mu}_{\Omega}^{\delta}(k) = \tilde{\mu}_{\beta}^{\delta}(f(k)), \lambda_{\Omega}^{\delta}(k) = \lambda_{\beta}^{\delta}(f(k))$, for all $x \in X$. Let $k \in X$, then
$$\begin{split} &(\tilde{\mu}_{\Omega}^{\delta})(\ \beth) = \tilde{\mu}_{\beta}^{\delta}\left(f\left(\ \beth\right)\right) \geqslant \tilde{\mu}_{\beta}\left(f\left(\ k\right)\right) = \tilde{\mu}_{\Omega}^{\delta}\left(\ k\right), \, \text{and} \, (\lambda_{\Omega}^{\delta})(\ \beth) \\ &= \lambda_{\beta}^{\delta}\left(f\left(\ \varTheta\right)\right) \le \lambda_{\beta}^{\delta}\left(f\left(\ k\right)\right) = \lambda_{\Omega}^{\delta}\left(\ k\right). \\ & \text{Now, let } x, y \in X, \, \text{then} \\ & \tilde{\mu}_{\Omega}^{\delta}\left(y\right) = \tilde{\mu}_{\beta}^{\delta}\left(f\left(y\right)\right) \geqslant \min\left\{\tilde{\mu}_{\beta}^{\delta}\left(f\left(k * y\right), \tilde{\mu}_{\beta}^{\delta}\left(f\left(\ k\right)\right)\right\}\right\} \\ &= \min\left\{\tilde{\mu}_{\Omega}^{\delta}\left(\ k * \left(y^{*}z\right)\right), \tilde{\mu}_{\Omega}^{\delta}\left(y\right)\right\}, \, \text{and} \\ & \lambda_{\Omega}^{\delta}\left(y\right) = \lambda_{\beta}^{\delta}\left(f\left(y\right)\right) \le \max\left\{\lambda_{\beta}^{\delta}\left(f\left(x * y\right), \lambda_{\beta}^{\delta}\left(f\left(\ k\right)\right)\right\}\right\} \\ &= \max\left\{\lambda_{\Omega}^{\delta}(x * y), \lambda_{\Omega}^{\delta}\left(\ k\right)\right\}. \ \Box \end{split}$$

Theorem 5.6.

Let : $(X;*, \beth) \to (Y;*', \beth')$ be an epimorphism from an BZ-algebra *X* into an BZ-algebra *Y*. For every δ -dot cubic ideal $\Omega^{\delta} = \langle \tilde{\mu}_{\Omega}^{\delta}(k), \lambda_{\Omega}^{\delta}(k) \rangle$ of *X* with **sup and inf properties**, then $f(\Omega^{\delta})$ is a δ -dot cubic ideal of *Y*. **Proof.**

By definition $\tilde{\mu}_{\beta}^{\delta}(y') = f(\tilde{\mu}_{\Omega}^{\delta})(y') = \underset{x \in f^{-1}(y')}{rsup} \tilde{\mu}_{\Omega}^{\delta}(x)$ and $\lambda_{\beta}^{\delta}(y') = f(\lambda_{\Omega}^{\delta})(y') = \underset{x \in f^{-1}(y')}{inf} \lambda_{\Omega}^{\delta}(x)$ for all $y' \in Y$ and $rsup(\emptyset) = [\Box, \Box]$ and $inf(\emptyset) = \Box$. We have prove that $\tilde{\mu}_{\beta}^{\delta}(y') \ge rmin \{\tilde{\mu}_{\beta}^{\delta}(k'*y'), \tilde{\mu}_{\beta}^{\delta}(k')\},$ and

 $\lambda_{\beta}^{\delta}(k'*z') \le \max\{\lambda_{\beta}^{\delta}(k'*y'), \lambda_{\beta}^{\delta}(k')\}, \text{ for all } k', y' \in Y.$

Let $f : (X;*, \beth) \to (Y;*', \beth')$ be epimorphism of BZ-algebras,

 $\Omega^{\delta} = \langle \tilde{\mu}_{\Omega}^{\delta}(k), \lambda_{\Omega}^{\delta}(k) \rangle \text{ is a } \delta \text{-dot cubic ideal of } X \text{ has sup and inf properties and } \beta^{\delta} = \langle \tilde{\mu}_{\beta}^{\delta}(k), \lambda_{\beta}^{\delta}(k) \rangle \text{ the image of } \Omega \text{ under } f.$

Since $\Omega^{\delta} = \langle \tilde{\mu}_{\Omega}^{\delta}(k), \lambda_{\Omega}^{\delta}(k) \rangle$ is a δ -dot cubic ideal of X, we have

 $(\tilde{\mu}_{\Omega}^{\,\delta})(\,\,\beth) \geqslant \, \tilde{\mu}_{\Omega}^{\,\delta} \,(\ k) \ \text{and} \ \lambda_{\Omega}^{\,\delta} \,(\,\,\beth) \le \lambda_{\Omega}^{\,\delta} \,(\ k), \, \text{for all} \quad k \in X$

Note that, $\supseteq \in f^{-1}$ (\supseteq) where \supseteq , \supseteq' are the zero of *X* and *Y*, respectively.

$$\widetilde{\mu}_{\beta}(\exists') = \sup_{\substack{t \in f^{-1}(\exists')\\ t \in f^{-1}(\exists')}} \widetilde{\mu}_{\Omega}(t) = \widetilde{\mu}_{\Omega}(\exists)$$

$$\geqslant \widetilde{\mu}_{\Omega}(k) = \operatorname{rsup}_{\substack{t \in f^{-1}(x')\\ t \in f^{-1}(\exists')}} \widetilde{\mu}_{\Omega}(t) = \widetilde{\mu}_{\beta}(x'), \text{ and}$$

$$\lambda_{\beta}(\exists') = \inf_{\substack{t \in f^{-1}(\exists')\\ t \in f^{-1}(\exists')}} \lambda_{\Omega}^{\delta}(t) = \lambda_{\Omega}^{\delta}(\exists)$$

$$\le \lambda_{\Omega}^{\delta}(k) = \inf_{\substack{t \in f^{-1}(x')\\ t \in f^{-1}(x')}} \lambda_{\Omega}^{\delta}(t) = \lambda_{\beta}^{\delta}(k'), \text{ for all} \quad k \in X$$

which implies that

 $\tilde{\mu}_{\beta}^{\delta}(\ \beth') \geqslant \tilde{\mu}_{\beta}^{\delta}(k') \text{ and } \lambda_{\beta}^{\delta}(\ \beth') \leq \lambda_{\beta}^{\delta}(k') \text{ , for all } k' \in Y \text{ .}$

For any k', y' \in Y, let $x_0 \in f^{-1}(k')$ and $y_0 \in f^{-1}(y')$ be such that

$$\lambda_{\beta}^{\delta}(y') = f(\lambda_{\Omega}^{\delta})(y') = \inf_{x \in f^{-1}(y')} \lambda_{\Omega}^{\delta}(x)$$

$$\begin{split} \tilde{\mu}_{\Omega}^{\delta}(x_{\exists} * y_{\exists}) &= \underset{t \in f^{-1}(x' * y'))}{ssigma} \tilde{\mu}_{\Omega}^{\delta}(t), \text{ and } \\ \tilde{\mu}_{\Omega}^{\delta}(y_{\exists}) &= \underset{t \in f^{-1}(y')}{ssigma} \tilde{\mu}_{\Omega}^{\delta}(t) \text{ . then } \\ \tilde{\mu}_{\Omega}^{\delta}(y_{\exists}) &= \tilde{\mu}_{\beta}^{\delta}(f(y_{\exists})) \end{split}$$

International Journal of Academic Management Science Research (IJAMSR) ISSN: 2643-900X Vol. 7 James 1, January, 2022, Baggar 27, 25

$$\begin{split} & \tilde{\mu}_{\beta}^{\delta}(y') \\ &= \underset{(y_{2})\in f^{-1}(y')}{rsup} \tilde{\mu}_{\Omega}^{\delta}(y_{2}) \\ &= \underset{(y_{2})\in f^{-1}(y')}{rsup} \tilde{\mu}_{\Omega}^{\delta}(t). \text{ Also }, \\ &\lambda_{\Omega}^{\delta}(k_{2} * y_{2}) = \underset{t \in f^{-1}(k * y')}{inf} \lambda_{\Omega}^{\delta}(t), \lambda_{\Omega}^{\delta}(k_{2}) = \underset{t \in f^{-1}(k)}{inf} \lambda_{\Omega}^{\delta}(t) \\ & \text{and} \\ &\lambda_{\Omega}^{\delta}(y_{2}) = \lambda_{\beta}^{\delta}(f(y_{2})) \\ &= \underset{(y_{2})\in f^{-1}(y')}{inf} \\ &= \underset{t \in f^{-1}(y')}{inf} \lambda_{\Omega}^{\delta}(t). \text{ Then} \\ &\tilde{\mu}_{\beta}^{\delta}(y') = \underset{t \in f^{-1}(y')}{rsup} \tilde{\mu}_{\Omega}^{\delta}(t) = \tilde{\mu}_{\Omega}^{\delta}(y_{2}) \\ &= \underset{t \in f^{-1}(y')}{inf} \lambda_{\Omega}^{\delta}(t). \text{ Then} \\ &\tilde{\mu}_{\beta}^{\delta}(y') = \underset{t \in f^{-1}(y')}{rsup} \tilde{\mu}_{\Omega}^{\delta}(t) = \tilde{\mu}_{\Omega}^{\delta}(x_{0} * y_{0}), \\ &= \underset{t \in f^{-1}(x' * y')}{inf} \tilde{\mu}_{\Omega}^{\delta}(t), \underset{t \in f^{-1}(x')}{rsup} \tilde{\mu}_{\Omega}^{\delta}(t) \\ &= \underset{t \in f^{-1}(y')}{rmin} \left\{ \widetilde{\mu}_{\beta}^{\delta}(x' * y'), \widetilde{\mu}_{\beta}^{\delta}(x') \right\} \text{ and} \\ &\lambda_{\Omega}^{\delta}(y') = \underset{t \in f^{-1}(y')}{inf} \lambda_{\Omega}^{\delta}(t) \\ &= \underset{t \in f^{-1}(x' * y')}{rief^{-1}(x')} \\ &= \max \left\{ \underset{t \in f^{-1}(x' * y')}{inf} \lambda_{\Omega}(t), \underset{t \in f^{-1}(x')}{inf} \lambda_{\Omega}(t) \right\} \\ &= \max \left\{ \underset{t \in f^{-1}(x' * y')}{inf} \lambda_{\Omega}(t), \underset{t \in f^{-1}(x')}{inf} \lambda_{\Omega}(t) \right\} \\ &= \max \left\{ \underset{t \in f^{-1}(x' * y')}{inf} \\ &= \underset{t \in f^{-1}(x' * y')}{rief^{-1}(x')} \\ &= \underset{t \in f^{-1}(x' * y')}{rief^{-1}(x' * y')} \\ &= \underset{t \in f^{-1}(x' * y')}{rief^{-1}(x' * y')} \\ &= \underset{t \in f^{-1}(x' * y')}{rief^{-1}(x' * y')} \\ &= \underset{t \in f^{-1}(x' * y')}{rief^{-1}(x' * y')} \\ &= \underset{t \in f^{-1}(x' * y')}{rief^{-1}(x' * y')} \\ &= \underset{t \in f^{-1}(x' * y')}{rief^{-1}(x' * y')} \\ &= \underset{t \in f^{-1}(x' * y')}{rief^{-1}(x' * y')} \\ &= \underset{t \in f^{-1}(x' * y')}{rief^{-1}(x' * y')} \\ &= \underset{t \in f^{-1}(x' * y')}{rief^{-1}(x' * y')} \\ &= \underset{t \in f^{-1}(x' * y')}{rief^{-1}(x' * y')} \\ &= \underset{t \in f^{-1}(x' * y')}{rief^{-1}(x' * y')} \\ &= \underset{t \in f^{-1}(x' * y')}{rief^{-1}(x' * y')} \\ &= \underset{t \in f^{-1}(x' * y')}{rief^{-1}(x' * y')} \\ &= \underset{t \in f^{-1}(x' * y')}{rief^{-1}(x' * y')} \\ &= \underset{t \in f$$

References

- A.T. Hameed and B.H. Hadi, (2018), Anti-Fuzzy ATideals on AT-algebras, Journal Al-Qadisyah for Computer Science and Mathematics, vol.10, no.363-74.
- [2] A.T. Hameed and B.H. Hadi, (2018), Cubic Fuzzy AT- subalgebra s and Fuzzy AT-ideals on ATalgebra, World Wide Journal of Multidisciplinary Research and Development, vol.4, no.434-44.
- [3] A.T. Hameed and B.H. Hadi, 2018, Intuitionistic Fuzzy ATideals on AT-algebras, Journal of Adv Research in Dynamical & Control Systems, vol.10, 10-Special.
- [4] A.T. Hameed and B.N. Abbas, (2017), **Ideal s of BZ-algebras**, Applied Mathematical Sciences, vol.11, no.35, pp:1715-1723.
- [5] A.T. Hameed and B.N. Abbas, (2018), Derivation of ideal s and fuzzy ideal s of BZ-algebra, LAMBERT Academic Publishing, 2018.
- [6] A.T. Hameed and B.N. Abbas, **On Some Properties of BZ**algebras, Algebra Letters, vol.7, pp:1-12.
- [7] A.T. Hameed and B.N. Abbas, (2018), Some properties of fuzzy ideal of BZ-algebras, Journal of AL-Qadisiyah for Computer Science and Mathematics, vol.10, no. 1, pp:1-7.
- [8] A.T. Hameed and E.K. Kadhim, 2020, Interval-valued IFAT-ideals of AT-algebra, Journal of Physics: Conference Series (IOP Publishing), pp:1-5.
- [9] A.T. Hameed and N.H. Malik, (2021), (β, α)-Fuzzy Magnified Translations of AT-algebra, Journal of Physics: Conference Series (IOP Publishing), 2021, pp:1-13.

- [10] A.T. Hameed and N.H. Malik, (2021), Magnified translation of intuitionistic fuzzy AT-ideals on AT-algebra, Journal of Discrete Mathematical Sciences and Cryptography, (2021), pp:1-7.
- [11] A.T. Hameed and N.J. Raheem, (2020), Hyper SAalgebra, International Journal of Engineering and Information Systems (IJEAIS), vol.4, Issue 8, pp.127-136.
- [12] A.T. Hameed and N.J. Raheem, (2021), Intervalvalued Fuzzy SA-ideals with Degree (λ,κ) of SAalgebra, Journal of Physics: Conference Series (IOP Publishing), 2021, pp:1-13.
- [13] A.T. Hameed, F. F. Kareem and S.H. Ali, 2021, Hyper Fuzzy AT-ideals of AT-algebra, Journal of Physics: Conference Series (IOP Publishing), pp:1-15.
- [14] A.T. Hameed, H.A. Faleh and A.H. Abed, (2021), Fuzzy Ideals of BZ-algebra, Journal of Physics: Conference Series (IOP Publishing), 2021, pp:1-7.
- [15] A.T. Hameed, I.H. Ghazi and A.H. Abed, (2020), Fuzzy α-translation ideal of BZ-algebras, Journal of Physics: Conference Series (IOP Publishing), 2020, pp:1-19.
- [16] A.T. Hameed, N.J. Raheem and A.H. Abed, (2021), Anti-fuzzy SA-ideals with Degree (λ,κ) of SAalgebra, Journal of Physics: Conference Series (IOP Publishing), 2021, pp:1-16.