Nearly Endo Small T-ABSO Submodules and Related Concepts

Ali E. Abd Ali ${ }^{1}$, Wafaa H. Hanoon ${ }^{2}$
${ }^{1}$ Ministry of Education, Najaf, Iraq
math842010@gmail.com
${ }^{2}$ Dept. of Math./College of Edu, University of Kufa, Najaf, Iraq
wafaah.hannon@uokufa.edu.iq

Abstract

This study compares the interactions between the Jacobson radical, the Endo small prime submodule, and the Endo small-T-ABSO submodule. To answer this relation etween these concepts, we offer two novel concepts: Nearly Endo small prime submodule and Nearly Endo small T-ABSO submodule. A variety of characteristics are found via the investigation to support the novel theories. The Nearly Endo small T-ABSO submodule structure is also examined, and it is shown that the Nearly Endo T-ABSO submodule and Nearly Endo small T-ABSO submodule are linked using straightforward algebraic techniques. It is also addressed whether the Nearly Endo tiny T-ABSO submodule is compatible with other submodule types. For the purpose of creating a new Nearly Endo small TABSO submodule, the study's findings are essential.

Keywords: Endo prime submodules; Endo small prime submodules; Nearly Endo T-ABSO submodules; Endo small T-ABSO submodules.

1. INTRODUCTION

In this work, G has the identity and would be a commutative ring, while W is a unitary G -module. Research on the concept of a prime submodule of modules was done by Lu [1] in 1983. For the 2-Absorbing submodule, Yousefian and Soheilnia created the concept [2]. Dakheel originally introduced the Endo prime submodule [3] in 2010. Wisbauer suggested the idea of a small submodule in 1991 [4]. Harfash [5] proposed the ideas of a small prime submodule and small 2-absorbing submodule in his paper (2015). In 2015[5], Harfash widened these concepts to incorporate the Endo 2-absorbing (Endo small 2absorbing) submodule. The terms Nearly Endo T-ABSO submodule and Nearly Endo prime submodule were introduced by Abd Ali and Hanoon [6].

The terms Nearly Endo small prime submodule and Nearly Endo small T-ABSO submodule, respectively, are used to generalize the notions of Endo small prime submodule and Endo small T-ABSO submodule in this article. There are two sections to this article. In the first section, we present some fundamental terms and characteristics that are necessary. Section 2 examines the numerous crucial properties, results, and outputs of the Nearly Endo smallT-ABSO submodule.

2. PRELIMINARIES

This section discusses the several fundamental concepts as well as any prerequisites they may have for the following section.

Definition 2.1 [7]

A submodule $P \leq W$ is referred to as minimal (respectively maximal) submodule of W if $P \neq 0, \forall B \leq W, B \subsetneq P \Longrightarrow B=(0)$ [respectively $P \supsetneqq \mathrm{~W}, \forall B \leq W, P \subset B \Rightarrow B=W$]

Definition 2.2 [7]

A $G-$ module W is referred to as a cyclic if $m \in W$ such that $W=<m>=\{r m: r \in G\}$.

Definition 2.3 [7]

If a módulè W has a finite generating set, it is said to be finitely generated., say X , that is $\mathrm{W}=\langle\mathrm{X}\rangle$.

Definition 2.4 [8]

A submod P of a G - module W is referred to as a direct summand of W , for short $\mathrm{P} \leq{ }^{\oplus} \mathrm{W}$ if, there exists a submódulè K of W such that $P+K=W$ and $P \cap K=0$.

Definition $2 . .5$ [1]

Let W as G -Módulè and $P \subset W . \mathrm{P}$ is referred to as a prime submódulè if $\mathrm{g} \in \mathrm{G}, \mathrm{s} \in \mathrm{W}$, with gs $\in \mathrm{P}$ implies that $\mathrm{s} \in \mathrm{P}$ or $\mathrm{g} \in\left(\mathrm{P}:{ }_{G} \mathrm{~W}\right)$.

Definition 2.6 [3]

Let W as G-Módulè and $P \subset W . \mathrm{P}$ is referred to as Endo Prime submódulè if $\mathrm{L} \in \mathrm{End}(\mathrm{W}), \mathrm{L}(\mathrm{g}) \in N, \mathrm{~g} \in \mathrm{~W}$ implies that $g \in P$ or $(W) \subseteq P$.

Definition 2.7 [2]

Let W as G-Módulè and $P \subset W$. P is referred to as $\mathrm{T}-\mathrm{ABSO}$ submódulè if whenever $a, \in \mathrm{G}, x \in \mathrm{~W}$, with $a b x \in \mathrm{P}$ implies that $a x \in \mathrm{P}$ or $b x \in \mathrm{P}$ or $a b \in \mathrm{P}$ or $\mathrm{ab} \in\left(\mathrm{P}:_{G} \mathrm{~W}\right)$.

Definition 2.8 [5]

Let W as G-Módulè and $P \subset W . \mathrm{P}$ is referred to as Endo T-ABSO submod if for each $\mathrm{f}, \mathrm{g} \in \operatorname{End}(\mathrm{W}), \mathrm{m} \in \mathrm{W}$ With (fo $g)(m) \in P$ implies that $f(m) \in P$ or $g(m) \in P$ or $(f \circ g)(W) \subseteq P$.

Definition 2.9 [4]

Let W as $\mathrm{G}-\mathrm{Módulè} \mathrm{and} P \subset W . \mathrm{P}$ is referred to as a small submódulè of W and denoted by $\mathrm{P} \ll \mathrm{W}$ if $\mathrm{P}+L \neq \mathrm{W}$ for any submódulè $L \subset \mathrm{~W}$.

Proposition 2. 10 [4]

Let K , L be submódulès of a G-módulè W , and W^{\prime} a G-módulès.Then

1) If $\mathrm{K} \ll \mathrm{W}$ and $f: \mathrm{M} \rightarrow \mathrm{W}^{\prime}$ is an èiphómórphism, then $f(\mathrm{~K}) \ll \mathrm{W}^{\prime}$.
2) (2) If $K \subset L \subset W$, then $L \ll W$ if and only if $K \ll W$ and $L / K \ll W / K$.
3) If $K \ll W$ and $L \ll W$ then $K+L \ll W$.

Definition 2.11 [4]

A G-módulè W is refered to as a hóllów módulè if and only if every submódulè in W is small

Definition 2.12 [7]

Let W be a G-module. The Jacóbsón radical of W is denoted by $\mathrm{J}(\mathrm{W})$, and defined as the intersection of all maximal submódulè of W, and denoted by sum of all small submod of W. If W has no maximal submod, then we set $J(W)=W$.

Theorem 2.13 [7]

If $\emptyset: W \rightarrow \mathrm{~W}^{\prime}$ is a G- hómómórphism, then $\emptyset(\mathrm{J} W) \subseteq \mathrm{J}\left(\mathrm{W}^{\prime}\right)$, If $\varnothing: \mathrm{W} \rightarrow \mathrm{W}^{\prime}$ is a G-epimórphism and ker $\varnothing \ll \mathrm{W}$,then $\emptyset(\mathrm{J}(\mathrm{W}))=$ $J\left(W^{\prime}\right)$, and $J(W) . R \subseteq J(W)$, where G is a ring, if W is projective module then $J(W) \cdot R=J(W)$.

Definition 2.14 [6]

Let W as G -module and $P \subset W, \mathrm{P}$ is refered to as Nearly Endo prime submódulè (in short N -E- prime submod) if for each $L \in$ EndW,$x \in \mathrm{~W}$ such that $L(x) \in P$ implies that $x \in P+J(W)$ or $L(W) \subseteq P+J(W)$.
Definition 2.15 [6]
Let W as G-module and $P \subset W, \mathrm{P}$ is refered to as Nearly Endo T-ABSO submódulè (in short N-E- T-ABSO submod) if for each $L, h \in E n d W, x \in \mathrm{~W}$ such that $(L \circ h)(x) \in P$ implies that either $L(x) \in P+J(W)$ or $h(x) \in P+J(W)$ or (L 。 $h)(W) \subseteq P+J(W)$.
Definition 2.16 [9]
A G- module W is refered to as a scalar module if for each $f \in \operatorname{End}(W)$, there exists $r \in G$ such that $f(x)=r x$, for $x \in W$
Corollary 2. 17 [9]
Every finitely generated multiplication G-modul W is scalar módulè.

Definition 2.18 [10]

A G-module P is referred to as W-Projective modul if each pattern diagram :

with exactrow can be extended commutatively via homomorphism $h: P \rightarrow W$ that is $g o h=f$.

Definition 2.19[4]

A submod P of a module W is refered to as fully invariant if, $f(P) \subseteq P$ for all $L \in \operatorname{End}_{G}(W)$.

3. Nearly Endo Small T- ABSO Submodule

Definition 3.1

Let W as G-módul and $P \subset W, \mathrm{P}$ is refered to as Nearly Endo small prime submódulè (in short N -E-smal prime submod) if for each $L \in E n d \mathrm{~W},<x>\ll \mathrm{W}$ such that $L(x) \in P$ implies that $x \in P+J(W)$ or $L(W) \subseteq P+J(W)$.

Example 3.2 Consider Z_{8} as Z-module
$P=(\overline{2})$ is N-E- small prime submodule since if $L(x)=2 x, \forall x \in Z_{8}$ where $<\overline{2}>\ll Z_{8}$
$L \in \operatorname{End}\left(Z_{8}\right), J\left(Z_{8}\right)=(\overline{2}), L(2)=4 \in P=(\overline{2})$, implies that either $2 \in(\overline{2})+J\left(Z_{8}\right)=(\overline{2})$ or $L\left(Z_{8}\right) \subseteq(\overline{2})+$ $J\left(Z_{8}\right)=(\overline{2})$

$$
\subseteq P+J\left(Z_{8}\right)=(\overline{2})
$$

Definition 3.3

Let W as G-module and $P \subset W, \mathrm{P}$ is refered to as Nearly Endo small T-ABSO submódulè (in short N -E-small T-ABSO submod) if for each $L, h \in E n d W,<x \geq \ll W$ such that $(L \circ h)(x) \in P$ implies that either $L(x) \in P+J(W)$ or $h(x) \in P+$ $J(W)$ or $(L \circ h)(W) \subseteq P+J(W)$.

Example 3.4

Consider Z_{16} as Z-module, $\mathrm{P}=(\overline{8})$ is N-E- small T-ABSO submod, since if $L, h \in \operatorname{Endo}\left(\mathrm{Z}_{16}\right), L(x)=2 x, h(x)=x, \forall x \in \mathrm{Z}_{16}$ and $J\left(\mathrm{Z}_{16}\right)=(\overline{2}),(L \circ \mathrm{~h})(4)=L(4)=8 \in \mathrm{P}=(\overline{8})$ implies that either $L(4)=8 \in P+J\left(Z_{16}\right)=(\overline{2})$ or $h(4)=4 \in P+$ $J\left(Z_{16}\right)=(\overline{2}) \quad$ or $(L \circ \mathrm{~h})\left(Z_{16}\right) \subseteq P+J\left(Z_{16}\right)=(\overline{2})$
$(f \circ g)\left(Z_{15}\right)=\left\{\begin{array}{cc}L(h(0))=0, & L(h(1))=2, \\ L(h(2))=4, & L(h(3))=6, \\ L(h(4))=8, & L(h(5))=10, \\ L(h(6))=12, & L(h(7))=14, \\ L(h(8))=0, & L(h(9))=2, \\ L(h(10))=4, & L(h(11))=6, \\ L(h(12))=8, & L(h(13))=10, \\ L(h(14))=12, & L(h(15))=14\end{array}\right.$
So that $(f \circ g)\left(Z_{16}\right) \subseteq P+J\left(Z_{16}\right)=(\overline{2})$

Remarks and Examples 3.5

1) Every E-small prime submod of a G-module W is N - E-small prime submod of W . But the converse is not true in general, for example: Consider Z_{8} as Z-module, $P=(\overline{4})$ is N-E- small prime submod of Z_{8} since if $L \in \operatorname{Endo}\left(Z_{8}\right), f(x)=x+2$, where $\forall x \in Z_{8} J\left(\mathrm{Z}_{8}\right)=(\overline{2}), L(2)=4 \in P=(\overline{4})$, where $<\overline{2}>\ll Z_{8}$, then $2 \in P+J\left(\mathrm{Z}_{8}\right)=(\overline{2})$, but P is not E-small prime
submod of W, since $L(2)=4 \in P=(\overline{4})$, then $2 \notin P=(\overline{4})$ and $L\left(\mathrm{Z}_{8}\right) \nsubseteq P=(\overline{4})$ When $L(3)=5 \notin P=(\overline{4})$.
2) Every E-small T-ABSO submod of a G-module W is $\mathrm{N}-\mathrm{E}-$ small T-ABSO submod of W .

Proof:Let P be E-small T-ABSO submod of W and $L, h \operatorname{Endo}(W), x \in W,<x>\ll \mathrm{W}$ such that
$(L \circ \mathrm{~h})(x) \in P$, but P is E-small T-ABSO submod of W , then $L(x) \in P$ or $h(x) \in P$ or $(L \circ \mathrm{~h})(W) \subseteq P$,
hence $L(x) \in P+J(W)$ or $h(x) \in P+J(W)$ or $(L \circ \mathrm{~h})(W) \subseteq P+J(W)$.Thus, P is N-E-small T-ABSO submod of W .
But the converse incorrect in general, for example: Consider Z_{16} as Z-module, $P=(\overline{4})$ is N-E- small T-ABSO submod of
Z_{16} since if $L, h \in \operatorname{Endo}\left(Z_{16}\right), L(x)=x+2, h(x)=3 x, \forall x \in Z_{16},<x>\ll Z_{16}$ where $J\left(\mathrm{Z}_{16}\right)=(\overline{2})$, such that
$(L \circ \mathrm{~h})(2)=L(6)=8 \in P=(\overline{8})$, then $L(2)=4 \in P+J\left(\mathrm{Z}_{16}\right)=(\overline{2})$ and $h(2)=6 \in P+J\left(\mathrm{Z}_{16}\right)=(\overline{2})$, but P is not E small T-ABSO submod of W, since $(L \circ \mathrm{~h})(2)=8 \in P=(\overline{8})$, then $L(2)=4 \notin P=(\overline{8}), h(2)=6 \notin P=(\overline{8})$ and $(L \circ \mathrm{~h})\left(Z_{8}\right) \nsubseteq P=(\overline{8})$ When $(L \circ \mathrm{~h})(1)=5 \notin P=(\overline{8})$
3) Let P, S be two submods of a G-module W , and $P \subset S$. If P is N-E-small T-ABSO submod of W , then P is N-E-small TABSO submod of S with,$J(W) \subseteq J(S)$.
Proof: Let $(L \circ h)(x) \in P, \forall x \in S,<x>\ll \mathrm{S}$ since $S<W$, so $x \in W, L, h \in E n d o(W)$, Since P is N-E-small T-ABSO submod of W, then either $L(x) \in P+J(W)$ or $h(x) \in P+J(W)$ or $(L \circ h)(W) \subseteq P+J(W)$, since $J(W) \subseteq J(S)$, hence $L(x) \in P+J(S)$ or $h(x) \in P+J(S)$ or $(L \circ h)(W) \subseteq P+J(S)$, but $S<W$, so that $(L \circ h)(S) \subseteq(L \circ h)(W)$, hence $(L \circ h)(S) \subseteq(L \circ h)(W) \subseteq P+J(S),(L \circ h)(S) \subseteq P+J(S)$ Thus P is N-E-small T-ABSO submod of S .
4) Every N-E- prime submod is N-E-small T-ABSO submod, but the converse incorrect in general, for example : Consider Z_{8} as Z - module, $P=(\overline{4})$ is N-E- small T-ABSO submod of Z_{8} since if $L, h \in \operatorname{Endo}\left(Z_{8}\right), L(x)=x+1$, $h(x)=3, \forall x \in Z_{8},<x>\ll Z_{8} \quad$ where $J\left(Z_{8}\right)=(\overline{2})$, such that $(L \circ \mathrm{~h})(2)=L(3)=4 \in P=(\overline{4})$, then $(L \circ \mathrm{~h})\left(Z_{8}\right) \subseteq P+J\left(\mathrm{Z}_{8}\right)$

So that $(L \circ \mathrm{~h})\left(Z_{8}\right) \subseteq P+J\left(\mathrm{Z}_{8}\right)$. But it is not N -E- prime submod of Z_{8} since $L(3)=4 \in P=(\overline{4})$, then $3 \notin P+J\left(\mathrm{Z}_{8}\right)=(\overline{2})$ and $L\left(\mathrm{Z}_{8}\right) \nsubseteq P+J\left(\mathrm{Z}_{8}\right)=(\overline{2})$ when $f(0)=1 \notin P+J\left(\mathrm{Z}_{8}\right)$
5) Every E-T-ABSO(N-E-T-ABSO) submod. is N-E-small-T-ABSO submod. But the converse incorrect in general, for example:Consider Z_{24} as Z-module, $P=(\overline{12})$ is N-E- small T-ABSO submod of Z_{24} since if $L, h \in \operatorname{End}\left(Z_{24}\right)$, $L(x)=2 x, h(x)=3 x, \forall x \in Z_{24},<x>\ll Z_{24}$ where $J\left(\mathrm{Z}_{24}\right)=(\overline{6})$, such that $(L \circ \mathrm{~h})(6)=L(18)=12 \in P=(\overline{12})$, Then $L(6)=12 \in P+J\left(\mathrm{Z}_{24}\right)=(\overline{6})$ and $h(6)=18 \in P+J\left(\mathrm{Z}_{24}\right)=(\overline{6})$, but P is not E-T-ABSO submod of W, since $(L \circ \mathrm{~h})(2)=12 \in P=(\overline{12})$, then $L(2)=4 \notin P=(\overline{12}), h(2)=6 \notin P=(\overline{12})$ and $(L \circ \mathrm{~h})\left(Z_{8}\right) \nsubseteq P=(\overline{12})$ When $(L \circ \mathrm{~h})(1)=6 \notin P=(\overline{12})$

Proposition 3.6

If W as G-móduè is hóllów. If P is $\mathrm{N}-\mathrm{E}-$ small $\mathrm{T}-\mathrm{ABSO}$ submod of W and $\mathrm{J}(\mathrm{W}) \subseteq P$, then P is $\mathrm{N}-\mathrm{E}-\mathrm{T}-\mathrm{ABSO}(\mathrm{E}-\mathrm{T}-\mathrm{ABSO})$ submod of W
Proof: Suppose P is N -E-small T-ABSO submod. Let $\mathrm{h}, \mathrm{g} \in \mathrm{End}(\mathrm{W}), x \in \mathrm{~W}$ such that $(\mathrm{h} \circ \mathrm{g})(\mathrm{x}) \in \mathrm{P}$, but W is hollow module, then $\langle x>\ll \mathrm{W}$. So that either $\mathrm{h}(\mathrm{x}) \in \mathrm{P}+\mathrm{J}(\mathrm{W})$ or $\mathrm{g}(\mathrm{x}) \in \mathrm{P}+\mathrm{J}(\mathrm{W})$ or $(\mathrm{h} \circ \mathrm{g})(\mathrm{W}) \subseteq \mathrm{P}+J(\mathrm{~W})$ since P is N-E-small T-ABSO submod. (but $\mathrm{J}(\mathrm{W}) \subseteq P$, hence either $\mathrm{h}(\mathrm{x}) \in \mathrm{P}$ or $\mathrm{g}(\mathrm{x}) \in \mathrm{P}$ or $(\mathrm{h} \circ \mathrm{g})(\mathrm{W}) \subseteq \mathrm{P})$. Thus, P is $\mathrm{N}-\mathrm{E}-\mathrm{T}-\mathrm{ABSO}(\mathrm{E}-\mathrm{T}-\mathrm{ABSO})$ submod of W

Proposition 3.7

If W G- móduè is hóllów and $\mathrm{J}(\mathrm{W})$ is N-E-small T-ABSO submod of W , then every submod of W is N-E-small T-ABSO submod.

International Journal of Engineering and Information Systems (IJEAIS)
 ISSN: 2643-640X
 Vol. 7 Issue 1, January - 2023, Pages: 15-22

Proof: Suppose P be a submod of W . Let $\mathrm{h}, \mathrm{g} \in \operatorname{End}(\mathrm{W}),<x>\ll \mathrm{W}$ such that $(\mathrm{h} \circ \mathrm{g})(\mathrm{x}) \in \mathrm{P}$, but W is hollow module, then P is small submod in W, hence $(h \circ g)(x) \in P \subseteq J(W)$, so that either $h(x) \in J(W)+J(W)=J(W) \subseteq P+J(W)$ or $g(x) \in J(W)+J(W)=J(W) \subseteq P$ $+\mathrm{J}(\mathrm{W})$ or $(\mathrm{h} \circ \mathrm{g})(\mathrm{W}) \subseteq J(\mathrm{~W})+J(\mathrm{~W})=J(\mathrm{~W}) \subseteq \mathrm{P}+J(\mathrm{~W})$. Thus, P is N-E-small T-ABSO submod of W.

Proposition 3.8

Let P a submod of a scalar G-module W . Then P is small T-ABSO submod if and only if P is $\mathrm{N}-\mathrm{E}-\mathrm{Small} \mathrm{T}-\mathrm{ABSO}$ submod and $J(W) \subseteq P$.
Proof: (\Rightarrow) Let $(L \circ \mathrm{~h})(x) \in P \quad$ where $L, h \in \operatorname{End}(W), \forall x \in W,<x>\ll \mathrm{W}$, since W is Scalar module, then there exist $\mathrm{a}, \mathrm{b} \in G$ such that $a x=L(x), b x=h(x)$ for each $\forall x \in W,<x>\ll \mathrm{W}$, but P is small T-ABSO submod of W, then $(L \circ \mathrm{~h})(x)=$ $a b x \subseteq P$, implice that either $a x=L(x) \in P$ or $b x=h(x) \in P$ or $a b W \subseteq P$, Since $J(W) \subseteq P$ hence $L(x) \in P+J(W)$ or $h(x) \in P+J(W)$ or $(L \circ \mathrm{~h})(W) \subseteq P+J(W)$.Then P is N -E- smallT-ABSO submod of W.
(\Longleftarrow) Let $L, h \in \operatorname{Endo}(W), \forall x \in W,<x>\ll W$ such that $L(x)=a x, h(x)=b x \quad(L \circ \mathrm{~h})(M)=a b x \subseteq P$,
since W is scalar module, but P is N-E-small T-ABSO submod of W , then either $a x=L(x) \in P+J(W)$ or $b x=h(x) \in$
$P+J(W)$ or $(L \circ \mathrm{~h})(W)=a b W \subseteq P+J(W)$, hence $L(x)=a x \in P$ or $b x=h(x) \in P$ or $a b W=(L \circ \mathrm{~h})(W) \subseteq P$, so that $a b \in\left(P:_{G} W\right)$ since $J(W) \subseteq P$. Then P is small T-ABSO submod of W.

Remark 3.9

If delete the condition of scalar module the converse of Proposition 3.8 is not true in general, for example: Consider Z_{12} as Z-module, $P=(\overline{3})$ is small T- ABSO submodule, $2 \cdot 1 \cdot(\overline{6})=0 \in P=(\overline{3})$ where $<\overline{6}>\ll Z_{12}$, implies that
$1 \cdot(\overline{6})=6 \in P=(\overline{3})$ and $2 \cdot(\overline{6})=0 \in P=(\overline{3})$. But P is not N-E-small T-ABSO submod of Z_{12} since if $f, g \in \operatorname{End}\left(Z_{12}\right)$, $f(x)=x-2, g(x)=x-1$ such that $(f \circ g)(6)=f(g(6))=3 \in P=(\overline{3})$, where $J\left(Z_{12}\right)=(\overline{2}) \cap(\overline{3})=(\overline{6})$, then $f(6)=$ $4 \notin P+J\left(\mathrm{Z}_{12}\right)=(\overline{3}), g(6)=5 \notin P+J\left(\mathrm{Z}_{12}\right)=(\overline{3})$ and $(f \circ \mathrm{~g})\left(\mathrm{Z}_{12}\right) \nsubseteq P+J\left(\mathrm{Z}_{12}\right)$ When $(f \circ \mathrm{~g})(4)=f(g(4))=1 \notin$ $(\overline{3})=P+J\left(\mathrm{Z}_{12}\right)$

Corollary $\mathbf{3 . 1 0}$

Let P a própèr submod of a finitely generated multiplication G-módulè $\mathrm{W} J(W) \subseteq P$. then P is small T-ABSO submod if and only if P is N-E-small T-ABSO submod
Proof : By Proposition 3.8 and Corollary 2.14 we get the result .

Proposition 3.11

Let W_{1}, W_{2}, be two G-modules. If $P_{1} \oplus P_{2}$ is N-E-small T-ABSO submod of $W_{1} \oplus W_{2}$, then P_{1} and P_{2} are N-E-small TABSO submods of W_{1} and W_{2} rèspèctivièly.

Proof: Suppose that $r a x \in P_{1}$ and ray $\in P_{2}$, for all $\mathrm{r}, \mathrm{a} \in \mathrm{G}$ and $<x>\ll W_{1}$ and $<y>\ll W_{2}$, then $r a(x, y) \subseteq P_{1} \oplus P_{2}$, such that $<x>\oplus<y>\ll W_{1} \oplus W_{2}$ by Proposition 2.10. But $P_{1} \oplus P_{2}$ is N-E-small T-ABSO submod of $W_{1} \oplus W_{2}$, then either $r_{s}(x, y) \in$ $P_{1} \oplus P_{2}+J\left(W_{1} \oplus W_{2}\right)$ or $a(x, y) \subseteq P_{1} \oplus P_{2}+J\left(W_{1} \oplus W_{2}\right)$ or $r a \in\left(P_{1} \oplus P_{2}+J\left(W_{1} \oplus W_{2}\right): W_{1} \oplus W_{2}\right)=$ $\left(P_{1}+J\left(W_{1}\right): W_{1}\right) \cap\left(P_{2}+J\left(W_{2}\right): W_{2}\right)$, hence $r x \in P_{1}+J\left(W_{1}\right)$ or $a x \in P_{1}+J\left(W_{1}\right)$ or $r a \in\left(P_{1}+J\left(W_{1}\right): W_{1}\right)$ and $r y \in P_{2}+$ $J\left(W_{2}\right)$ or ay $\in P_{2}+J\left(W_{2}\right)$ or $r a \in\left(P_{2}+J\left(W_{2}\right): W_{2}\right)$. Thus, P_{1} and P_{2} are N-E-small T-ABSO submods of W_{1} and W_{2} respectively.

Theorem 3.12

Let P be a fully invariant N-E-small T-ABSO submod of G-module W , let $f: W \rightarrow W^{\prime}$ be èpimorphism such that $\operatorname{Ker} f \subseteq P$. Then $f(P)$ is N-E- small T- ABSO submod of W^{\prime} where W ' is W '-projective module.
Proof: Let $g, h \in E n d W^{\prime},<m^{\prime}>\ll \in W^{\prime}$ such that $(g \circ h)\left(m^{\prime}\right) \in f(P)$ since f is epimorphism, then $m^{\prime}=f(m)$ for some $m \in$ P and since W^{\prime} is projective Module, then there exist $K_{1}, K_{2}: W^{\prime} \rightarrow W$, such that $f \circ K_{1}=g$ and $f \circ K_{2}=h$

Vol. 7 Issue 1, January - 2023, Pages: 15-22

Now consider the following digrams

$(g \circ h)\left(m^{\prime}\right)=\left(f \circ K_{2}\right) \circ\left(m^{\prime}\right) \in f(P)=f\left[\left(f \circ K_{1} \circ K_{2}\right)\left(m^{\prime}\right)\right] \in f(P)$. Then $\left(K_{1} \circ f \circ K_{2}\right)\left(m^{\prime}\right) \in P+\operatorname{Kerf} f, \operatorname{since} \operatorname{Kerf} \subseteq P$, and $m^{\prime}=f(m)$, so $\left(K_{1} \circ f \circ K_{2}\right)(f(m)) \in P$. That is $\left.\left(K_{1} \circ f\right)\left(K_{2} \circ f\right)(m)\right) \in P$, since P is N-E-smallT-ABSO submod of W, then either $\left(K_{1} \circ f\right)(m) \in P+J(W)$ or $\left(K_{2} \circ f\right)(m) \in P+J(W)$ or $\left(K_{1} \circ f\right) \circ\left(K_{2} \circ f\right)(W) \subseteq P+J(W)$. If $\left(K_{1} \circ f\right)(m) \in$ $P+J(W)$, then $\left(K_{1}(f(m)) \in P+J(W)\right.$, i.e $K_{1}\left(m^{\prime}\right) \in P+J(W)$, so $f\left(K_{1}\left(m^{\prime}\right)\right) \in f(P)+f(J(W)) \subseteq f(P)+J\left(W^{\prime}\right)$ by Theorem 2.13, thus $g\left(m^{\prime}\right) \in f(P)+J\left(W^{\prime}\right)$

If $\left(K_{2} \circ f\right)(m) \in P+J(W)$, then $\left(K_{2}(f(m)) \in P+J(W)\right.$, i.e $\left[K_{2}\left(m^{\prime}\right) \in P+J(W)\right]$,
so $f\left(K_{2}\left(m^{\prime}\right)\right) \in f(P)+f(J(W)) f(P)+J\left(W^{\prime}\right)$ by Theorem 2.13, thush($\left.m^{\prime}\right) \in f(P)+\left(J\left(W^{\prime}\right)\right)$
If $\left(K_{1} \circ f\right) \circ\left(K_{2} \circ f\right)(W) \subseteq P+J(W)$, then $\left.\left(K_{1} \circ f \circ K_{2}\right) f(W)\right) \subseteq P+J(W)$, Since $f(W)=W^{\prime},\left(K_{1} \circ f \circ K_{2}\right)\left(W^{\prime}\right) \subseteq P+$ $J(W)$, since $\left(f o K_{2}\right)=h$, then $\left(K_{1} \circ h\right)\left(W^{\prime}\right) \subseteq P+J(W) . \quad$ So $\quad f\left[\left(K_{1} \circ h\right)\left(W^{\prime}\right)\right] \subseteq f(P)+f(J(W))$, i.e $\left(\left(f \circ K_{1}\right) \circ\right.$ h) $\left(W^{\prime}\right) \subseteq f(P)+f(J(W)) f(P)+J\left(W^{\prime}\right)$ by Theorem 2.13. Since $f \circ K_{1}=g$, then $(g o h)\left(W^{\prime}\right) \subseteq f(P)+J\left(W^{\prime}\right)$

Thus $f(N)$ is $N-E-$ small $T-A B S O$ submod of W^{\prime}.

Proposition 3.13

Let $f: \mathrm{W} \rightarrow \mathrm{W}^{\prime}$ be a G-hómomórphism. If P is fully invariant $\mathrm{N}-\mathrm{E}-\mathrm{T}-$ small ABSO submod of fully invariant W^{\prime}, such that $f(W) \nsubseteq P$. Then $f^{-1}(P)$ is N-E-smallT-ABSO submod of W.
Proof : Since P is a proper submod of W^{\prime}, So $f^{-1}(P)$ is a proper submod of W (if not, then $f^{-1}(P)=W$, so $f f^{-1}(P)=f(W)$, hence $P=f(W)$ this contradication) Let $h, g \in \operatorname{End}(W),<m>\ll W$ such that $(h \circ \mathrm{~g})(m) \in f^{-1}(P)$, then $f(h \circ g)(m) \in$ P, so $(f \circ \mathrm{~h}) g(m) \in P$ where $<g(m)>\ll W$ by Proposition 2.17. Since P is N-E-smallT-ABSO submod of W^{\prime}, then either $f(g(m)) \in P+J\left(W^{\prime}\right)$ or $h(g(m)) \in P+J\left(W^{\prime}\right)$ or $f(h(W)) \subseteq P+J\left(W^{\prime}\right)$.
Case 1: If $f(g(m)) \in P+J\left(W^{\prime}\right), f^{-1}\left[f(g(m)) \in P+J\left(W^{\prime}\right)\right]$, then $g(m) \in f^{-1}(P)+J\left(f^{-1}\left(W^{\prime}\right)\right)$, so $g(m) \in f^{-1}(P)+J(W)$
Case 2: If $h(g(m)) \in P+J\left(W^{\prime}\right)$, but P is N-E-small T-ABSO submod of W^{\prime}, then $h(m) \in P+J\left(W^{\prime}\right)$ or $g(m) \in P+J\left(W^{\prime}\right)$ or $h \circ g(W) \subseteq P+J\left(W^{\prime}\right)$. If $h(m) \in P+J\left(W^{\prime}\right)$, then $f(h(m)) \in f(P)+f\left(J\left(W^{\prime}\right)\right) \subseteq f(P)+J\left(f\left(W^{\prime}\right)\right) \subseteq P+J\left(W^{\prime}\right)$ since P and W' are fully invariant, hence $f(h(m)) \in P+J\left(W^{\prime}\right), f^{-1}\left[f(h(m)) \in P+J\left(W^{\prime}\right)\right]$, so $h(m) \in f^{-1}(P)+f^{-1}(J(W))$, then $h(m) \in f^{-1}(P)+J\left(f^{-1}\left(W^{\prime}\right)\right)=f^{-1}(P)+J(W)$. It similarty if $g(m) \in P+J\left(W^{\prime}\right)$, we get $g(m) \in f^{-1}(P)+J(W)$. If $h \circ g(W) \subseteq P+J\left(W^{\prime}\right)$, then $f(h \circ g(W)) \in f(P)+f\left(J\left(W^{\prime}\right)\right) \subseteq f(P)+J\left(f\left(W^{\prime}\right)\right) \subseteq P+J\left(W^{\prime}\right)$ since P and W^{\prime} are fully invariant, hence $f(h \circ g(W)) \subseteq P+J\left(W^{\prime}\right), f^{-1}\left[f(h \circ g(W)) \subseteq P+J\left(W^{\prime}\right)\right]$, so $h \circ g(W) \subseteq f^{-1}(P)+f^{-1}\left(J\left(W^{\prime}\right)\right) \subseteq$ $f^{-1}(P)+J\left(f^{-1}\left(W^{\prime}\right)\right)$, then $h \circ g(W) \subseteq f^{-1}(P)+J(W)$.
Case3: If $f\left(h(W) \subseteq P+J\left(W^{\prime}\right), f^{-1}\left[f\left(h(W) \subseteq P+J\left(W^{\prime}\right)\right]\right.\right.$, then $h(W) \subseteq f^{-1}(P)+f^{-1}\left(J\left(W^{\prime}\right)\right) \subseteq f^{-1}(P)+J\left(f^{-1}\left(W^{\prime}\right)\right)$, so $h(W) \subseteq f^{-1}(P)+J(W)$. Thus, $f^{-1}(P)$ is N-E-small T-ABSO submod of W

Proposition 3.14

Let W as G-module and $P \subset W$, Let K be a fully invariant submod of W and contained in P . If $\frac{P}{K}$ is E - small T- ABSO submod of $\frac{W}{K}$, then P is N-E- small T-ABSO submod of W.

Proof

Let $L, h \in E n d W, x \in W$ such that $(L \circ h)(x) \in P$ where $<x>\ll W$. Define $L_{1}, h_{1}: \frac{W}{K} \rightarrow \frac{W}{K} \quad$ by $L_{1}(x+K)=$ $L(x)+K ; h_{1}(x+K)=h(x)+K$ for each $x \in W$. It is clear that L_{1}, h_{1} are well-defined since K is fully invariant.

Now, $\left(L_{1} \circ h_{1}\right)(x+K)=L_{1}\left(h_{1}(x+K)\right)=L_{1}(h(x)+K)=L(h(x))+K=(L \circ h)(x+K) \in \frac{P}{K}$.
But $<x+K>\ll \frac{W}{K}$ and $\frac{P}{K}$ is E-small -T-ABSO submod of $\frac{W}{K}$ by Proposition 2.10.
Then either $L_{1}(x+K) \in \frac{P}{K}$ or $h_{1}(x+K) \in \frac{P}{K}$ or $L_{1}\left(h_{1}\left(\frac{W}{K}\right)\right) \subseteq \frac{P}{K}$, So or $L(x)+K \in \frac{P}{K}+J\left(\frac{W}{K}\right)$ or $h(x)+K \in$ $\frac{P}{K}+J\left(\frac{W}{K}\right)$ or $L(h(W)+K) \subseteq \frac{P}{K}+J\left(\frac{W}{K}\right)$, therefore $L(x) \in P+J(W)$ or $h(x) \in P+J(W)$ or $L(h(W)) \subseteq P+J(W)$. Thus, P is a N-E-small-T-ABSO submod of W.

ACKNOWLEDGMENT

The authors want to thank the referee for their diligent reading and for giving engh time for our to edit our manuscript.

References

[1] Lu, C. P. (1984). Prime Submodules of Modules, Commentarii Mathematici, Universitatis Sancti Pauli, 33(1), 61-69
[2] Darani, A. Y. and Sohielina, F. (2011). 2-Absorbing and weakly 2- absorbing submodules, Thai Journal of Mathematics,vol. 9, no. pp.577-584
[3] Dakheel, Sh. O. (2010). S- prime submodules and some related concepts, M.Sc. Thesis, College of science, University of Baghdad.
[4] Wisbauer, R. (1991). Foundations of module and ring theory, Gordon and Breach, Reading.
[5] Harfash, A. A. (2015). 2-absorbing submodules(modules) and some of their generalizations, M.Sc. Thesis, University of Baghdad
[6] Abd Ali, A. E. and Hanoon, W. H. (to appear), Nearly endo-T-ABSO submodule and related concepts, Journal of Interdisciplinary Mathematics.
[7] Kasch, F. (1982). Modules and rings, London New York.
[8] Mahmood, L. S. (2012). Small prime modules and small prime submodules, Journal of Al- Nahrain University Science, vol. 15, no.4, pp.191-199
[9] Shihap,B. N. (2004). Scalar reflexive modules, ph. D. Thesis, University of Baghdad.
[10] Dung, N. V., Huynh, D.V., Smith, P.F. and Wisbauer, R. (1994), Extending modules, John Wily and Sons, Inc. New York.

International Journal of Engineering and Information Systems (IJEAIS)
Vol. 7 Issue 1, January - 2023, Pages: 15-22

Authors
Author's Name: Ali E. Abd Ali
Teacher in Ministry of Education
Najaf, Iraq

Author's Name: Assistant professor Dr.
Wafaa Hadi Hanoon
in Department of Mathematics
College of Education
University of Kufa Najaf, Iraq

