Fuzzy Soc-Small T-ABSO Submodules and Related Concepts

Mustafa B. Salman ${ }^{1}$ and Wafaa H. Hanoon ${ }^{2}$
${ }^{1}$ Ministry of Education, Najaf, Iraq
mustafaalghazalialghazali@gmail.com
${ }^{2}$ Dept. of Math./College of Edu, University of Kufa, Najaf, Iraq
wafaah.hannon@uokufa.edu.iq

Abstract

In this work, the interaction between the fuzzy small-T-ABSO submodule, small prime submodule, and fuzzy socle are compared. We provide two new concepts fuzzy socle small prime submodule and fuzzy socle small T-ABSO submodule to address this question. The research uncovered a number of traits that supported the novel theories. Using simple algebraic methods, it is also discovered that fuzzy socle small T-ABSO and fuzzy socle T-ABSO have a link, for fuzzy direct sum and homomorphic images, in additione, we looked into the fuzzy socle smallT-ABSO submodule structure. The compatibility of fuzzy socle small T-ABSO submodule with other fuzzy submodule kinds is also discussed. The results of this study are crucial for defining a new fuzzy socle small TABSO.

Keywords: Fuzzy Soc - small prime submodules; Fuzzy Soc - T-ABSO submodules; Fuzzy small T-ABSO submodules; Fuzzy Soc-Small T-ABSO ideal;

1. INTRODUCTION

A fuzzy subset A of X was first defined by Zadeh [1] in 1965 as a function from X to the unit interval [0,1]. Since then, other domains have added to the theory of fuzzy sets. One of the earliest branches of pure mathematics, algebra, introduced the idea of fuzzy sets. Negoita and Ralescu first presented the ideas of fuzzy modules and fuzzy submodules in 1975 [2]. Fuzzy fundamental submodules were constructed by Saikia and Kalita [3] who then examined their properties. Additionally, research this In this article, all rings are unitary and commutative with identity. Rabi [4] proposed a prime fuzzy submodule as a: Given that W-module G has a fuzzy module X , The term fuzzy submodule U of X if $r_{b} m_{t} \subseteq U$, with r_{b} is fuzzy singleton of W and $m_{t} \subseteq \mathrm{X}$, implying that either $m_{t} \subseteq U$ or $r_{b} \subseteq[U: X]$ for each $t, b \in[0,1]$. The concept of a fuzzy small submodule was introduced by Rahman and Saikia [5]. Let X be a fuzzy module of a W -module G , and K be a fuzzy submodule of X . If K means that $\mathrm{K}+\mathrm{P} \neq \mathrm{X}$ for any proper fuzzy submodule P of X, K is referred to be a fuzzy small submodule of X . The concept of a small prime fuzzy submodule was introduced by Khalaf and Hanoon [6]. It is defined as a proper fuzzy submodule K of a fuzzy module X of a W -module G if whenever fuzzy singleton $a_{s} o f W$ and $x_{v} \subseteq X, \forall s, v \in L$, with $\left\langle x_{v}\right\rangle \ll X$ and $a_{s} x_{v} \subseteq K$, implies either $x_{v} \subseteq K$ or $a_{s} \subseteq(K: X)$. In 2022, Marie [7] made the original fuzzy socle prime submodule notion proposal, A fuzzy Socle prime (also known as a F-Soc-prime) submodule of X if whenever $r_{b} m_{t} \subseteq U$, with r_{b} is fuzzy singleton of W and $m_{t} \subseteq \mathrm{X}$, implying that either $m_{t} \subseteq U+F-\operatorname{Soc}(X)$ or $r_{b} \subseteq$ $[U+F-\operatorname{Soc}(X): X]$ for each $t, b \in[0,1]$. In addition, Hanoon and Khalaf [8] proposed the T-ABSO fuzzy submodule: Let X be a fuzzy module of a W-module G, A fuzzy submodule U of X is called T-ABSO if $q_{s} r_{b} m_{t} \subseteq U$, with q_{s}, r_{b} are fuzzy singletons of W and m_{t} is fuzzy singleton of X, implying that either $q_{s} m_{t} \subseteq U$ or $r_{b} m_{t} \subseteq U$ or $q_{s} r_{b} \subseteq\left[U:_{R} X\right]$ for each $t, b, s \in[0 ; 1]$. A small TABSO fuzzy submodule was also suggested by Wafaa [6] in (2019): Let X be a fuzzy module of an W-module G, A fuzzy submodule K of X is called small T-ABSO if $q_{s} r_{n} m_{t} \subseteq U$, with q_{s}, r_{n} fuzzy singleton of W and $<m_{t}>\ll X$, implying that either $q_{s} m_{t} \subseteq P$ or $r_{n} m_{t} \subseteq P$ or $q_{s} r_{n} \subseteq[P: X]$ for each $t, s, n \in$ [0; 1]. The initial description of the fuzzy socle T-Absorbing submodule was made by Marie in 2022 [7]: A fuzzy socle T-Absorbing (F-Soc-T-ABSO) submodule of X is referred to as a proper fuzzy submodule U of a F -module X of a W -module G if and when $r_{b} s_{q} m_{t} \subseteq U$, with r_{b}, s_{q} is fuzzy singletons of R and $m_{t} \subseteq \mathrm{X}$, implying that either $r_{b} m_{t} \subseteq U+F-\operatorname{Soc}(X)$ or $s_{q} m_{t} \subseteq U+F-$ $\operatorname{Soc}(X)$ or $r_{b} \subseteq[U+F-\operatorname{Soc}(X): X]$ for each $t, b, q \in[0,1]$.

The concepts of a small prime fuzzy submodule and a small T-ABSO fuzzy submodule are generalized in this article to a fuzzy socle small prime submodule and afuzzy socle small T-ABSO submodule, respectively. This article is divided into two parts. We present some fundamental definitions and features that we will require in the first part. The fuzzy Socle smallT-ABSO submodule's many essential characteristics, outcomes, and outputs are examined in section two.

Note: o.w., F - set, F - submod, F - ideal, F - module, $F-T-A B S O, F-$ singleton, and F-Socle T-ABSO submodule are abbreviations for otherwise, fuzzy sets, submodules, ideals, modules, and singletons.

2. PRELIMINARIES

This section discusses the several fundamental concepts as well as any prerequisites they may have for the following section.

Definition 2.1 [1]

Let I be the closed interval of real numbers between [0, 1], and let D be a set that isn't empty. A function from D into I is known as a F-set B in D (or a F-subset of D).Definition 2.2 [1]

If $B(x)=t, \forall x \in D, t \in I$,then an F -set B of a set D is said to be F -constant.

Definition 2.3 [1]

Let $x_{1}: D \rightarrow I$ be a F-set in D, where $x \in D, t \in I$ defined by:

$$
x_{t}(\mathrm{y})= \begin{cases}t & \text { if } x=y \\ 0 & \text { if } x \neq y\end{cases}
$$

for every $\mathrm{y} \in \mathrm{D} . x_{t}$ is described as an F-singleton or F-point in D .

$$
\text { If } x=0 \text { and } v=1, \text { then } 0_{1}(y)=\left\{\begin{array}{ll}
1 & \text { if } y=0 \\
0 & \text { if } y \neq 0
\end{array},[9]\right.
$$

Definition 2.4 [10]

Let B be a F-set in D, The set $B_{t}=\{x \in D ; B(X) \geq t\}$ is referred to as a level subset of B for all $t \in I$. if B is an F-set in D. A subset of D in the ordinary sense is B_{t}; keep that in mind.

Remark 2.5 [1]

If two F-sets A and B exist in S, then:
1- $A=B$ iff $A(x)=B(x)$.
2- $A \subseteq B$ iff $A(x) \leq B(x)$.
3- $A=B$ iff $A_{t}=B_{t}$
If $A<B$ and $x \in S$ exist such that $A(x)<B(x)$, then A is a proper F -subset of B and is denoted by the symbol $A<B$.
Part (2) allows us to infer that $x_{t} \subseteq A$ if and only if $A(x) \geq t$
Definition 2.6 [9]
If G be a W -module. A F-set X of G is called F-module of a W -module G if:
1- $\quad X(x-y) \geq \min (X(x), X(y)$, forall $x, y \in G\}$.
2- $\quad X(r x) \geq X(x)$ forall $x \in G$ and $r \in W$.
3- $\quad X(0)=1$.

Definition 2.7 [11]

Let X and A be two $F-$ modules of $W-$ module G. A is said to be a $F-\operatorname{submod}$ of X if $A \subseteq X$.
Proposition 2. 8 [12]
Make A a F-set of a W-module of G. Afterward, the level subset $A_{t}, t \in I$ is a submod of G if A is a $F-\operatorname{submod}$ of X where X is a F - module of a W - module G.

Lemma 2.9 [1]

If A is a F-module of a W-module G and r_{t} be a F-singleton of W . Next, for any $w \in G:\left(r_{t} A\right)(w)=$ $\left\{\begin{array}{cl}\sup \{\inf (t, A(x))\}: \text { ifw }=r x\} & \text { for some } x \in G \\ 0 & \text { o.w. }\end{array}\right.$

Definition 2. 10 [9]

A $F-$ subset K of a ring W is called a F - ideal of W, if $\forall x, y \in R$:

1) $K(x-y) \geq \min \{K(x), K(y)\}$.
2) $K(x y) \geq \max \{K(x), K(y)\}$.

Definition 2.11 [9]

Let A and B be two $F-$ submods of a $F-$ module X. The residual quotient of A and B denoted by $(A: B)$ is the $F-$ subset of W defined by:
$(A: B)(r)=\sup \left\{t \in[0: 1]: r_{t} B \subseteq A\right\}$, for all $r \in W$.That $(A: B)=\left\{r_{t}: r_{t} B \subseteq A ; r_{t}\right.$ is a $F-$ singleton of $\left.W\right\}$.
If $B=<x_{k}>$, then $\left(A:<x_{k}>\right)=\left\{r_{t}: r_{t} x_{k} \subseteq A: r_{t}\right.$ is a $F-$ singleton of $\left.W\right\}$.
Proposition 2.12 [9]
Let A and B represent two F -submodules of a W-module G's F-module X . Consequently, $(A: B)$ is a F-ideal of W.

Lemma 2.13 [9]

Let A be a F-submod of F-module $\mathrm{X},\left(A_{t}: X_{t}\right) \supseteq(A: X)_{t}$, For all $t \in I$.
It follows that if, $X=A \oplus B$, for $A, B \leq X$ then $X_{t}=(A \oplus B)_{t}=A_{t} \oplus B_{t}$, [13].

Definition 1.14 [11]

Let f be a mapping from set G to set N, and let A and B represent the F-sets in set G and set N, respectively. The F-set in N is the image of A denoted by $f(A)$, specified by:

$$
f(A)(y)=\left\{\begin{array}{cc}
\sup \left\{A(z): z \in f^{-1}(y) \neq \emptyset, \text { for all } y \in N\right. \text { otherwise } \\
0 & \text { o.w. }
\end{array}\right.
$$

Keep in mind that if f is a bijective mapping, then $f(A)(y)=A\left(f^{-1}(y)\right)$
Proposition 2.15 [14]
Let K and P be F-submods of F-module X and Y respectively, and f be a mapping from a set into a set then $f(K)$ and $f^{-1}(P)$ are F-submod of Y and X respectively.

Definition 2.16 [1]

Let G be a W -module and A and B be two F -submods of G . $\mathrm{A}+\mathrm{B}$ is defined as an addition. by: $(A+B)(x)=$ $\sup \{\inf \{A(y), B(z)\}$ with $x=y+z$, forall $x, y, z \in G\}$.

Furthermore, $A+B$ is a F-submod of a W-module G.

Corollary 2.17 [15]

For all F -singleton r_{k} of W , if X is a F-module of a W-module G and $x_{t} \subseteq X$, then, $r_{k} x_{t}=(r x)_{\lambda}$, where $\lambda=\min \{t, k\}$.

Definition 2.18 [16]

Let X be an F -module of a W -module M ; X is said to be F -simple if and only if X has no proper F -submods (in actuality, X is F-simple if and only if X has just 0_{1} and itself)

Definition 2.19 [17]
If X is the sum of simple F-submods of X, then X is said to be semi-simple.
Additionally, the F -Socle of X is represented by $F-\operatorname{Soc}(X)$, and is the sum of the simple F -submod of X . X is referred to as semi-simple if it equals $F-\operatorname{Soc}(X)$.

Lemma 2.20 [7]

$(F-\operatorname{Soc}(X))_{t}=\operatorname{Soc}\left(X_{t}\right)$ for any F-module X for each $t \in I$ with $(F-\operatorname{Soc}(X))_{t} \neq X_{t}$

Proposition 2. 21 [7]

Let $f: G \rightarrow N$ be a W-isohomomorphisim, If X_{1} and X_{2} are F-modules of a W-modules G and N respectively. then $f\left(F-\operatorname{Soc}\left(X_{1}\right)\right) \subseteq F-\operatorname{Soc}\left(X_{2}\right)$.

Definition 2.22 [9]

International Journal of Engineering and Information Systems (IJEAIS)
ISSN: 2643-640X
Vol. 7 Issue 1, January - 2023, Pages: 40-51
If $F-\operatorname{ann} X=0_{1}$ and X be a F-module of a W-module G, X is said to be faithful. Where $F-\operatorname{ann} X=\left\{r_{t}: r_{t} x_{l}=\right.$ 0_{1}; forall $x_{l} \subseteq X$ and r_{t} be a $F-$ singleton of $\left.W\right\}$

Definition 2. 23 [18]

Make X a F-module of G as W -module, If and only if a F - ideal K of W exists such that $A=K X$, then X is referred to as a multiplication F-module..

Proposition 2.24 [18]
Every non-empty $F-$ submod A of a $F-$ module X of a W - module G such that $A=(A: X) X$, if and only if X is multiplication F-module.
Lemma 2.25 [7]
Make X the F -module of G as W -module. If G be a faithful multiplication W -module, then $\mathrm{F}-\operatorname{Soc}(W) X=F-\operatorname{Soc}(X)$
Definition 2. 26 [4]
A F-module X of a W-module G is called a cyclic F-module if there exists $x_{v} \subseteq X$ such that $y_{k} \subseteq X$ written as $y_{k}=r_{l} x_{v}$ for some F-singleton r_{l} of R , where $k, l, v \in \mathrm{~L}$ in this case, write $X=<x_{v}>$ to denote the cyclic F-module generated by x_{v}.

Definition 2. 27 [19]

If X is a F - module of a W -module G, then X is called a finitely generated $F-$ module if there exists $x_{1}, x_{2}, x_{3}, \ldots \subseteq X$ such that $X=\left\{a_{1}\left(x_{1}\right)_{v_{1}}+a_{2}\left(x_{2}\right)_{v_{2}}+\cdots+a_{n}\left(x_{n}\right)_{v_{n}}\right\}$, where $a_{i} \in W$ and $a(x)_{v}=(a x)_{v}, \forall v \in \mathrm{~L}$.
Where $(a x)_{v}(y)= \begin{cases}v & \text { if } y=a x \\ 0 & \text { o.w. }\end{cases}$

Definition 2.28 [5]

A F-ideal H of W with $H(0)=1$ is referred to F-small ideal of W , if it is F-small submod of a F-module X of a W-module W .

Theorem 2.29 [5]

Let K be a proper F -submod of F -module X of a W-module G , then $K \ll X$ if and only if $K_{t} \ll G$ for all $t \in I$.

Theorem 2.30 [20]

Let K, P be proper F -submods of F -module X of a W-module G , then $K \ll X, P \ll X$ if and only if $K+P \ll X$.

Proposition 2.31 [20]

Let K be a proper F-submod of F -module X of a W-module G . If $K \ll X$, then $\left(a_{s} K\right) \ll X$ for all F-singleton $a_{s} \subseteq X$

Proposition 2.32 [7]

$(A \oplus B)+F-\operatorname{Soc}\left(X_{1} \oplus X_{2}\right)=\left(A+F-\operatorname{Soc}\left(X_{1}\right) \oplus\left(B+F-\operatorname{Soc}\left(X_{2}\right)\right.\right.$ for every F-submods A and B of F-submods of X_{1} and X_{2} respectively

Proposition 2.33[7]

In the event when G is a faithful multiplication a W -module and X is a F -module of G , then $F-\operatorname{Soc}(X)=F-\operatorname{Soc}(W) X$

Remark 2.34 [7]

Let P be F -submod of a faithful multiplication F -module X of a W-module G , then $(P: X)+F-\operatorname{Soc}(W) \subseteq(P+F-$ $\operatorname{Soc}(X): X)$

Theorem 2.35 [20]

Let X_{1} and X_{2} be F-module of W-modules G_{1} and G_{2} respectively and let $f: X_{1} \rightarrow X_{2}$ be F-homomorphism if $P \ll X_{1}$, then $f(P) \ll X_{2}$.

Definition 2.36 [19]

A F-module of a W -module G , is called a cancellation F -module if $K X=L X$ where K and L are F -ideals of W , then $K=L$.

3. F-Soc-Small T-ABSO Submod

Definition 3.1

A proper F -submod K of a F -module X of a W -module G is referred to as F -Soc-small prime submod if whenever F -singleton s_{a} of W and $x_{v} \subseteq X, \forall a, v \in I$, with $<x_{v}>\ll X$ and $s_{a} x_{v} \subseteq K$ implies either $x_{v} \subseteq K+F-\operatorname{Soc}(X)$ or $s_{a} \subseteq$ $(K+F-\operatorname{Soc}(X): X)$

Example 3.2

Let $X: Z_{8} \rightarrow I$ such that $X(y)=\left\{\begin{array}{lrr}1 & \text { if } & y \in Z_{8} \\ 0 & o . w\end{array}\right.$
It is evident that X is a F-module of Z_{8} as Z -module
Let $K: Z_{8} \rightarrow I$ such that $K(y)= \begin{cases}\frac{1}{2} & \text { if } y \in(\overline{2}) \\ 0 & \text { if } y \notin(\overline{2})\end{cases}$
It is obvious that K is a F -submod of X
$F-\operatorname{Soc}(X)(y)= \begin{cases}1 & \text { if } y \in(\overline{4}) \\ \frac{1}{3} & \text { if } y \notin(\overline{4})\end{cases}$
$(K+F-\operatorname{Soc}(X))(y)=\left\{\begin{array}{l}1 \quad \text { if } y \in(\overline{2}) \\ \frac{1}{3} \text { if } y \notin(\overline{2})\end{array}\right.$
$(K+F-\operatorname{Soc}(X): X)(y)= \begin{cases}\frac{1}{2} & \text { if } y \in 2 Z \\ 0 & \text { if } y \notin 2 Z\end{cases}$
Now, K is F-Soc-small prime submod since for $2_{\frac{1}{3}}$ is F-singleton of Z and $2_{\frac{1}{6}} \subseteq X$ where $<2_{\frac{1}{6}}>\ll X$ since $<2>\ll Z_{8}, 2_{\frac{1}{3}} \cdot 2_{\frac{1}{6}}=$ $4_{\frac{1}{6}} \subseteq K$ since $K(4)=\frac{1}{2}>\frac{1}{6}$, then $2_{\frac{1}{6}}=\subseteq K+F-{ }^{3} \operatorname{Soc}(X)$ since $K+F-\operatorname{Soc}^{6}(X)(2)=1>\frac{1}{6}$ and $2_{\frac{1}{3}} \subseteq(K+F-\operatorname{Soc}(X): X)$ $\overline{6}$
since $(K+F-S o c$
$(X): X)(2)=\frac{{ }^{6}}{2}$${ }^{\frac{1}{3}} \frac{1}{3}$

Definition 3.3

A proper F -submod K of a F -module X of a W -module G is referred to as F -Soc-small T-ABSO submod if whenever F singleton s_{a}, r_{b} of W and $x_{v} \subseteq X$ such that $<x_{v}>\ll X, s_{a} r_{b} x_{v} \subseteq K$, implies either $s_{a} x_{v} \subseteq K+F-\operatorname{Soc}(X)$ or $r_{b} x_{v} \subseteq K+F-$ $\operatorname{Soc}(X)$ or $s_{a} r_{b} \subseteq(K+F-\operatorname{Soc}(X): X)$
Farthermore, : A proper F-ideal H of a ring W is called a F-Soc-small T-ABSO ideal if whenever F-singleton s_{a}, r_{b}, q_{c} of W such that $<q_{c}>$ is F- small ideal of W and $s_{a} r_{b} q_{c} \subseteq H$, implies either $s_{a} q_{c} \subseteq H+F-S o c(W)$ or $r_{b} q_{c} \subseteq H+F-$ $\operatorname{Soc}(W)$ or $s_{a} r_{b} \subseteq H+F-\operatorname{Soc}(W)$

Remarks and examples 3.4

1. Every F-Soc-prime (F-Soc-small prime) submod of a F-module X of a W-module G is a F-Soc-small T-ABSO submod of X. However the converse incorrect, for example:
Let $X: Z_{16} \rightarrow I$ such that $X(y)=\left\{\begin{array}{lr}1 & \text { if } y \in Z_{16} \\ 0 & o . w\end{array}\right.$
It is obvious that X is a F -module of Z_{16} as Z -module
Let $K: Z_{16} \rightarrow I$ such that $K(y)= \begin{cases}\frac{2}{3} & \text { if } y \in(\overline{8}) \\ 0 & \text { if } y \notin(\overline{8})\end{cases}$
It is clear K is F -submod of X
$F-\operatorname{Soc}(X)(y)= \begin{cases}1 & \text { if } y \in(\overline{8}) \\ \frac{1}{3} & \text { if } y \notin(\overline{8})\end{cases}$
$(K+F-\operatorname{Soc} X)(y)= \begin{cases}1 & \text { if } y \in(\overline{8}) \\ \frac{1}{3} & \text { if } y \notin(\overline{8})\end{cases}$
$(K+F-\operatorname{Soc} X: X)(y)== \begin{cases}1 & \text { if } y \in 8 Z \\ 0 & \text { if } y \notin 8 Z\end{cases}$
Where $((\overline{8})+\operatorname{Soc}(Z): Z)=((\overline{8}): Z)=8 Z, K$ is a F-Soc-Small T-ABSO submod since $<4>\ll Z_{16}$, then $<4 \frac{1}{6}>\ll X_{\frac{1}{2}}$.
$1_{\frac{1}{5}} \cdot 4_{\frac{1}{6}}=8_{\frac{1}{6}} \subseteq K$, since $K(8)=\frac{2}{3}>\frac{1}{6}$, implies that $\frac{1}{\frac{1}{2}} \cdot 4_{\frac{1}{6}}=8_{\frac{1}{6}} \subseteq K+F-\operatorname{Soc}(X)$, since $K+F-\operatorname{Soc}(X)(8)=1>\frac{1}{6}$,
but K is not F-Soc-prime (not F-Soc-small prime) submod since $2_{\frac{1}{6}} \cdot 4_{\frac{1}{2}}=8_{\frac{1}{6}} \subseteq K\left(2_{\frac{1}{6}} \cdot 4_{\frac{1}{2}}=8_{\frac{1}{6}} \subseteq K,<4_{\frac{1}{6}}>\ll Z_{16}\right)$, since $K(8)=\frac{3}{2}>\frac{1}{6}, 4_{\frac{1}{2}} \nsubseteq K+F-\operatorname{Soc}(X)$ since $K+F-\operatorname{Soc}(X)(4)=\frac{1}{3} \ngtr \frac{1}{2}$ and $2_{\frac{1}{6}} \nsubseteq(K+F-\operatorname{Soc}(X))$ since $(K+F-\operatorname{Soc}(X): X)(2)=0 \ngtr \frac{1}{6}$
2. Every F-Soc-quasi prime submod is F-Soc-small T-ABSO submod, but the converse incorrect in general, for example:

Let $X: Z \rightarrow I$ such that $X(y)=\left\{\begin{array}{lr}1 & \text { if } y \in Z \\ 0 & o . w\end{array}\right.$
It is obvious that X is $F-$ module of Z as $Z-$ module
Let $K: Z \rightarrow I$ such that $K(y)=\left\{\begin{array}{lr}\frac{3}{4} & \text { if } y \in 36 Z \\ 0 & y \notin 36 Z\end{array}\right.$
It is clear K is F -submod of X
$F-\operatorname{Soc}(X)= \begin{cases}1 & \text { if } y=0 \\ \frac{1}{4} & \text { if } y \neq 0\end{cases}$
$K+F-\operatorname{Soc}(X)(y)= \begin{cases}1 & \text { if } y \in 36 Z \\ \frac{1}{4} & \text { if } y \notin 36 Z\end{cases}$
K is F-Soc-small T-ABSO submod since 0_{1} is only F-small submod of X , so that $a_{s} b_{y} 0_{1}=0_{1} \subseteq K$, then $a_{s} 0_{1}=0_{1} \subseteq K+$ $F-\operatorname{Soc}(X)$ and $b_{y} 0_{1}=0_{1} \subseteq K+F-\operatorname{Soc}(X)$. But it is not F-Soc-quasi prime submod, take $6_{\frac{1}{2}}, 2_{\frac{1}{3}}$ are F-singletons of Z and $3_{\frac{1}{3}} \subseteq X$, where $6_{\frac{1}{2}} \cdot 2_{\frac{1}{3}} \cdot 3_{\frac{1}{2}}=36_{\frac{1}{3}} \subseteq K$ since $K(36)=\frac{3}{4}>\frac{1}{3}$, but $6_{\frac{1}{2}} \cdot 3_{\frac{1}{3}}=18_{\frac{1}{3}} \nsubseteq K+F-\operatorname{Soc}(X)$ where $K+F-$ $\operatorname{Soc}(X)(18)=\frac{1^{2}}{4} \ngtr \frac{1}{3}$ and $2_{\frac{1}{3}} \cdot 3_{\frac{1}{2}}^{\overline{3}}=6_{\frac{1}{3}} \nsubseteq K+F-\operatorname{Soc}(X)$ where $K+F-\operatorname{Soc}(X)=\frac{1}{4} \ngtr \frac{1}{3}$
3. Every F-small T-ABSO submod of a F-module X of a W-module G, is a F-Soc-small T-ABSO submod of X. However the converse incorrect, for example:
Let $X: Z_{24} \rightarrow I$ such that $X(y)=\left\{\begin{array}{cc}1 \text { if } y \in Z_{24} \\ 0 & \text { o. w }\end{array}\right.$
It is obvious that X is a F -module of Z_{24} as Z -module
Let $K: Z_{24} \rightarrow I$ such that $K(y)=\left\{\begin{array}{l}\frac{2}{3} \text { if } y \in(\overline{8}) \\ 0 \text { if } y \notin(\overline{8})\end{array}\right.$
It is clear K is F -submod of X
$F-\operatorname{Soc}(X)(y)= \begin{cases}1 & \text { if } y \in(\overline{4}) \\ \frac{1}{2} & \text { if } y \notin(\overline{4})\end{cases}$
$(K+F-\operatorname{Soc} X)(y)= \begin{cases}1 & \text { if } y \in(\overline{4}) \\ \frac{1}{2} & \text { if } y \notin(\overline{4})\end{cases}$
$(K+F-\operatorname{Soc}(X): X)(y)=\left\{\begin{array}{l}1 \text { if } y \in 4 Z \\ 0 \text { if } y \notin 4 Z\end{array}\right.$
$(K: X)(y)=\left\{\begin{array}{l}1 \text { if } y \in 8 Z \\ 0 \text { if } y \notin 8 Z\end{array}\right.$
Where $\left((\overline{8})+\operatorname{Soc}\left(Z_{24}\right): Z_{24}\right)=\left((\overline{4}): Z_{24}\right)=4 Z, \mathrm{~K}$ is a F-Soc small T-ABSO submod since $<6>\ll Z_{24}$, then $<6_{\frac{1}{6}}>\ll X$,
$2_{\frac{1}{2}} \cdot 2_{\frac{1}{5}} \cdot 6_{\frac{1}{6}}=0_{\frac{1}{6}} \subseteq K$ since $K(0)=\frac{2}{3}>\frac{1}{6}$, implies that $2_{\frac{1}{2}} \cdot 6_{\frac{1}{6}}=12_{\frac{1}{6}} \subseteq K+F-\operatorname{Soc}(X)$ and $2_{\frac{1}{2}} \cdot 2_{\frac{1}{5}}=4_{\frac{1}{5}} \subseteq$
$(K+F-\operatorname{Soc}(X): X)$ since $(K+F-\operatorname{Soc}(X): X)(4)=1>\frac{1}{5}$, but K is not F-small T-ABSO submod since $2_{\frac{1}{2}} \cdot 6_{\frac{1}{6}}=12_{\frac{1}{6}} \nsubseteq K$
where

$$
K(12)=0 \ngtr \frac{1}{6} \text { and } 2_{\frac{1}{2}} \cdot 2_{\frac{1}{5}}=4_{\frac{1}{5}} \nsubseteq(K: X) \text { since }(K: X)(4)=0 \ngtr \frac{1}{5} .
$$

4. Every F-T-ABSO (F-Soc T-ABSO) submod of a F-module X of a W-module G is a F-Soc-small T-ABSO submod of X.

However the converse incorrect, for example:
Let $X: Z_{24} \rightarrow I$ such that $X(y)=\left\{\begin{array}{lr}1 & \text { if } y \in Z_{24} \\ 0 & o . w\end{array}\right.$
It is obvious that X is a F-module of Z_{24} as Z-module
Let $K: Z_{24} \rightarrow I$ such that $K(y)= \begin{cases}\frac{2}{3} & \text { if } y \in(\overline{12}) \\ 0 & \text { if } y \notin(\overline{12})\end{cases}$
It is clear K is F -submod of X
$F-\operatorname{Soc}(X)(y)= \begin{cases}1 & \text { if } y \in(\overline{4}) \\ \frac{1}{7} & \text { if } y \notin(\overline{4})\end{cases}$
$K+F-\operatorname{Soc} X(y)= \begin{cases}1 & \text { if } y \in(\overline{4}) \\ \frac{1}{7} & \text { if } y \notin(\overline{4})\end{cases}$
$(K+F-\operatorname{Soc}(X): X)(y)= \begin{cases}1 & \text { if } y \in 4 Z \\ 0 & \text { if } y \notin 4 Z\end{cases}$
$(K: X)(y)=\left\{\begin{array}{l}1 \text { if } y \in 12 Z \\ 0 \text { if } y \notin 12 Z\end{array}\right.$
Where $\left((\overline{12})+\operatorname{Soc}\left(Z_{24}\right):_{Z} Z_{24}\right)=\left((\overline{4}): Z_{24}\right)=4 Z$, K is a F-Soc small T-ABSO submod since $<6_{\overline{5}}>\ll Z_{24}, 2_{\frac{1}{3}} \cdot 2_{\frac{1}{4}} \cdot 6_{\frac{1}{5}}=$ $0_{\frac{1}{5}} \subseteq K$ since $K(0)=\frac{2}{3}>\frac{1}{5}$, implies that $2_{\frac{1}{4}} \cdot 6_{\frac{1}{5}}=12_{\frac{1}{5}} \subseteq K+F-\operatorname{Soc}(X)$ and $2_{\frac{1}{3}} \cdot 2_{\frac{1}{4}}=4_{\frac{1}{4}} \subseteq(K+F-\operatorname{Soc}(X): X)$ since $(K+F-\operatorname{Soc}(X): X)(4)=1>\frac{1}{4}$, but K is not F -small T-ABSO submod, $2_{\frac{1}{3}} \cdot 2_{\frac{1}{4}} \cdot 3_{\frac{1}{5}}=12_{\frac{1}{5}} \subseteq K$ since $K(12)=\frac{2}{3}>\frac{1}{5}$, but $2_{\frac{1}{3}} \cdot 3_{\frac{1}{5}}=6_{\frac{1}{5}} \nsubseteq K$, since $K(6)=\frac{1}{7} \ngtr \frac{1}{5}$ and $2_{\frac{1}{3}} \cdot 2_{\frac{1}{4}}=4_{\frac{1}{4}} \nsubseteq(K: X)$ since $(K: X)(4)=0 \ngtr \frac{1}{4}$.

Proposition 3.5

Let X be a $F-$ module of a W - module G with $X(g)=1$ for each $g \in G$, if U is a $F-\operatorname{submod}$ of X defined by
$U: G \rightarrow[I]$ such that $U(g)=\left\{\begin{array}{ll}1 & \text { if } g \in U_{t} \\ c & \text { if } g \notin U_{t}\end{array}\right.$ with $0<c<1, t \in I$
Where U_{t} is a submod of G. Then U is a $F-S o c-\operatorname{small} T-A B S O$ submod of X if and only if U_{t} is Soc-small T-ABSO submod of G
Proof: We must define F-Soc(X)

$$
F-\operatorname{Soc}(X)(g)== \begin{cases}1 & \text { if } g \in \operatorname{Soc}(G) \\ h & \text { if } g \notin \operatorname{Soc}(G)\end{cases}
$$

Now, we define $U+F-\operatorname{Soc}(X)$ such that $(U+F-\operatorname{Soc}(X))(g)== \begin{cases}1 & \text { if } g \in U_{t}+\operatorname{Soc}(G) \\ d & \text { if } g \notin U_{t}+\operatorname{Soc}(G)^{\prime}\end{cases}$
$d=\max \{c, h\}$
Now suppose U_{t} is Soc-small T-ABSO submod of G, to prove that U is a F-Soc-small T-ABSO submod of X, let $a_{s} r_{b} x_{k} \subseteq$ U for $F-$ singleton a_{s}, r_{b} of W and $<x_{k}>\ll X$ where $b, k \in I$, that is either $\operatorname{arx} \in U_{t}$ or $\operatorname{arx} \notin U_{t}$

1) If $\operatorname{ar} x \in U_{t}$, then either $a x \in U_{t}+\operatorname{Soc}(G)$ or $r x \in U_{t}+\operatorname{Soc}(G)$ or $\operatorname{ar} \in\left(U_{t}+\operatorname{Soc}(G): G\right)$.

If $a x \in U_{t}+\operatorname{Soc}(G)$, then $(U+F-\operatorname{Soc}(X))(a x)=1$, implies $a_{s} x_{k}=(a x)_{t} \subseteq(a x) \subseteq U+F-\operatorname{Soc}(X)$ where $t=\min \{s, k\}$, by similarty method if $r x \in U_{t}+\operatorname{Soc}(G)$, we get $r_{b} x_{k} \subseteq U+F-\operatorname{Soc}(X)$

If $\operatorname{ar} \in\left(U_{t}+F-\operatorname{Soc}(G): G\right)$, let $y_{p} \subseteq X$ with $p \in I$, then $a_{s} r_{b} y_{p}=(\operatorname{ary})_{\lambda}$ where $\lambda=\min \{s, b, p\}$, but $\operatorname{ary} \in U_{t}+\operatorname{Soc}(G)$, that is $(\operatorname{ary})_{\lambda} \subseteq(\operatorname{ary})_{1} \subseteq U+F-\operatorname{Soc}(X)$, thus $a_{s} r_{b} y_{p} \subseteq U+F-\operatorname{Soc}(X)$, hence $a_{s} r_{b} \subseteq(U+F-\operatorname{Soc}(X)$: $X)$
2) $\mathrm{I} \operatorname{arx} \notin U_{t}$, then $U(\operatorname{ar} x)=c$ with $r x \notin U_{t}$, hence $U(r x)=c$. Since $a_{s} r_{b} x_{k} \subseteq U$, so that $(\operatorname{ar} x)_{\lambda} \subseteq U$ where $\lambda=$ $\min \{s, b, k\}$, that is $U(a r x) \geq \lambda$, thus $c \geq \lambda$, Now, if $\lambda=k$, implies $(r x)_{k} \subseteq(r x)_{c} \subseteq U \subseteq U+F-\operatorname{Soc}(X)$, if $\lambda=a, U(m) \geq$ k, for any $m \in G$, and $\left(a_{s} r_{b} X_{G}\right)(m)=\left\{\begin{array}{cc}b & \text { ifm }=\text { arn } \\ 0 & \text { for some } n \in G \\ \text { o. } w\end{array}\right.$
then, we get $\left(a_{s} r_{b} X_{G}\right)(m) \leq U(m)$, hence $a_{s} r_{b} X_{G} \subseteq U \subseteq U+F-\operatorname{Soc}(X)$, that is mean $a_{s} r_{b} \subseteq(U+F-\operatorname{Soc}(X)$: $X)$ thus U is a F-Soc-smallT ABSO Submod of X
on the contrary, assume U is a $F-S o c-$ small $T-A B S O$ submod of X, let arx $\in U_{t}$ with $a, r \in W$ and $x \in X_{t}$, implies $(\operatorname{ar} x)_{t} \subseteq U$, then $a_{s} r_{b} x_{k} \subseteq U$ where $t=\min \{s, b, k\}$, but U is a $F-\operatorname{Soc}-$ small $T-A B S O$ submod of X, then either $a_{s} x_{k} \subseteq U+F-\operatorname{Soc}(X)$ or $r_{b} x_{k} \subseteq U+F-\operatorname{Soc}(X)$ or $a_{s} r_{b} \subseteq(U+F-\operatorname{Soc}(X): X)$ thus either $(U+F-\operatorname{Soc}(X))(a x) \geq t$ or $(U+F-\operatorname{Soc}(X))(r x) \geq t$ or $(U+F-\operatorname{Soc}(X): X)(a r) \geq t$, then by Lemma 2.13 and Lemma 2.20 either $a x \in$ $(U+F-\operatorname{Soc}(X))_{t}=U_{t}+(F-\operatorname{Soc}(X))_{t}=U_{t}+\operatorname{Soc}\left(X_{t}\right)$ or $r x \in(U+F-\operatorname{Soc}(X))_{t}=U_{t}+(F-\operatorname{Soc}(X))_{t}=U_{t}+$ $\operatorname{Soc}\left(X_{t}\right)$ or ar $\left.\left.\in(U+F-\operatorname{Soc}(X): X)_{t} \subseteq(U+F-\operatorname{Soc}(X))_{t}: X_{t}\right)=\left(U_{t}+(F-\operatorname{Soc}(X))_{t}: X_{t}\right)=U_{t}+\operatorname{Soc}\left(X_{t}\right): X_{t}\right)$. Thus, we have either $a x \in U_{t}+\operatorname{Soc}\left(X_{t}\right)$ or $r x \in U_{t}+\operatorname{Soc}\left(X_{t}\right)$ or ar $\in\left(U_{t}+\operatorname{Soc}\left(X_{t}\right): X_{t}\right)$, so that U_{t} is Soc-small T-ABSO submod of $X_{t}=G$.

Proposition 3.6

Let K be a proper F -submod of F -module X of a W -module G , then K is a F -Soc-small T-ABSO submod if and only if whenever for F -singletons m_{s}, y_{z} of $\mathrm{W}, P \ll X, m_{s} y_{z} P \subseteq K$, then either $m_{s} P \subseteq K+F-\operatorname{Soc}(X)$ or $y_{z} P \subseteq K+F-\operatorname{Soc}(X)$ or $m_{s} y_{z} \subseteq(K+F-\operatorname{Soc}(X): X)$.
Proof: (\Rightarrow) Suppose that $m_{s} y_{z} P \subseteq K$, but $m_{s} P \nsubseteq K+F-\operatorname{Soc}(X)$ and $y_{z} P \nsubseteq K+F-\operatorname{Soc}(X)$, so there exist F-
singletons $x_{r}, h_{y} \subseteq P$ such that $m_{s} h_{y} \subseteq P$ such that $m_{s} x_{r} \nsubseteq K+F-\operatorname{Soc}(X)$ and $y_{z} h_{y} \nsubseteq K+F-\operatorname{Soc}(X)$, then $<x_{r}>\ll X$ and $<h_{y}>\ll X$ since $x_{r}, h_{y} \subseteq P$ and $P \ll X$. Now $m_{s} y_{z} x_{r} \subseteq K$ and $m_{s} x_{r} \nsubseteq K+F-\operatorname{Soc}(X)$, hence either $y_{z} x_{r} \subseteq K+F-\operatorname{Soc}(X)$ or $m_{s} y_{z} \subseteq(K+F-\operatorname{Soc}(X): X)$. If $m_{s} y_{z} \subseteq(K+F-\operatorname{Soc}(X): X)$ then we are done. If $y_{z} x_{r} \subseteq K+F-\operatorname{Soc}(X)$. Meditate $m_{s} y_{z}\left(x_{r}+h_{y}\right) \subseteq K$ and $\left(x_{r}+h_{y}\right) \ll X$ since $<x_{r}>\ll X$ and $<h_{y}>\ll X$ by Theorem 2.30. Since K is a F-Soc-small T-ABSO submod, then either $m_{s}\left(x_{r}+h_{y}\right) \subseteq K+F-\operatorname{Soc}(X)$ or $y_{z}\left(x_{r}+h_{y}\right) \subseteq K+F-\operatorname{Soc}(X)$ or $m_{s} y_{z} \subseteq(K+F-\operatorname{Soc}(X)$: $X)$. If $m_{s} y_{z} \subseteq K+F-\operatorname{Soc}(X)$ and $m_{s} x_{r} \nsubseteq K+F-\operatorname{Soc}(X)$, hence $m_{s} h_{y} \nsubseteq K+F-\operatorname{Soc}(X)$. But $m_{s} y_{z} \subseteq K, m_{s} h_{y} \nsubseteq K+F-$
$\operatorname{Soc}(X)$ and $y_{z} h_{y} \nsubseteq K+F-\operatorname{Soc}(X)$ so that $m_{s} y_{z} \subseteq(K+F-\operatorname{Soc}(X): X)$. If $y_{z}\left(x_{r}+h_{y}\right) \subseteq K+F-\operatorname{Soc}(X)$, then similary $m_{s} y_{z} \subseteq(K+F-\operatorname{Soc}(X): X)$.
(\Leftarrow) it is evident.

Corollary 3.7

Let H be a proper F -ideal of W , then H is a F-Soc-small T-ABSO ideal if and only if whenever for singletons $m_{a} y_{b}$ of W and F-small ideal S of W such that $m_{a} y_{b} S \subseteq H$, then either $m_{a} S \subseteq H+F-\operatorname{Soc}(W)$ or $y_{b} S \subseteq H+F-\operatorname{Soc}(W)$ or $m_{a} y_{b} \subseteq H+$ $F-\operatorname{Soc}(W)$
Proof: It is similar to proof Proposiyion 3.6, only in this corollary use the ideals instead the submodules.

Proposition 3.8

Let K be a proper F -submod of a F -module X of a W -module G , if $K+F-\operatorname{Soc}(X)$ is a F -small T-ABSO submod of X , then $\left(K+F-\operatorname{Soc}(X):_{X} J\right)$ is a F-small T-ABSO submod for each F-ideal J of $\mathrm{W}, J X \nsubseteq K+F-\operatorname{Soc}(X)$.

International Journal of Engineering and Information Systems (IJEAIS)
 ISSN: 2643-640X
 Vol. 7 Issue 1, January - 2023, Pages: 40-51

Proof: Let $m_{s} y_{z} x_{r} \subseteq\left(K+F-\operatorname{Soc}(X):_{X} J\right)$ and $<x_{r}>\ll X$ for F-singleton m_{s}, y_{z} of W, so $m_{s} y_{z}<x_{r}>\subseteq(K+F-$
$\operatorname{Soc}(X):_{X} J$), hence $m_{s} y_{z} J<x_{r}>\subseteq K+F-\operatorname{Soc}(X)$, but $<x_{r}>\ll X$, then $<J x_{r}>\ll X$ and since $K+F-\operatorname{Soc}(X)$ is F-small $\mathrm{T}-\mathrm{ABSO}$ submod, then either $m_{s}<J x_{r}>\subseteq K+F-\operatorname{Soc}(X)$ or $y_{z}<J x_{r}>\subseteq K+F-\operatorname{Soc}(X)$ or $m_{s} y_{z} \subseteq(K+F-\operatorname{Soc}(X)$: $X)$ by Proposiyion 3.6, so that $m_{s} x_{r} \subseteq\left(K+F-\operatorname{Soc}(X):_{X} J\right)$ or $y_{z} x_{r} \subseteq\left(K+F-\operatorname{Soc}(X):_{X} J\right)$ or $m_{s} y_{z} \subseteq(K+F-\operatorname{Soc}(X): X) \subseteq$ $\left(\left(K+F-\operatorname{Soc}(X):_{X} J\right): X\right)$.

Lemma 3.9

Let K be F -submod of a faithful multiplication and cancelation F -module X of a W-module G , then $(K: X)+F-\operatorname{Soc}(W)=$ $(K+F-\operatorname{Soc}(X): X)$

Proof: by Remark 2.35, we have $(K: X)+F-\operatorname{Soc}(W) \subseteq(K+F-\operatorname{Soc}(X): X)$
Now, to prove $(K+F-\operatorname{Soc}(X): X) \subseteq(K: X)+F-\operatorname{Soc}(W)$
Let $r_{s} \subseteq(K+F-\operatorname{Soc}(X): X)$, hence $r_{s} X \subseteq K+F-\operatorname{Soc}(X)$, but X multiplication F-module, then $K=(K: X) X$ by Proposition 2.24, and $F-\operatorname{Soc}(X)=X F-\operatorname{Soc}(W)$ by Proposition 2.38, So that $r_{s} X \subseteq(K: X) X+F-\operatorname{Soc}(W) X$, hence $r_{s} X \subseteq((K: X)+$ $+F-\operatorname{Soc}(W)) X$, then $r_{s} \subseteq(K: X)+F-\operatorname{Soc}(W)$, that is $(K+F-\operatorname{Soc}(X): X) \subseteq(K: X)+F-\operatorname{Soc}(W)$.
Thus, $(K: X)+F-\operatorname{Soc}(W)=(K+F-\operatorname{Soc}(X): X)$

Proposition 3.10

If K is a F -Soc-small T-ABSO submod of a F . module X of a W-module G , then $(K: X)$ is a F-Soc-small T-ABSO ideal of W .
Proof: Let $m_{s} n_{r} v_{q} \subseteq(K: X)$ and $<v_{q}>$ is a F-small ideal of W, for F.singletons m_{s}, n_{r}, v_{q} of W. suppose that $m_{s} v_{q} \nsubseteq(K: X)$ and $n_{r} v_{q} \nsubseteq(K: X)$. Now for any F.singleton $x_{z} \subseteq X$, define $f: \lambda_{w} \rightarrow X$ by $f\left(1_{z}\right)=1_{z} x_{s}=x_{s}$. It is clear that f is well-defined and F -homomorphism. Since $<v_{q}>$ is a small F.ideal of W , then $<v_{q} x_{v}>\ll X \ldots$ (1). By assumption there exist $h_{y}, g_{b} \subseteq X$ such that $m_{s} v_{q} h_{y} \nsubseteq K$ and $n_{r} v_{q} g_{b} \nsubseteq K$. But $m_{s} n_{r}\left(v_{q} h_{y}+v_{q} g_{b}\right) \subseteq K$ and by $(1)<v_{q} h_{y}>\ll X,<v_{q} g_{b}>\ll X$, then $<v_{q} h_{y}+$ $v_{q} g_{b}>\ll X$ by Theorem 2.31. Then either $m_{s}\left(v_{q} h_{y}+v_{q} g_{b}\right) \subseteq K+F-\operatorname{Soc}(X)$ or $n_{r}\left(v_{q} h_{y}+v_{q} g_{b}\right) \subseteq K+F-\operatorname{Soc}(X)$ or $m_{s} n_{r} \subseteq(K+F-\operatorname{Soc}(X): X)$.
If $m_{s} n_{r} \subseteq(K+F-\operatorname{Soc}(X): X)=(K: X)+F-\operatorname{Soc}(W)$ by Lemma 3.9, then we are done.
If $m_{s}\left(v_{q} h_{y}+v_{q} g_{b}\right) \subseteq K+F-\operatorname{Soc}(X), m_{s} v_{q} h_{y} \nsubseteq K+F-\operatorname{Soc}(X)$, we get $m_{s} v_{q} g_{b} \nsubseteq K+F-\operatorname{Soc}(X)$. But $m_{s} n_{r} v_{q} g_{b} \subseteq K+$ $F-\operatorname{Soc}(X),<v_{q} g_{b}>\ll X$ and $n_{r} v_{q} g_{b} \nsubseteq K+F-\operatorname{Soc}(X)$. Thus $m_{s} n_{r} \subseteq(K+F-\operatorname{Soc}(X): X)=(K: X)+F-\operatorname{Soc}(W)$ by Lemma 3.9.

By the same method, if $n_{r}\left(v_{q} h_{y}+v_{q} g_{b}\right) \subseteq K+F-\operatorname{Soc}(X)$, then $m_{s} n_{r} \subseteq(K+F-\operatorname{Soc}(X): X)=(K: X)+F-\operatorname{Soc}(W)$ by Lemma 3.9.

Proposition 3.11

Let K be a proper F . submod of a faithful finitely generated multiplication F .module X of a W -module G . if (K : X) is a F -Socsmall T-ABSO ideal, then K is a F-Soc-small T-ABSO submod of X.

Proof: Let $m_{s} n_{r} x_{z} \subseteq K$ and $<x_{z}>\ll X$ for F.singleton $m_{s} n_{r}$ of W. But X is a faithful finitely generated multiplication F.module, then $<x_{z}>=\hat{J} X$ for a small F.ideal \hat{J} of W (since if $\hat{J}+U=\lambda_{W}$ for F.ideal U of $\mathrm{W}, \hat{J} X+U X=X$. hence $<x_{z}>$ $+U X=X$. But $<x_{z}>\ll X$, so that $U X=X$, thus $U=\lambda_{W}$ this contradication). Hence $m_{s} n_{r} \hat{J} X \subseteq K$. So $m_{s} n_{r} \hat{J} \subseteq(K: X)$. Since $(K: X)$ is a F-Soc-small T-ABSO ideal, then either $m_{s} \hat{J} \subseteq(K: X)+F-\operatorname{Soc}(W)=(K+F-\operatorname{Soc}(X): X)$ or $n_{r} \hat{J} \subseteq$ $(K: X)+F-\operatorname{Soc}(W)=(K+F-\operatorname{Soc}(X): X)$ or $m_{s} n_{r} \subseteq(K: X)+F-\operatorname{Soc}(W)=(K+F-\operatorname{Soc}(X): X)$ by Lemma 3.9 and Corollary 3.7. So that $m_{s} \hat{J} X \subseteq K+F-\operatorname{Soc}(X)$ or $n_{r} \hat{J} X \subseteq K+F-\operatorname{Soc}(X)$ or $m_{s} n_{r} \subseteq(K+F-\operatorname{Soc}(X): X)$, then $m_{s} x_{z} \subseteq K+$ $F-\operatorname{Soc}(X)$ or $n_{r} x_{z} \subseteq K+F-\operatorname{Soc}(X)$ or $m_{s} n_{r} \subseteq(K+F-\operatorname{Soc}(X): X)$. Thus, K is a F-Soc-small T-ABSO submod of X.

Proposition 3.12

Let X_{1}, X_{2} be F-modules of a W-module G_{1}, G_{2} respectiviely. Let $f: G_{1} \rightarrow G_{2}$ be an isomorphism and K is $F-S o c-$ small $T-$ ABSO submod of X_{1} such that $F-\operatorname{ker} f \subseteq K$, then $f(K)$ is F-Soc-small T-ABSO submod of X_{2}.

Proof: It is clear that $f(K)$ a proper F .submod of X_{2} since K is a proper F.submod of X_{1} Let $a_{v} r_{s} z_{b} \subseteq f(K)$ for $\mathrm{F}-$ singleton $a_{v}, \mathrm{r}_{\mathrm{s}}$ of W and $<\mathrm{z}_{\mathrm{b}}>\ll \mathrm{X}_{2}$, since f is onto, so $\mathrm{z}_{\mathrm{b}}=\mathrm{f}\left(\mathrm{x}_{\mathrm{n}}\right)$ for some F -singleton $\mathrm{x}_{\mathrm{n}} \subseteq X_{1}$, hence $<f\left(x_{\mathrm{n}}\right)>\ll X_{2}$ by Theorem 2.35, then $a_{v} r_{s} \mathrm{f}\left(\mathrm{x}_{\mathrm{n}}\right)=\mathrm{f}\left(\mathrm{s}_{\mathrm{a}}\right)$ for a F-singleton $\mathrm{s}_{\mathrm{a}} \subseteq \mathrm{K}$. then $a_{v} r_{s} \mathrm{x}_{\mathrm{n}}-\mathrm{s}_{\mathrm{a}} \subseteq \mathrm{F}-\operatorname{ker} \mathrm{f} \subseteq \mathrm{K}$, thus $a_{v} r_{s} \mathrm{x}_{\mathrm{n}} \subseteq \mathrm{K}$. But K is a F-Soc-

International Journal of Engineering and Information Systems (IJEAIS)
 ISSN: 2643-640X

Vol. 7 Issue 1, January - 2023, Pages: 40-51
small T-ABSO submod, hence either $a_{v} x_{\mathrm{n}} \subseteq K+F-\operatorname{Soc}\left(X_{1}\right)$ or $\mathrm{r}_{\mathrm{s}} \mathrm{x}_{\mathrm{n}} \subseteq \mathrm{K}+\mathrm{F}-\operatorname{Soc}\left(\mathrm{X}_{1}\right)$ or $a_{v} r_{s} \subseteq\left(\mathrm{~K}+\mathrm{F}-\operatorname{Soc}\left(\mathrm{X}_{1}\right)\right.$: $\left.\mathrm{X}_{1}\right)$. If $a_{v} x_{\mathrm{n}} \subseteq \mathrm{K}+\mathrm{F}-\operatorname{Soc}\left(\mathrm{X}_{1}\right)$, then $a_{v} \mathrm{f}\left(\mathrm{x}_{\mathrm{n}}\right) \subseteq \mathrm{f}(\mathrm{K})+\mathrm{F}-\operatorname{Socf}\left(\mathrm{X}_{1}\right)$ by Proposition 2.21 , hence $a_{v} \mathrm{z}_{\mathrm{b}} \subseteq \mathrm{f}(\mathrm{K})+\mathrm{F}-\operatorname{Soc}\left(\mathrm{X}_{2}\right)$. By the same method, if $r_{s} x_{\mathrm{n}} \subseteq K+F-\operatorname{Soc}\left(X_{1}\right)$, we get $r_{s} z_{b} \subseteq f(K)+F-\operatorname{Soc}\left(X_{2}\right)$.

Now, if $a_{v} r_{s} \subseteq\left(\mathrm{~K}+\mathrm{F}-\operatorname{Soc}\left(\mathrm{X}_{1}\right): \mathrm{X}_{1}\right)$, then $a_{v} r_{s} \mathrm{X}_{1} \subseteq \mathrm{~K}+\mathrm{F}-\operatorname{Soc}\left(\mathrm{X}_{1}\right)$, hence $a_{v} r_{s} \mathrm{f}\left(\mathrm{X}_{1}\right) \subseteq \mathrm{f}(\mathrm{K})+\mathrm{F}-\operatorname{Socf}\left(\mathrm{X}_{1}\right)$ by Proposition 2.21, then $a_{v} r_{s} \mathrm{X}_{2} \subseteq \mathrm{f}(\mathrm{K})+\mathrm{F}-\operatorname{Soc}\left(\mathrm{X}_{2}\right)$, since f is onto, thus $a_{v} r_{s} \subseteq\left(\mathrm{f}(\mathrm{K})+\mathrm{F}-\operatorname{Soc}\left(\mathrm{X}_{2}\right): \mathrm{X}_{2}\right)$.

Thus, $\mathrm{f}(\mathrm{K})$ is F-Soc-smallT-ABSO submod of X_{2}.

Proposition 3.13

Let $f: G_{1} \rightarrow G_{2}$ be an epimorphism and X_{1}, X_{2} are F. modules of a W-module G_{1}, G_{2} resp. If K is a F-small T-ABSO submod of X_{2}, then $f^{-1}(K)$ is a F-Soc-small T-ABSO submod of X_{1}.

Proof: It is clear that $f^{-1}(K)$ a proper F.submod of X_{1} since K is a proper F.submod of X_{2}. Let $m_{s} n_{r} v_{x} \subseteq f^{-1}(K)$ and $<v_{x}>\ll$ X_{1} for F-singleton m_{s}, n_{r} of W , then $m_{s} n_{r} f\left(v_{x}\right) \subseteq K$. But $<f\left(v_{x}\right)>\ll X_{2}$ by Theorem 2.35, and K is a F-small T-ABSO submod, then either $m_{s} f\left(v_{x}\right) \subseteq K$ or $n_{r} f\left(v_{x}\right) \subseteq K$ or $m_{s} n_{r} \subseteq\left(K: X_{2}\right)$. Hence $m_{s} v_{x} \subseteq f^{-1}(K)+F-\operatorname{Soc}\left(X_{1}\right)$ or $n_{r} v_{x} \subseteq$ $f^{-1}(K)+F-\operatorname{Soc}\left(X_{1}\right)$ or $m_{S} n_{r} \subseteq\left(f^{-1}(K): f^{-1}\left(X_{2}\right)\right) \subseteq\left(f^{-1}(K)+F-\operatorname{Soc}\left(X_{1}\right): X_{1}\right)$.Thus, $f^{-1}(K)$ is a F-Soc-small T-ABSO submod of X_{1}.
Now, we give the following definition since it is needed in the next proposition

Definition 3.14

F-submod K of a F-module X of a W-module G is referred to as F-distributive if, $(P \cap S)+K=(P+K) \cap(S+K)$ for all F-submods P, S of X. A F- module X is said to be F-distributive if, all F- submods of X are F-distributive.

Proposition 3.15

Let P and K be F -Soc-small T-ABSO submods of a F-module of a W-module G, such that $(P+F-\operatorname{Soc}(X): X)=$ $(K+F-\operatorname{Soc}(X): X)$ and $F-\operatorname{Soc}(X)$ is F-distributive submod, then $P \cap K$ is F-Soc-small T-ABSO submod of X.

Proof: Let $r_{s} a_{v} x_{n} \subseteq P \cap K$, for F-singletons r_{s}, a_{v} of W and $<x_{n}>\ll X$, then $r_{s} a_{v} x_{n} \subseteq P$ and $r_{s} a_{v} x_{n} \subseteq K$, but P and K are F-Soc-small T-ABSO submods, then $r_{s} x_{n} \subseteq P+F-\operatorname{Soc}(X)$ or $a_{v} x_{n} \subseteq P+F-\operatorname{Soc}(X)$ or $r_{s} a_{v} \subseteq(P+F-\operatorname{Soc}(X): X)$ and $r_{s} x_{n} \subseteq K+F-\operatorname{Soc}(X)$ or $a_{v} x_{n} \subseteq K+F-\operatorname{Soc}(X)$ or $r_{s} a_{v} \subseteq(K+F-\operatorname{Soc}(X): X)$. Hence $r_{s} x_{n} \subseteq P+F-\operatorname{Soc}(X)$ and $r_{s} x_{n} \subseteq$ $K+F-\operatorname{Soc}(X)$ or $a_{v} x_{n} \subseteq P+F-\operatorname{Soc}(X)$ and $a_{v} x_{n} \subseteq K+F-\operatorname{Soc}(X)$ or $r_{s} a_{v} \subseteq(P+F-\operatorname{Soc}(X): X)=$
$(K+F-\operatorname{Soc}(X): X)$, which implies $r_{s} x_{n} \subseteq(P+F-\operatorname{Soc}(X)) \cap(K+F-\operatorname{Soc}(X))$. or $a_{v} x_{n} \subseteq(P+F-\operatorname{Soc}(X)) \cap(K+F-$ $\operatorname{Soc}(X))$ or $r_{s} a_{v} \subseteq((P+F-\operatorname{Soc}(X)) \cap(K+F-\operatorname{Soc}(X)): X)$, hence $r_{s} x_{n} \subseteq P \cap K+F-\operatorname{Soc}(X)$. or $a_{v} x_{n} \subseteq P \cap K+F-$ $\operatorname{Soc}(X)$ or $r_{s} a_{v} \subseteq(P \cap K+F-\operatorname{Soc}(X): X)$ since $F-\operatorname{Soc}(X)$ is F-distributive submod. Thus, $P \cap K$ is F-Soc-small T-ABSO submod of X.

Proposition 3.16

If K is F-Soc-small T-ABSO submod of a F-module X of a W-module G , such that $F-\operatorname{Soc}(X) \subseteq K$ and H is any F-ideal of W , then $\left(K:_{X} H\right)$ is F-small T-ABSO submod of X .

Proof: Let $r_{s} a_{v} x_{n} \subseteq\left(K:_{X} H\right)$, for F-singletons r_{s}, a_{v} of W and $<x_{n}>\ll X$, then $r_{s} a_{v} x_{n} H \subseteq K$, that is $r_{s} a_{v} x_{n} h_{m} \subseteq K, \forall h_{m}$ Fsingleton of H. But $<x_{n} h_{m}>\subseteq X$ and since $<x_{n}>\ll X$, implies that $<x_{n} h_{m}>\ll X$ by Proposition 2.31. Then either $r_{s} x_{n} h_{m} \subseteq$ $K+F-\operatorname{Soc}(X)$ or $a_{v} x_{n} h_{m} \subseteq K+F-\operatorname{Soc}(X)$ or $r_{s} a_{v} \subseteq(K+F-\operatorname{Soc}(X): X) \subseteq\left(\left(K+F-\operatorname{Soc}(X):_{X} H\right): X\right)$, but $F-$ $\operatorname{Soc}(X) \subseteq K$, so that either $r_{s} x_{n} \subseteq\left(K:_{X} H\right)$ or $a_{v} x_{n} \subseteq\left(K:_{X} H\right)$ or $\left.r_{s} a_{v} \subseteq\left(K:_{X} H\right): X\right)$. Thus, $\left(K:_{X} H\right)$ is F-small T-ABSO submod of X.

Proposition 3.17

Let X_{1}, X_{2} be two F-modules of a W-modules G_{1} and G_{2} respectively. If $K_{1} \oplus K_{2}$ is F-Soc-small T-ABSO submod of $X_{1} \oplus X_{2}$, then K_{1} and K_{2} are F-Soc-small T-ABSO submods of X_{1} and X_{2} respectiviely.

Proof: Suppose that $r_{s} a_{v} x_{n} \subseteq K_{1}$ and $r_{s} a_{v} y_{m} \subseteq K_{2}$, for F-singletons r_{s}, a_{v} of W and $<x_{n}>\ll X_{1}$ and $<y_{m}>\ll X_{2}$, then $r_{s} a_{v}\left(x_{n}, y_{m}\right) \subseteq K_{1} \oplus K_{2}$, such that $<x_{n}>\oplus<y_{m}>\ll X_{1} \oplus X_{2}$ by Proposition 2.31. But $K_{1} \oplus K_{2}$ is F-Soc-small T-ABSO submod of $X_{1} \oplus X_{2}$, then either $r_{s}\left(x_{n}, y_{m}\right) \subseteq K_{1} \oplus K_{2}+F-\operatorname{Soc}\left(X_{1} \oplus X_{2}\right)$ or $a_{v}\left(x_{n}, y_{m}\right) \subseteq K_{1} \oplus K_{2}+F-\operatorname{Soc}\left(X_{1} \oplus X_{2}\right)$ or $r_{s} a_{v} \subseteq\left(K_{1} \oplus K_{1}+F-\operatorname{Soc}\left(X_{1} \oplus X_{2}\right): X_{1} \oplus X_{2}\right)=\left(K_{1}+F-\operatorname{Soc}\left(X_{1}\right): X_{1}\right) \cap\left(K_{2}+F-\operatorname{Soc}\left(X_{2}\right): X_{2}\right)$, hence $r_{s} x_{n} \subseteq K_{1}+F-$ $\operatorname{Soc}\left(X_{1}\right)$ or $a_{v} x_{n} \subseteq K_{1}+F-\operatorname{Soc}\left(X_{1}\right)$ or $r_{s} a_{v} \subseteq\left(K_{1}+F-\operatorname{Soc}\left(X_{1}\right): X_{1}\right)$ and $r_{s} y_{m} \subseteq K_{2}+F-\operatorname{Soc}\left(X_{2}\right)$ or $a_{r} y_{m} \subseteq K_{2}+F-$
$\operatorname{Soc}\left(X_{2}\right)$ or $r_{s} a_{v} \subseteq\left(K_{2}+F-\operatorname{Soc}\left(X_{2}\right): X_{2}\right)$ by Proposition 2.32. Thus, K_{1} and K_{2} are F-Soc-small T-ABSO submods of X_{1} and X_{2} respectively.

Acknowledgment

The authors would like to thank the referee for careful reading and them give them time for our article righting.

References

[1] Zadeh, L. A. (1965). Fuzzy sets, Information and Control, vol. 8, pp. 338-353.
[2] Naegoita, C. V. and Ralescu, D. A. (1975). Application of Fuzzy Sets in System Analysis, Birkhauser, Basel, Switzerland.
[3] Saikia, H. K. and Kalita, M. C. (2009). On fuzzy essential submodules, Journal of Fuzzy Mathematics, vol. 17, no. 1, pp. 109-117.
[4] Rabi., H. J. (2001). Prime Fuzzy Submodand Prime Fuzzy Modules, M. Sc. Thesis, University of Baghdad.
[5] Rahman, S. and Saikia, H. K. (2011). Fuzzy small ubmodule and Jacobson L-radical, International journal of Mathematics and \ Mathematical sciences, vol. 2011, pp. 1-12.
[6] Khalaf, H. Y. and Hanoon, W. H. (2018). Small and Classical T-ABSO Fuzzy Submodules, Global Journal of Pure and Applied Mathematics, vol. 14, no. 3, pp. 443-457.
[7] Marie, S. S. (2022). Fuzzy soc-prime submodules and fuzzy soc-T-ABSO submodules with of their generalization, Ph.D. Dissertation University of Baghdad.
[8] Hanoon, W. H. and Khalaf, Y. H.(2019). T-Abso and T-Abso quasi primary fuzzy submodules, Ibn Al-Haitham Journal for Pure and Application Science, University of Baghdad, vol. 32, no. 1, pp. 110-131.
[9] Zahedi, M. M. (1992). On L-fuzzy residual quotient modules and P- primary submodules, Fuzzy Sets and Systems, vol. 51, pp. 333-344.
[10] Malik, D. S. and Mordeson, J. N.(1991).Fuzzy maximal, radical, and primary ideals of a ring, Information sciences vol. 53, pp. 237-250.
[11] Mashinchi , M. and Zahedi, M.M. (1992). On L-fuzzy primary submodules, Fuzzy Sets Systems, vol. 49, pp 231-236.
[12] Mukherjee,T. K., Sen, M. K. and Roy, D. (1996). On fuzzy submodules and their radicals, J. Fuzzy Math., vol. 4, pp. 549-
558.
[13] Yiarayong, P. (2017). On fuzzy primary Γ-ideal in Γ-left almost semigroups, American Journal of Applied Sciences, vol. 14, no. 3, pp. 417-425.
[14] Martinez, L.(1996). Fuzzy modules over fuzzy rings in connection with fuzzy ideals of rings , J.Fuzzy Math., vol. 4, pp.843-857.
[15] Zahedi, M. M. (1991). A characterization of L-fuzzy prime ideals, Fuzzy Sets and Systems, vol. 44, pp. 147-160.
[16] Hadi, I. M. A. (2000). Semiprime fuzzy ideals of a ring , Journal Published by Iraqi Society of Phy. and Math., vol. 15, no. 2.
[17] Rashed, H. G. (2017). Fully cancellation fuzzy modules and some generalizations, Ph.D. Dissertation University of Baghdad.
[18] Hamil, M. A. (2002). F-regular fuzzy modules, M. Sc. Thesis, University of Baghdad.
[19] Hadi, Inaam M. A., and Hamil, M. A. (2011). Cancellation and weakly cancellation fuzzy modules, Journal of Basrah Reserches ((Sciences)), vol. 37, no. 4.
[20] Basnet, D.K., Sarma, N. K. and Singh, L.B. (2010) Fuzzy superfluous submodule, In proceedings of the $6^{\text {th }}$ IMT-GT conference on Mathematics, statistics and its Applications, pp. 330-335.

International Journal of Engineering and Information Systems (IJEAIS)
Vol. 7 Issue 1, January - 2023, Pages: 40-51

Authors

Author's Name: Mustafa B. Salman
Teacher in Ministry of Education
Najaf, Iraq

Author's Name: Assistant professor Dr.
Wafaa Hadi Hanoon
in Department of Mathematics
College of Education
University of Kufa Najaf, Iraq

