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  Abstract: Practical applied statistics reveals that the analysis of many real data that exhibit both  fat-tailness and skewness 

indicates significant departures from normality assumptions.  In these circumstances the adoption of more flexible models that cope 

with near normal  data may be appropriate in place of adopt the robust approach, semi parametric or  nonparametric models, and 

Box-Cox transformation. An alternative approach is to  consider using the Epsilon Skew Generalized Error (ESGE) is a special case 

of Skewed  Generalized T (GT) distribution proposed by Theodossiou (1998) which is embeds the  normal, fat-tailness, and skewness 

distributions as special cases. This paper focus on the  Bayesian estimation for the parameter of the epsilon –skew GED , near 

formula have derived based on the reference prior to estimate the parameters . Simulation study have conducted to find the 

parameters estimates of the proposed models the results based on MSE criteria has show that the Bayesian estimation are accrued 

based on the reference priors that have proposed    

1-Introduction   

Why Epsilon Skew Generalized Error (ESGE) distribution? It is well-known that  many datasets and processes often show 

some skewness present and heavy-tails  behavior, and the analysis of the near normal data indicates significant departure from   

normality assumptions. So, on the applied side the symmetric distributions are not  practical for modeling skewed and heavy-tailed 

datasets. Therefore, there is a strong  motivation to construct suitable distributions that can accommodate behaviors such as  

skeweness and heavy-tails.   

 Flexible nested asymmetric models can be adopted to deal with the situations  when the classes of symmetric distribution 

indicate poor properties. The attractive  features of a flexible nested-skew model are the encompassing of the normal  distribution as 

a special model and allowing in various situations a continuous variation  from normality to no-normality. Therefore, such flexible 

models can be useful to fit the   

near normal data.   

Subbotin (1923) formulated the Generalized Error (GE) distribution as a model  for the random errors; this distribution can 

approach the normal distribution as the  shape parameter tends to an appropriate value. Box and Tiao (1962) considered the  

Generalized Error distribution as more leptokurtic and more platykurtic than normal  distribution. Azzalini (1986) considered the 

asymmetric exponential power (AEP) that  accommodate both skeweness and heavy-tails properties. West (1984) considered using  

the Generalized Error (exponential power) family as heavy-tailed distribution of the  errors in the linear regression model to 

accommodate outliers. Azzalini (1985)  introduced the skew normal (SN) distribution as new model to accommodate  asymmetry; 

the SN is allowing a continuous variation from normality to non-normality.   

Mudholkar and Huston (2000) introduced the Epsilon skew normal (ESN)  distribution by parameterizing the skew family 

that proposed by Fernandez and Steel  (1998). Epsilon-Skew Generalized Error (ESGE) or Skewed Generalized Error (SGE) is a 

special case of the Skewed Generalized T distribution proposed by Theodossiou (1998),  skewed GT is a flexible and accommodating 

the heavy-tails (Leptokurtic) and skewness  properties.   

The ESGE distribution is attractive and flexible because it allows continuous  variation from normality to non-normality 

and nested with many models especially with  the normal distribution, that is mean the ESGE includes normal distribution as a 

special  case and hence is a “robust model”, this is why ESGE distribution has certain benefits.  One major and the most important 

benefit in the ESGE distribution, is to use it where  the normal distribution is used in common statistical applications.  

We propose another extension; the ESGE regression model .The ESGE can be  considered a suitable model to random 

errors of regression models that may exhibit  both heavy-tails and skewness behavior. Despite the flexibility feature of the ESGE for  

accommodating both heavy-tails and skewness behavior, there is no literature on the  linear regression model when the error term is 

assumed to have ESGE distribution as  well as on the noninformative Bayesian inference for regression technique with ESGE  errors. 

The earliest use of noninformative priors, due to Laplace (1812). Jeffreys (1961)  proposed the prior proportional to the positive 
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square root of the determinant of the  Fisher information matrix to overcome the problem of invariance of the uniform prior.  

However, despite its success of the in one parameter problem, Jeffreys’ prior often  comes with difficulty in multiparameter problems, 

where there are nuisance  parameters. 

Bernardo (1979) introduced the so called “reference prior” to overcome the  difficulty of apply the Jeffrey prior in case of 

multiparameter problem. Berger and  Bernardo (1989, 1992 a,b) extended and generalized the algorithm proposed by  Bernardo 

(1979). Datta and Ghosh (1996) simplified the calculation of the reference  prior proposed by Berger and Bernardo (1992b) under 

the same conditions. There are  hundreds of literatures on the noninformative priors, e.g. Salaza et al. (2009)  introduced the 

noninformative Bayesian regression analysis under the exponential                    power (generalized error) error term. Fonseca et al. 

(2008) developed noninformative  Bayesian regression with student-t disturbance term. We propose Noninformative  Bayesian 

Analysis for ESGE Linear Regression Model. 

 

2-Epsilon Skew Generalized Error (ESGE) distribution 

Theodossiou (1998) introduced the Skewed Generalized T (GT) distribution that can accommodate the heavy-tails 

(Leptokurtic) and skewness properties. The p.d.f. of the skewed GT is defined by 

𝑓(𝑦) = 𝐾

{
 
 

 
 
[1 +

ℎ𝜆−ℎ

𝑛−2
|

𝑦

𝜎(1+𝜃)
|
ℎ

]

−(𝑛+1)

ℎ

; 𝑦 ≥ 0
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ℎ𝜆−ℎ

𝑛−2
|

𝑦

𝜎(1−𝜃)
|
ℎ

]

−(𝑛+1)

ℎ

; 𝑦 < 0

                            (1) 

Where h n, θ and σ are scaling parameters and K and λ are normalizing constants. 

 Theodossiou (1998) considered that the Subbotin’s generalized error distribution is a special case of Skewed GT. By reparameterize 

(1) in a fashion similar to Box and Tiao (1992), Berger et al. (2009), and Mudholkar and Huston (2000) we obtain the following 

ESGE density function which denoted by 𝐸𝑆𝐺𝐸(𝜇, 𝜎, 𝑝, 𝜀) 

𝑓(𝑦) =
1

𝜎
{
𝑒𝑥𝑝 [− (

Γ(1+1 𝑝⁄ )(𝑦−𝜇)

𝜎(1+𝜀)
)
𝑝

]      ;    𝑦 ≥ 𝜇

𝑒𝑥𝑝 [− (
Γ(1+1 𝑝⁄ )(𝑦−𝜇)

𝜎(1−𝜀)
)
𝑝

]      ;    𝑦 < 𝜇
                             (2) 

Where  −1 < 𝜀 < 1  is the skewness parameter, −∞ < 𝜇 < ∞is the location parameter,  

𝜎𝑃 > 0 is the scale parameter and p > 0is the shape parameter. Moreover, the density 

function (2) known also as the Epsilon skew normal distribution of order p . 

Theodossiou (1998) referred that the Kurtosis parameter β2 of the ESGE is directly linked to the shape and the epsilon 

parameters. In fact, the shape and the epsilon parameter determines the thickness of the ESGE tail and the shape of the ESGE curve. 

Some special cases of the ESGE are the epsilon skew Laplace distribution ( p =1), the epsilon skew normal distribution ( p = 2 ), the 

normal distribution ( p = = 2, ε=0 ), the Laplace distribution ( p = = 1, ε=0 ), the uniform distribution ( p → ∞ = , ε=0 ), the generalized 

error distribution (ε = 0 ).  

From (2) the probability density function p.d.f. and the cumulative distribution function c.d.f. of the standard form 𝐸𝑆𝐺𝐸(0,1, 𝑝, 𝜀)are 

respectively: 

𝑓0(𝑦) = {
𝑒𝑥𝑝 [− (

Γ(1+1 𝑝⁄ )(𝑦)

𝜎(1+𝜀)
)
𝑝

]      ;    𝑦 ≥ 0

𝑒𝑥𝑝 [− (
Γ(1+1 𝑝⁄ )(−𝑦)
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)
𝑝

]      ;    𝑦 < 0
                      (3) 
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𝐹0(𝑦) = {
1 −

1+𝜀

Γ(1 𝑝)⁄
Γ(1 𝑝⁄ , 𝑔(𝑦))        ;    𝑦 ≥ 0

1 −
1−𝜀

Γ(1 𝑝)⁄
Γ(1 𝑝⁄ , ℎ(𝑦))        ;    𝑦 < 0

                           (4) 

Here, Γ(𝑝, 𝑦) is incomplete gamma function.  

The general form for the density function, denoted 𝐸𝑆𝐺𝐸(𝜇, 𝜎, 𝑝, 𝜀),is
1

𝜎
𝑓0 (

𝑦−𝜇

𝜎
),  

here 𝑓0is defined by (3), and the general form of the c.d.f. of 𝐸𝑆𝐺𝐸(𝜇, 𝜎, 𝑝, 𝜀)is 𝐹0(
𝑦−𝜇

𝜎
)here is𝐹0 defined by (4). The Fisher 

information matrix of (2) based on Zhu and Zinda-Walsh (2009) is defined as follow 

I(μ, σ, p, ε) =
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3- Noninformative Bayesian Analysis for ESGE Linear Regression Model 

Bayesian analysis combines prior information about the parameters of certain model with information from observed data 

to come up with a posterior distribution. Thus, the researcher needs to determine the likelihood function, as well as the prior 

distribution which is representing his beliefs before observing the outcomes of the experiment. Usually, it is not easy for the 

statistician to come up with the distribution of the parameters based on specify prior beliefs, that is, the lack of the subjective beliefs 

in formulating such a prior .Therefore, to overcome this difficulty noninformative prior is used in place of subjective prior when 

little or no prior information is available. 

 Jeffreys (1946, 1961) derived a method to generate noninformative (objective) priors which takes into account the invariant structure 

under the transformations of the parameters of the model .For 0𝜖ℛ∗The Jeffreys general rule is noninformative prior defined as 

𝜋∗(𝜃) ∝ [det (𝐼(𝜃)]
1
2⁄  

Where the θ is the vector of the parameters and 𝐼(𝜃) is the expected value of the Fisher information matrix under a probability 

distribution which is taken to be 𝐼(𝜃) = {𝐼𝑖,𝑗} where 

𝐼𝑖,𝑗 = −𝐸 (
𝜕2

𝜕𝜃𝑖𝜕𝜃𝑗
𝐼𝑜𝑔𝐿(𝜃)) , 𝑤ℎ𝑒𝑟𝑒 𝐿(𝜃)𝑖𝑠 𝑡ℎ𝑒 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

In multiparameter models with the presence of nuisance parameters, Jeffreys general rule does not work well , see Tibshirani (1989), 

to overcome this lack of work in Jeffreys general rule prior we consider the methodology of Bernardo (1979) that so called reference 

prior for multidimensional case (multiparameter) by splitting the parameter vector into nuisance parameters and interest parameters. 

Berger and Bernardo (1992) extended the idea of dividing the vector of parameter into two or more groups according to their order 

of inferential importance. The noninformative prior is proportional to the product of an arbitrary function of the nuisance parameters 

and the jeffreys general rule for the parameter of interest (Tibshirani R. 1989).Datta and Ghosh (1995) simplified the calculation of 

the reference priors under some conditions, such as the Fisher information matrix is a block diagonal matrix. In this section we shall 

investigate the following linear regression model, 

𝑦 = 𝑥𝛽 + 𝑒 

𝑦𝑖 = (𝑦1 , … , 𝑦𝑛)
′:Observed variable vector  

𝑒𝑖 = (𝑒1, … , 𝑒𝑛)
′: Error random variable vector such that 𝑒  ,s  are independent, identically Distributed according to (2) with e = 0 
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𝑥 = (𝑥1, … , 𝑥𝑛)
′: 𝑛 × 𝑝Matrix of regressor variables  

𝛽 = (𝛽1, … , 𝛽𝑛)
′ ∈ ℛ𝑞:Linear regression coefficient vector  

The likelihood function of the parameters is defined by: 

𝐿(𝜃) =∏𝑓(𝑦𝑖 𝑥𝑖
,𝛽, 𝜎, 𝜀, 𝑝)⁄

𝑛

𝑖=1
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{
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𝑝𝑛

𝑖=1

] ; 𝑦 ≥ 𝑥𝑖
,𝛽

𝑒𝑥𝑝 [−∑(
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Where 𝜃 = (𝜀, 𝑝, 𝛽, 𝜎) 

 The Jeffrey’s General Rule Prior  𝜋𝐺𝑅 (Jeffreys 1961) is defined by:  

𝜋𝐺𝑅(𝜃) ∝ [det (𝐼(𝜃)]
1
2⁄  

𝜃 is the vector of the ESEP parameters and  𝐼(𝜃)is the expected value of the Fisher information matrix under ESEP distribution 

which is taken to be 𝐼(𝜃) = {𝐼𝑖,𝑗} where 

𝐼𝑖,𝑗 = −𝐸 (
𝜕2

𝜕𝜃𝑖𝜕𝜃𝑗
𝐼𝑜𝑔𝐿(𝜃)) ; 𝑖, 𝑗 = 1,2,3,4 

 

 

Proposition 1: The Fisher information matrix Ι( θ ) of the sample (𝑦1, 𝑦2, … , 𝑦𝑛) with standard form of ESGE probability density 

function (2) , which has the parameter vector,  𝜃 = (𝑝, 𝛽, 𝜀)is given by 

𝐼(𝜃) =

[
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𝑝
) 0 0

0
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1 − 𝜀2 ]
 
 
 
 
 
 
 

 

Here, Ψ’(.) is the trigamma function. 

 Proof: This follows as a consequence of proposition 1 of Salazar et al. (2009), and proposition 5 Berger et al. (2009).  

We derived some reference priors for the ESGE regression model. We begin with the derivation of the Jeffrey’s general rule prior 

𝜋𝐺𝑅(𝑝, 𝛽, 𝜀) whichis proportional to the positive square root of the determinant 𝐼(𝑝, 𝛽, 𝜀). Thus 

𝜋𝐺𝑅(𝑝, 𝛽, 𝜀) ∝ √𝐼𝛽𝛽𝐼𝜀𝜀 − 𝐼𝛽𝜀
2 √det (𝐼𝑃𝑃) 

Where 
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det(𝐼𝑃𝑃) ∝ [(
𝑃 + 1

𝑃4
)Ψ′ (1 +

1

𝑃
)] 

Then the Jeffrey’s general rule is given by 

𝜋𝐺𝑅(𝑝, 𝛽, 𝜀) ∝
1

1 − 𝜀2
[(𝑝 + 1)Γ (

1

𝑃
)Γ (2 −

1

𝑃
) − 𝑃2]

1
2[(
𝑃 + 1

𝑃4
)Ψ′ (1 +

1

𝑃
)]
1
2 

In Jeffrey’s general rule prior all the parameters are treated as equally important. 

Next we derived two groups θ(1) = p and θ(2) = (β, ε )reference priors following Berger and Bernardo (1992), Datta and Ghosh (1996) 

algorithms. Here p is the parameter of interest and( β, ε) is the vector of nuisance parameters. Then the Fisher information matrix 

for this grouping is same as first group, and following is reference prior 

𝜋2𝑅(𝑝, (𝛽, 𝜀)) ∝
1

1 − 𝜀2
[(𝑝 + 1)Γ (

1

𝑃
) Γ (2 −

1

𝑃
) − 𝑃2]

1
2[(
𝑃 + 1

𝑃4
)Ψ′ (1 +

1

𝑃
)]
1
2 

Now, from Tibshirani (1989), Berger and Bernardo (1992), Datta and Ghosh (1996) algorithms, the reference prior is proportional 

to the square root of the information element for the parameter of interest p times an arbitrary function of the nuisance parameters . 

Let θ(1)=p, θ(2)= ε and θ(3)= β. Then, the Fisher information matrix for this grouping and the reference prior are as following 

𝐼∗(𝑝, 𝜀, 𝛽) =

[
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𝑝4
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𝑝
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0
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0
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1
𝑝
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1
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𝜋3𝐺((𝑝), (𝜀), (𝛽) ∝ [(
𝑝 + 1

𝑝4
)Ψ′(1 +

1

𝑝
]
1
2⁄ 𝑔(𝑝, 𝜀) 

Where 𝑔(𝑝, 𝜀) = [
1

1−𝜀2
]
1+𝑞

2 [Γ (
1

𝑝
) Γ (2 −

1

𝑝
)]

𝑞

2 is an arbitrary function. 

Based on Datta and Ghosh (1996) algorithm, the Jeffrey’s general rule prior 𝜋3𝐺(𝑝, 𝛽, 𝜀) and both reference priors 

𝜋2𝐺(𝑝, (𝛽, 𝜀)), 𝜋3𝐺((𝑝), (𝜀), (𝛽))belong to the class of improper prior distribution given by 

𝜋(𝜃) ∝
𝜋(𝑝)

(1 − 𝜀2)𝑎
 

Here a ∈ ℜ is a hyper-parameter and p(π)  is the marginal prior of p.  

4- Simulation Study  

This section focused on the simulation study of the Bayesian estimation of the ESGE distribution parameters. Bayesian reference 

priors have coded by using the R packages. We generate the observation of the interest variable from ESGE distribution with four 

parameters (𝛽1,𝜀, p, σ ) based sample size equals to 250 observation , MCMC algorithm have used with 12000 iteration have generate 

. The MSE criteria have used to judge the parameter estimate accurate. In addition to that 2000 iteration have burn-in also it clearly 

that we use the following linear model to simulate our data :  

  
𝑦𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + 𝑒𝑖 

the initial values of 𝛽1 = 1.2 , 𝛽0 = 1 and the residuals 𝑒𝑖 are generated from  𝑁(0,1) , 0.75𝑁(0,3) + 0.25𝑁(0,1 ). The following 

table shows the MSE and its relative efficiency for different residuals distribution.  
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Table 1 : MSE and the relative efficiency 

Model 
𝜷𝟏 

MSE (eff.) 

𝒑 

MSE (eff.) 

𝜺 

MSE (eff.) 

𝝈 

MSE (eff.) 

𝝐~𝑵(𝟎, 𝟏) 
ESGE(proposed) 

MLE 

0.01466 (2.15065) 0.033468 (2.1839) 0.01216 (2.0656) 0.0571 (2.0984) 

𝝐~𝟎. 𝟕𝟓𝑵(𝟎, 𝟑)
+ 𝟎. 𝟐𝟓𝑵(𝟎, 𝟏) 

ESGE(proposed) 

MLE 

0.02558 (2.81213) 0.00986 (2.7349) 

 

0.00654 (1.8933) 0.0422 (1.7986) 

 

The following figures are the trace plot which that tools of MCMC algorithm convergence. The trace plots indicate that the MCMC 

samples show good convergence to the stationary distribution (the initial value of the true parameters.  Also the plots shows there 

are no flat bits and there are no slow mixing in the trace plot. 

 

Figure 1. Trace plots of the estimated parameters 
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Findlay for comparison purpose, we use the BIC criterion for model selection. We compare the proposed model ESGE model with 

the Laplace distribution to test the goodness of fits for the generated data. The results indicated that the ESGE model fit the data 

better than the Laplace distribution (the less value of BIC, the better performance).  

Table 2 : BIC values of the models 

Model BIC values  Decision  

ESGE(proposed) 

 

17.3 Better 

Laplace distribution 22.27  

 

5- Conclusions  

      The Epsilon skew generalized distribution has studied from the Bayesian prosecution. The Bayesian estimation for the parameters 

of the proposed model have analyzed by using reference priors to find the posterior distribution mean. The MCMC algorithm has 

used with R packages and compared the results with Laplace distribution. The BIC shows that the ESGE model performed better.  
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