Generalization of the distributive semimodules

Aseel Sami Hamd ${ }^{1}$, Zainb Mahmood Shakeer ${ }^{2}$, Ali Hasan Abdoul Khaleq ${ }^{\mathbf{3}}$, Ahmed Hadi Hussain ${ }^{4}$
1Mathematics Department, College of Education for pure Sciences, University of Babylon. Babylon, Iraq. pure.aseel.najm@uobabylon.edu.iq,
2Mathematics Department, College of Education for pure Sciences, University of Babylon. Babylon, Iraq. pure.zainab.hashim@uobabylon.edu.iq,
3Mathematics Department, College of Education for pure Sciences, University of Babylon. Babylon, Iraq. edu716.ali.hasan@uobabylon.edu.iq.
4Department of Automobile Engineering, College of Engineering Al-Musayab, University of Babylon. Babylon, Iraq met.ahmed.hadi@uobabylon.edu.iq

Abstract

A semimodule M is considered distributive if the lattice formed by its subsemimodules is distributive. In this study, we aim to study the concept of a weak distributive. Specifically, a subsemimodule A is termed weak distributive if $A=A \cap H+A \cap K$ for all H and K belonging to the lattice of M such that $H+K=M$. A semimodule M is classified as weakly distributive if each subsemimodule A belonging to the lattice of M satisfies the conditions of being a weak distributive subsemimodule.

Keywords: Weak distributive, k-reguler, supplemented extending, subtractive, closed subsemimodules.

1.Introduction

Many authors have extensively studied distributive modules and their properties see [1], ,[2], [3], [4],[5], and [6]. Subsequently, Some studies have clarified the term distribution property like [7], [8],[9] and [10]. In the context of the module, researchers E. Büyükaşık and Y. M. Demirci [11]studied the concept of weakly distributive. In our research, following its introduction in relation to the semimodule, we will explore some of the properties that arise after its generalization. In the realm of semimodules, consider a semi ring R. A left \boldsymbol{R}-semimodule be established as a commutative monoid ($M,+$) with an additive identity 0 . It incorporates a function from $R \times M$ to M, represented as (r, m) if then $r x$, where r is an element from R and m is an element from M. This scalar multiplication operation adheres to the following conditions for all elements r, r^{\prime} in R and all elements m, m^{\prime} in $M: m, m^{\prime} \in$ $M:\left(r r^{\prime}\right) x=r\left(r^{\prime} m\right) ; r\left(m+m^{\prime}\right)=r m+r m^{\prime} ;\left(r+r^{\prime}\right) m=r m+r^{\prime} m ; 0_{M}=0_{M}=0_{R} m$. let N anonempty subset of a left R-semimodule M which is said a subsemimodule of M in case N it was closed in addition and standard multiplication so N was an R-semimodule (we symbolize it as $N \leq M$). we denoted by $\mathrm{L}(M)$ to the set of all subsemimodules of M Let D and M be R semimodules and we called to the map $f: M \rightarrow D$ a homomorphism if for each $n, e \in s, M \in R, f(e+n)=f(e)+f(n)$ and $f(s n)=s f(n)$ [12]. to a homomorphism of R - semimodules $f: M \rightarrow D$, we defined $f(M)=\{f(e) \mid e \in M\}, \operatorname{ker}(f)=$ $\{e \in M \mid f(e)=0\}, \operatorname{Im}(f)=\{k \in D \mid k+f(e)=f(e ́)$ for some $e, \dot{e} \in M\}, f$ is \boldsymbol{i}-regular if $f(M)=\operatorname{Im}(M)$, and f is \boldsymbol{k}-regular, if $f(e)=f(e ́)$ implies $e+h=\dot{e}+h$ for some $h, \check{h} \in \operatorname{ker}(f)$ [13]. A subtractive subsemimodule (or $k-$ subsemimodule) N be a subsemimodule of M, if $z, z+w \in N$, then $w \in N$ [14]. A subsemimodule E of R - semimodule M is superfluous or small (denoted by $E \ll M$). If any $K \in \mathrm{~L}(M), K+E=M$ implies $K=M$ [15]. We said to the subsemimodule T a supplement of Q in M if $T+Q=M$, and T is minimal with this property[16]. A subsemimodule K of semimodule M is called closed if K has no proper essential extension in M [10].

2. Weakly distributive semimodules

Let M be an R-semimodule, and $A \in L(M)$. let A a weak distributive subsemimodule of M if $A=A \cap E+A \cap W$, $\forall E, W \in L(M)$ so that $E+W=\mathrm{M}$. when M be a weakly distributive if $\forall A \in L(M)$ is a weakly distributive subsemimodule, example of this any semiring with identity over itself is weakly distributive, but on the contrary, if $M \neq\{0\}$ be any R - semimodule, so $\mathcal{B}=M \amalg M$ be not a weakly distributive $\mathrm{R}-$ semimodule .

Lemma 2.1. Let \mathcal{D} be a R-semimodule, and $\mathcal{T}, \mathcal{L} \in L(\mathcal{D})$ with \mathcal{T} be a weak distributive subsemimodule of \mathcal{D}. Then \mathcal{T} is a supplement of \mathcal{L} if and only if $\mathcal{D}=\mathcal{L}+\mathcal{T}, \mathcal{T} \cap \mathcal{L}$ it was be a small in \mathcal{T}.

Proof. let \mathcal{T} be a supplement to \mathcal{L} and $\mathcal{X} \in L(\mathcal{T}), \mathcal{T} \cap \mathcal{L}+\mathcal{X}=\mathcal{T}$.
$\mathcal{D}=\mathcal{L}+\mathcal{T}$ from define of supplement we get $\mathcal{D}=\mathcal{L}+(\mathcal{T} \cap \mathcal{L}+\mathcal{X})=\mathcal{L}+\mathcal{X}, \mathcal{X}=\mathcal{T}$ by the minimality of \mathcal{T}.
From other side, we suppose that $=\mathcal{L}+\mathcal{T}, \mathcal{T} \cap \mathcal{L}$ small in \mathcal{T}. we prove \mathcal{T} be a supplement of \mathcal{L}, if $C \subseteq \mathcal{T}, \mathcal{D}=\mathcal{L}+C$, so $\mathcal{T}=$ $\mathcal{T} \cap \mathcal{D}=\mathcal{T} \cap(\mathcal{L}+C)=\mathcal{T} \cap \mathcal{L}+\mathcal{T} \cap C=\mathcal{T} \cap \mathcal{L}+C$ and $C=\mathcal{T}$ since $\mathcal{T} \cap \mathcal{L}$ be small in \mathcal{T}. so \mathcal{T} be a supplement of \mathcal{L}.

Proposition 2.2. we suppose that \mathcal{D} is an R-semimodule, $\mathcal{Q}, \mathcal{F}, \mathcal{A} \in L(\mathcal{D})$. If \mathcal{Q} be a weak distributive subsemimodule and supplement of \mathcal{F}, \mathcal{A}.
so \mathcal{Q} be a supplement of $\mathcal{F} \cap \mathcal{A}$.

Proof.

By hypothesis $\mathcal{D}=Q+\mathcal{F}=Q+\mathcal{A}$, by Lemma $2.1 Q \cap \mathcal{F}, Q \cap \mathcal{A}$ be small in Q, if $Q \cap \mathcal{F} \cap \mathcal{A} \subseteq Q \cap \mathcal{F}$, so $Q \cap \mathcal{F} \cap \mathcal{A}$ be small in \mathcal{Q}.
from Lemma $2.1 \mathcal{Q}$ is a supplement of $\mathcal{F} \cap \mathcal{A}$.
Lemma 2.3.[10] we suppose that U, A are R - semimodules, $\mu \in \operatorname{Hom}(U, A), M \in L(A)$, then $\mu\left(\mu^{-1}(M)\right)=M \cap \mu(U)$.
Proposition 2.4. Let M and H be R-semimodules, g a k-regular homomorphism from M to H. If $g(M)$ is a weakly distributive subsemimodule of A, W and N subsemimodules of A with $E+N=H$ and $g^{-1}(E)+g^{-1}(N)$ is subtractive in M, then $g^{-1}(E)+$ $g^{-1}(N)=M$.

Proof. It is clear that $g^{-1}(E)+g^{-1}(N) \subseteq M$. Let $m \in M$, then $g(m) \in(E+N) \cap g(M)$. Since $g(M)$ is a weakly distributive subsemimodule, $g(m) \in[E \cap g(M)+N \cap g(M)]$, so Lemma 2.3 implies $g(m) \in\left[g\left(g^{-1}(E)\right)+g\left(g^{-1}(N)\right)\right]$ this mean $g(m)=$ $g\left(m_{1}\right)+g\left(m_{2}\right)$ with $m_{1} \in g^{-1}(E), m_{2} \in g^{-1}(N)$ as a result, we get $g(m)=g\left(m_{1}+m_{2}\right)$.

By hypothesis, g is a k-regular, so $m+k_{1}=m_{1}+m_{2}+k_{2}$ for $k_{1}, k_{2} \in \operatorname{kerg}$. Now, $m_{1}+m_{2}+k_{2} \in g^{-1}(E)+g^{-1}(N)$ (since $\operatorname{erg} \leq g^{-1}(N)$), so $m+k_{1} \in g^{-1}(E)+g^{-1}(N)$. But $k_{1} \in \operatorname{kerg} \subseteq g^{-1}(E)+g^{-1}(N)$, then $m \in g^{-1}(E)+g^{-1}(N)$ (by subtractive property).

Remark 2.5.[6] Let п: $\mathcal{B} \rightarrow \mathcal{D}$ be homomorphism of R - semimodules, then $\sqcap(\mathcal{B})$ is a subtractive subsemimodule of \mathcal{D} if and only if $\boldsymbol{\eta}$ is i-regular.
Lemma 2.6.[13] we suppose that U, A is R - semimodules. If $\omega, \mu \in \operatorname{Hom}(U, A)$
where ω is i-regular, then $(\omega+\mu)^{-1}(\omega(U))=\mu^{-1}(\omega(U))$.
Proof. $(\omega+\mu)^{-1}(\omega(U))=\{e \in U:(\omega+\mu)(e) \in \omega(U)\}$

$$
\begin{aligned}
& =\{e \in U: \omega(e)+\mu(e) \in \omega(U)\} \\
& =\{e \in U: \mu(e) \in \omega(U)\}(\text { By Remark 2.5) } \\
& =\mu^{-1}(\omega(U))
\end{aligned}
$$

Corollary 2.7. Let U be an R - semimodule, A is a subtractive R - semimodule and $\mu, \omega \in \operatorname{Hom}(U, A)$. If $(\mu+\omega)(U)$ is a weakly distributive subsemimodule in A and $\mu(U)+\omega(U)=A$, then $\omega^{-1}(\mu(U))+\mu^{-1}(\omega(U))=U$.

Proof.

By Proposition $2.4(\mu+\omega)^{-1}(\mu(U))+(\mu+\omega)^{-1}(\omega(U))=U$. Since A is a subtractive then the subsemimodules $\mu(U)$ and $\omega(U)$ are subtractive, by Remark 2.5μ and ω are i-regular, hence by Lemma $2.6 U=(\mu+\omega)^{-1}(\mu(U))+(\mu+\omega)^{-1}(\omega(U))=$ $\omega^{-1}(\mu(U))+\mu^{-1}(\omega(U))$.

If we designate the subsemimodule \mathcal{A} that fulfills the condition: $\mathcal{A}+(\mathcal{H} \cap \mathcal{K})=(\mathcal{A}+\mathcal{H}) \cap(\mathcal{A}+\mathcal{K}) \forall \mathcal{H}, \mathcal{K} \in L(\mathcal{D})$ so $\mathcal{H}+\mathcal{K}=\mathcal{D}$ as the distributive subsemimodule, we can derive the following property:

Proposition 2.8. Let M and E be R-semimodules, f a k-regular homomorphism from M to E. If $k e r f$ is a weak distributive subsemimodule in M and $Y+N=M$, then $f(Y \cap N)=f(Y) \cap f(N)$.

Proof. It is clear that $f(Y \cap N) \subseteq f(Y) \cap f(N)$. Now, let $h \in f(Y) \cap f(N)$, then $h=f(\mathrm{y})=f(n)$ where $\mathrm{y} \in Y$ and $n \in N$. Since f is k-regular, there exist $k_{1}, k_{2} \in \operatorname{kerf}$ such that $\mathrm{y}+k_{1}=n+k_{2}$.

International Journal of Engineering and Information Systems (IJEAIS)
ISSN: 2643-640X
Vol. 7 Issue 12, December - 2023, Pages: 110-113
Now, $\mathrm{y}+k_{1} \in(Y+\operatorname{kerf}) \cap(N+\operatorname{ker} f)$. As kerf is a weak distributive subsemimodule, this implies $\mathrm{y}+k_{1} \in(Y \cap S)+$ kerf. Therefor $\mathrm{y}+k_{1}=z+k_{3}$ where $z \in Y \cap S, k_{3} \in \operatorname{kerf}$. Then $f(\mathrm{y})=f(z)$ implies $h=f(z) \in f(Y \cap N)$. Therefore $f(Y \cap N)=$ $f(Y) \cap f(N)$.

Proposition 2.9. Let $Z=Z_{1} \oplus Z_{2}=T_{1}+T_{2}$ be a semimodule, where $T_{1} \leq Z_{1}$. If T_{2} is weak distributive subsemimodule and $T_{1} \cap T_{2}$ be small in T_{2}, then $T_{1} \cap T_{2}$ are small in $Z_{1} \cap T_{2}$.

Proof. we suppose that $Z_{1} \cap T_{2}=\left(T_{1} \cap T_{2}\right)+W$, where W is a subsemimodule of $Z_{1} \cap T_{2}$. Since T_{2} is a weak distributive subsemimodule, $T_{2}=\left(Z_{1} \cap T_{2}\right) \oplus\left(Z_{2} \cap T_{2}\right)$. We have $Z=T_{1}+T_{2}=T_{1}+\left(Z_{1} \cap T_{2}\right)+\left(Z_{2} \cap T_{2}\right)=T_{1}+\mathrm{W}+\left(Z_{2} \cap T_{2}\right)$ and $T_{2}=\left(T_{1} \cap T_{2}\right)+W+\left(Z_{2} \cap T_{2}\right)$.

Since $T_{1} \cap T_{2}$ is small in T_{2}, we have $T_{2}=W \oplus\left(Z_{2} \cap T_{2}\right)$. Then, $T_{2}=\left(T_{2} \cap Z_{1}\right) \oplus\left(T_{2} \cap Z_{2}\right)$, and $W \leq Z_{1} \cap T_{2}$ implies $W=Z_{1} \cap T_{2}$. Hence, $T_{1} \cap T_{2}$ is small in $Z_{1} \cap T_{2}$.

Proposition 2.10. Suppose that $S=S_{1} \oplus S_{2}$, where S_{1}, S_{2} be R-semimodules, S distributive. If $K \in L(S)$ be a weak distributive subsemimodule and closed in S, then $K \cap S_{h}$ is closed in S_{h} for $h=1,2$.

Proof. Assume $K \cap S_{h} \leq^{e} S_{h}{ }^{*} \leq S_{h}$ for $h=1,2$. Then,
$K \cap S_{1} \oplus K \cap S_{2} \leq^{e} S_{1}{ }^{*} \oplus S_{2}{ }^{*} \leq S_{1} \oplus S_{2}=S$, thus $K \leq^{e} S_{1}{ }^{*} \oplus S_{2}{ }^{*}$. Since K is closed in S, it follows that $K=S_{1}{ }^{*} \oplus S_{2}{ }^{*}$. Hence, $K \cap$ $S_{1} \oplus K \cap S_{2}=S_{1}{ }^{*} \oplus S_{2}{ }^{*}$ implies that $K \cap S_{1}=S_{1}{ }^{*}$ and $K \cap S_{2}=S_{2}{ }^{*}$. Therefor, $K \cap S_{h}$ is closed in S_{h} for $h=1,2$.
Definition 2.11.[10] An R-semimodule \mathcal{D} we said it a supplemented extending if each closed subsemimodule be supplement
Proposition 2.12. Let $M=M_{1} \oplus M_{2}$ where M, M_{1}, M_{2} be R-semimodules and M weakly distributive, then M is supplemented extending, when M_{1}, M_{2} are supplemented extending.

Proof. Suppose M_{1}, M_{2} are supplement extending R-semimodules, and L is a closed subsemimodule in M. According to Proposition 2.10, $L \cap M_{i}$ is closed subsemimodule in M_{i} for $i=1,2$. Since M_{i} be supplement extending, $L \cap M_{i}$ be supplement in M_{i}. By Lemma 2.1, there exist a subsemimodule K_{i} of M_{i} such that $K_{i}+\left(L \cap M_{i}\right)=M_{i}$ and $K_{i} \cap L \cap M_{i}=K_{i} \cap L \ll L \cap M_{i} \ll L$.

Now, consider $\left(K_{1}+K_{2}\right) \cap L=\left(K_{1} \cap L\right)+\left(K_{2} \cap L\right) \ll L$. Additionally, we have:
$M=\left[K_{1}+\left(L \cap M_{1}\right)\right]+\left[K_{2}+\left(L \cap M_{2}\right)\right] \subseteq\left(K_{1}+K_{2}\right)+L$.
By Lemma 2.1, L is supplement, concluding the proof.

References

[1] W. Stephenson, "Modules whose lattice of submodules is distributive," Proc. London Math. Soc., vol. 3, no. 2, pp. 291310, 1974.
[2] V. Camillo, "Distributive modules," J. Algebr., vol. 36, no. 1, pp. 16-25, 1975.
[3] V. Erdoğdu, "Distributive modules," Can. Math. Bull., vol. 30, no. 2, pp. 248-254, 1987.
[4] Y. Zhou and M. Ziembowski, "Distributive modules and Armendariz modules," J. Math. Soc. Japan, vol. 67, no. 2, pp. 789-796, 2015.
[5] V. Erdoğdu, "Cyclically decomposable distributive modules," Commun. Algebr., vol. 25, no. 5, pp. 1635-1639, 1997.
[6] N. Zamani, "On torsion free distributive modules," Contrib. to Algebr. Geom., vol. 50, no. 2, pp. 327-336, 2009.
[7] J. Saffar Ardabili, S. Motmaen, and A. Yousefian Darani, "The spectrum of classical prime subsemimodules," Aust. J. Basic Appl. Sci., vol. 5, no. 11, pp. 1824-1830, 2011.
[8] Z. W. Alboshindi and A. A. M. Alhossaini, "Fully Prime Semimodule, Fully Essential Semimodule and Semi-Complement Subsemimodules," Iraqi J. Sci., pp. 5455-5466, 2022.
[9] A. Alhossaini, "On distributive semimodules," J. Kufa Math. Comput., vol. 10, no. 2, pp. 57-63, 2023.
[10] A. M. A. Alhossaini, "Distributive Semimodules: Theory, Properties, and Extensions," J. Kufa Math. Comput., vol. 10, no. 2, pp. 90-96, 2023.

International Journal of Engineering and Information Systems (IJEAIS)
[11] E. Büyükaşık and Y. M. Demirci, "Weakly distributive modules. Applications to supplement submodules," ProceedingsMathematical Sci., vol. 120, no. 5, pp. 525-534, 2010.
[12] J. S. Golan, Semirings and their Applications. Springer Science \& Business Media, 2013.
[13] J. R. Tsiba and D. Sow, "On Generators and Projective Semimodules," Int. J. Algebr., vol. 4, no. 24, pp. 1153-1167, 2010.
[14] K. S. H. Aljebory and A. M. A. Alhossaini, "Principally Quasi-Injective Semimodules," Baghdad Sci. J., vol. 16, no. 4, 2019.
[15] N. X. Tuyen and H. X. Thang, "On superfluous subsemimodules," 2003.
[16] M. M. T. Altaee and A. M. A. Alhossaini, "Supplemented and π-Projective Semimodules," Iraqi J. Sci., vol. 61, no. 6, pp. 1479-1487, 2020.

