Interval-valued of Fuzzy AB-subalgebras on AB-Algebra

Dr. Areej Tawfeeq Hameed¹, Dr. Ahmed Hamzah Abed2, and Huda Adnan Mohammed3

1Department of Mathematics, Faculty of Education for Girls, University of Kufa, Najaf, Iraq. E-mail: <u>areej.tawfeeq@uokufa.edu.iq</u> 2College of Islamic Sciences, AL Iraqia University, Baghdad, Iraq. <u>E-mail: ahmedh.abed@uokufa.edu.iq</u> 3Department of Mathematics, Faculty of Education for Girls, University of Kufa, Najaf, Iraq.

E-mail: areej238@gmail.com

Abstract: In this paper, the notion of interval-valued fuzzy AB-subalgebras (briefly i-v fuzzy AB- subalgebra) in AB-algebras is introduced and how the homomorphic images and inverse images of i-v fuzzy AB- subalgebras become i-v fuzzy AB- subalgebras in AB-algebras is studied as well.

Keywords—AB-algebras, fuzzy AB-subalgebra, interval-valued fuzzy AB-subalgebras of AB-algebra.

1. INTRODUCTION

A. T. Hameed and et al ([4-7]) introduced a new algebraic structure, called AB-algebra, they have studied a few properties of these algebras, the notion of AB-ideals and fuzzy AB-ideal on AB-algebras was formulated and some of its properties are investigated. In [13,20,21], they defined the notions of α translation, β-magnified and generalized fuzzy ABsubalgebra, generalized fuzzy AB-ideal of AB-algebra and investigate in some of their properties. The concept of a fuzzy set, was introduced by L.A. Zadeh [27]. A.T. Hameed and et al, ([19]) we introduce the notion of anti-fuzzy AB-ideals of AB-algebras and then we study the homomorphism image and preimage of anti-fuzzy AB-ideals. S. M. Mostafa and et al. [22,24-26] were introduced a new algebraic structure which is called KUS-algebras and investigated some related properties. In [1-3,8-9,12,15-16], A.T. Hameed and et al. introduced ATideals on AT-algebras and introduced the notions fuzzy AT-subalgebras, fuzzy AT-ideals of ATalgebras and investigated relations among them. They introduced the notion of cubic AT-ideals of ATalgebra and they discussed some related properties of it. They also prove that some properties of anti-fuzzy AT-ideals and anti-fuzzy AT-subalgebras. A.T. Hameed and et al, ([1]). In [19], A.T. Hameed and et al., prove that the Cartesian product of anti-fuzzy ABideals are anti-fuzzy AB-ideals. In this paper, using the notion of interval-valued fuzzy set, we introduce the concept of an interval-valued fuzzy AB-ideals (briefly, i-v fuzzy AB-ideals) of a AB-algebra, and study some of their properties. Using an i-v level set of an i-v fuzzy set, we state a characterization of an i-v fuzzy AB-ideals. We prove that every AB-subalgebras of an AB-algebra X can be realized as an i-v level ABsubalgebras of an i-v fuzzy AB-subalgebras of X. In connection with the notion of homomorphism, we

study how the images and inverse images of i-v fuzzy AB- subalgebras become i-v fuzzy AB- subalgebras.

"

2. Preliminaries

In this section, we give some basic definitions and preliminaries proprieties of AB-ideals and fuzzy AB-ideals in AB-algebra such that we include some elementary aspects that are necessary for this paper. **Definition 2.1([4-6])** Let *X* be a set with a binary operation * and a constant γ . Then $(X;*,\gamma)$ is called **an AB-algebra** if the following axioms satisfied: for all , $y, z \in X$,

(i)
$$((x * y) * (z * y)) * (x * z) = \gamma$$
,
(ii) $\gamma * x = \gamma$,

(iii)
$$x * \gamma = x$$

Example 2.2([4-6]) Let $X = \{\gamma, 1, 2, 3, 4\}$ in which (*) is defined by the following table:

*	γ	1	2	3	4
γ	γ	γ	γ	γ	γ
1	1	γ	1	γ	γ
2	2	2	γ	γ	γ
3	3	3	1	γ	γ
4	4	3	4	3	γ

Then $(X;*,\gamma)$ is an AB-algebra.

Remark 2.3([4-6]) Define a binary relation \leq on ABalgebra (X; *, γ) by letting $x \leq y$ if and only if $x * y = \gamma$.

Proposition 2.4([4-6]) In any AB-algebra $(X; *, \gamma)$, the following properties hold: for all $x, y, z \in X$,

- (1) $(x * y) * x = \gamma$.
- (2) (x * y) * z = (x * z) * y.
- (3) $(x * (x * y)) * y = \gamma$.

Proposition 2.5([4-6]) Let $(X; *, \gamma)$ be an ABalgebra. X is satisfies for all $x, y, z \in X$, (1) $x \leq y$ implies $x * z \leq y * z$. (2) $x \leq y$ implies $z * y \leq z * x$. **Definition 2.6([4-6]).** Let $(X; *, \gamma)$ be an ABalgebra and let S be a nonempty subset of X. S is called an **AB-subalgebra of** X if $x * v \in S$ whenever $x \in S$ and $y \in S$. **Definition 2.7([4-6]).** A nonempty subset *I* of an AB-algebra $(X; *, \gamma)$ is called **an AB-ideal of X** if it satisfies the following conditions: for any $x, y, z \in X$, $(I_1) \in I$, $(I_2)(x * y) * z \in I \text{ and } y \in I \text{ imply } x * z \in I.$ Proposition 2.9 ([4-6]). Every AB-ideal of ABalgebra is an AB-subalgebra. **Proposition 2.8 ([4-6]).** Let $\{I_i | i \in \Lambda\}$ be a family of AB-ideals of AB-algebra $(X; *, \gamma)$. The intersection of any set of AB-ideals of X is also an AB-ideal. **Definition 2.9** ([13,20,21]). Let $(X; *, \gamma)$ and (Y;*`, γ `) be nonempty sets. The mapping f:(X; * $(\gamma) \rightarrow (Y; *, \gamma)$ is called **a homomorphism** if it satisfies: f(x * y) = f(x) * f(y), for all $x, y \in X$. The set $\{x \in X \mid f(x) = \gamma'\}$ is called **the kernel of** f denoted by ker f. **Theorem 2.10** ([4-6]). Let $f: (X; *, \gamma) \to (Y;$ *`, γ `)be a homomorphism of an AB-algebra X into an AB-algebra *Y*, then : A. $f(\gamma) = \gamma'$. B. *f* is injective if and only if ker $f = \{\gamma\}$. C. $x \le y$ implies $f(x) \le f(y)$. **Theorem 2.11 ([4-6]).** Let $f: (X; *, \gamma) \to (Y;$ * `, γ `) be a homomorphism of an AB-algebra X into an AB-algebra *Y*, then: (F₁) If S is an AB-subalgebra of X, then f (S) is an AB-subalgebra of *Y*. (F₂) If *I* is an AB-ideal of *X*, then f (I) is an ABideal of Y, where f is onto. (F₃) If H is an AB-subalgebra of Y, then f^{-1} (H) is an AB-subalgebra of . (F₄) If *I* is an AB-ideal of *Y*, then f^{-1} (J) is an ABideal of X. (F₅) ker f is an AB-ideal of X. (F₆) Im(f) is an AB-subalgebra of Y. **Definition 2.12([27]).** Let $(X; *, \gamma)$ be a nonempty set, a fuzzy subset μ of X is a function $\mu: X \rightarrow \mu$ $[\gamma, 1].$ **Definition 2.13** ([27]). Let *X* be a nonempty set and μ be a fuzzy subset of $(X; *, \gamma)$, for $t \in [\gamma, 1]$, the set $L(\mu, t) = \mu_t = \{ x \in X | \mu(x) \ge t \}$ is called **a** level subset of μ .

Definition 2.14([7]). Let $(X; *, \gamma)$ be an ABalgebra, a fuzzy subset μ of X is called a fuzzy AB**subalgebra of X** if for all $x, y \in X$, $\mu(x * y) \geq 0$ $min \{\mu(x), \mu(y)\}.$ **Definition 2.15([7]).** Let $(X; *, \gamma)$ be an ABalgebra, a fuzzy subset μ of X is called **a fuzzy AB**ideal of X if it satisfies the following conditions, for all $x, y, z \in X$, $(FAB_1) \quad \mu(\gamma) \geq \mu(x),$ (FAB₂) $\mu(x * z) \ge \min \{\mu((x * y) * z), \mu(y)\}.$ **Proposition 2.17([7]).** The intersection of any set of fuzzy AB-ideals of 1-AB-algebra is also fuzzy AB-ideal. The union of any set of fuzzy AB-ideals of AB-2algebra is also fuzzy AB-ideal where is chain. Proposition 2.18([7]). Every fuzzy AB-ideal of ABalgebra is a fuzzy AB-subalgebra. **Proposition 2.19([7]).** 1- Let μ be a fuzzy subset of AB-algebra $(X; *, \gamma)$. If μ is a fuzzy AB-subalgebra of X if and only if for every $t \in [\gamma, 1]$, μ_t is an AB-subalgebra of X. 2- Let μ be a fuzzy AB-ideal of AB-algebra $(X;*,\gamma)$, μ is a fuzzy AB-ideal of X if and only if for every $t \in [\gamma, 1]$, μ_t is an AB-ideal of X. Lemma 2.20([7]). Let μ be a fuzzy AB-ideal of ABalgebra X and if $\leq y$, then $\mu(x) \geq \mu(y)$, for all $x, y \in X$ **Definition 2.21** ([27]). Let $f: (X; *, \gamma) \to (Y;$ * `, γ `) be a mapping nonempty sets X and Y respectively. If μ is a fuzzy subset of X, then the fuzzy subset β of Y defined by: $f(\mu)(y) =$ $\sup\{\mu(x): x \in f^{-1}(y)\}$ if $f^{-1}(y) = \{x \in X, f(x) = y\} \neq \emptyset$ lv otherwise is said to be the image of μ under f. Similarly if β is a fuzzy subset of , then the fuzzy subset $\mu = (\beta \circ f)$ of X (i.e the fuzzy subset defined by $\mu(x) = \beta(f(x))$, for all $x \in X$) is called the pre-image of β under f. **Definition 2.22** ([27]). A fuzzy subset μ of a set X has sup property if for any subset T of X, there exist $t_0 \in T$ such that $\mu(t_{\nu}) = \sup \{\mu(t) | t \in T\}.$ **Proposition 2.23** ([7]). Let $f: (X; *, \gamma) \rightarrow (Y;$ * `, γ `) be a homomorphism between AB-algebras X and *Y* respectively. 1- For every fuzzy AB-subalgebra β of Y, $f^{-1}(\beta)$ is a fuzzy AB-subalgebra of X. 2- For every fuzzy AB-subalgebra μ of X, f (μ) is a fuzzy AB-subalgebra of *Y*. 3- For every fuzzy AB-ideal β of Y, $f^{-1}(\beta)$ is a fuzzy AB-ideal of X. 4- For every fuzzy AB-ideal μ of X with sup property, $f(\mu)$ is a fuzzy AB-ideal of Y, where f is onto."

3. Interval-valued fuzzy AB-subalgebras of ABalgebra

In this section, we will introduce a new notion called interval-valued AB-subalgebras of AB-algebra and study several properties of it.

*	γ	1	2	3
γ	γ	γ	γ	γ
1	1	γ	1	γ
2	2	2	γ	γ
3	3	3	1	γ

Remark 3.1([8,11,23,26]).

An interval number is $\tilde{a} = [a^-, a^+]$, where $\gamma \le a^- \le a^+ \le 1$. Let I be a closed unit interval, (i.e., I = [γ , 1]). Let D[γ , 1] denote the family of all closed subintervals of I = [γ , 1], that is, D[γ , 1] = { $\tilde{a} = [a^-, a^+] | a^- \le a^+$, for $a^-, a^+ \in I$ }.

Now, we define what is known as refined minimum (briefly, rmin) of two element in $D[\gamma, 1]$.

Definition 3.2([8,11,23,26]).

We also define the symbols (\ge) , (\le) , (=), rmin and rmax in case of two elements in D[γ , 1]. Consider two interval numbers (elements numbers) $\tilde{a} = [a^-, a^+]$, $\tilde{b} = [b^-, b^+]$ in D[γ , 1]: Then (1) $\tilde{a} \ge \tilde{b}$ if and only if, $a^- \ge b^-$ and $a^+ \ge b^+$, (2) $\tilde{a} \le \tilde{b}$ if and only if, $a^- \ge b^-$ and $a^+ \ge b^+$, (3) $\tilde{a} = \tilde{b}$ if and only if, $a^- \ge b^-$ and $a^+ \ge b^+$, (4) rmin { \tilde{a} , \tilde{b} } = [min { a^-, b^- }, min { a^+, b^+ }], (5) rmax { \tilde{a} , \tilde{b} } = [max { a^-, b^- }, max { a^+, b^+ }],

Remark 3.3([8,11,23,26]).

It is obvious that $(D[\gamma, 1], \leq , \lor, \land)$ is a complete lattice with $\tilde{\gamma} = [\gamma, \gamma]$ as its least element and $\tilde{1} = [1, 1]$ as its greatest element. Let $\tilde{a}_i \in D[\gamma, 1]$ where $i \in \Lambda$

We define $r \inf_{i \in \Lambda} \tilde{a} = [r \inf_{i \in \Lambda} a^-, r \inf_{i \in \Lambda} a^+],$ $r \sup_{i \in \Lambda} \tilde{a} = [r \sup_{i \in \Lambda} a^-, r \sup_{i \in \Lambda} a^+].$

In what follows, let X denote an AB-algebra unless otherwise specified, we begin with the following definition.

Definition 3.4([8,11,23,26]).

An **interval-valued fuzzy subset** $\tilde{\mu}_A$ **on** X is defined as

$$\begin{split} \widetilde{\mu}_A &= \{<\mathbf{x}, \, [\mu_A^-(\mathbf{x}), \, \mu_A^+(\mathbf{x}) \,] > \mid \mathbf{x} \in X\} \text{ . Where } \mu_A^-(\mathbf{x}) \\ &\leq \mu_A^+(\mathbf{x}), \, \text{for all } \mathbf{x} \in \mathbf{X}. \text{ Then the ordinary fuzzy} \\ \text{subsets } \mu_A^-: \mathbf{X} \to [\gamma, 1] \text{ and } \mu_A^+: \mathbf{X} \to [\gamma, 1] \text{ are called} \end{split}$$

a lower fuzzy subset and an upper fuzzy subset of

$$\begin{split} \widetilde{\boldsymbol{\mu}}_{A} \text{ respectively.} \\ \text{Let } \widetilde{\boldsymbol{\mu}}_{A} \ (\mathbf{x}) = [\boldsymbol{\mu}_{A}^{-}(\mathbf{x}), \, \boldsymbol{\mu}_{A}^{+}(\mathbf{x})], \, \widetilde{\boldsymbol{\mu}}_{A} : \mathbf{X} \to \mathbf{D}[\gamma, 1], \\ \text{then } \mathbf{A} = \{ < \mathbf{x}, \, \widetilde{\boldsymbol{\mu}}_{A} \ (\mathbf{x}) > | \ \mathbf{x} \in \mathbf{X} \} . \end{split}$$

Definition 3.5. An i-v fuzzy subset A in AB-algebra $(X;*,\gamma)$ is called an **i-v fuzzy AB-subalgebra of** X if $\tilde{\mu}_A(x * y) \geq \text{rmin}\{\tilde{\mu}_A(x), \tilde{\mu}_A(y)\}$, for all $x, y \in X$.

Example 3.6. Let $X = \{\gamma, 1, 2, 3\}$ in which the operation (as in example (*) be define by the following table:

Then $(X; *, \gamma)$ is an AB-algebra. Define a fuzzy subset $\mu: X \to [\gamma, 1]$ by :

$$\mu(x) = \begin{cases} \gamma.7 & if \ x \in \{\gamma, 1\} \\ \gamma.3 & otherwise \end{cases}.$$

I₁={ γ ,1} is an AB-ideal of *X*. Routine calculation given that μ is a fuzzy AB-ideal of *X*. Define $\tilde{\mu}_A(\mathbf{x})$ as follows: $\tilde{\mu}_A(\mathbf{x}) = \begin{cases} [\gamma, 3, \gamma, 9] & if \ \mathbf{x} \in \{\gamma, 1\} \\ [\gamma, 1, \gamma, 6] & otherwise \end{cases}$.

It is easy to check that A is an i-v fuzzy AB-subalgebra.

Proposition 3.7. If A is an i-v fuzzy AB-subalgebra of X, then $\tilde{\mu}_A(\gamma) \ge \tilde{\mu}_A(x)$, for all $x \in X$. **Proof.** For all $x \in X$, we have $\tilde{\mu}_A(\gamma) = \tilde{\mu}_A(\gamma * x) \ge \min{\{\tilde{\mu}_A(\gamma), \tilde{\mu}_A(x)\}}$ $= \min{\{[\mu_A^-(\gamma), \mu_A^+(\gamma)], [\mu_A^-(x), \mu_A^+(x)]\}} = \min{\{[\mu_A^-(x), \mu_A^+(x)]\}} = \tilde{\mu}_A(x)$.

Proposition 3.8. Let A be an i-v fuzzy ABsubalgebra of X, if there exist a sequence { X_n} in X such that $\lim_{n\to\infty} \tilde{\mu}_A(x_n) = [1,1]$, then $\tilde{\mu}_A(\gamma) = [1, 1]$. **Proof.** By Proposition (3.7), we have $\tilde{\mu}_A(\gamma) \ge \tilde{\mu}_A(x)$, for all $x \in X$. Then $\tilde{\mu}_A(\gamma) \ge \tilde{\mu}_A(x_n)$, for every positive integer n, Consider the inequality $[1,1] \ge \tilde{\mu}_A(\gamma) \ge \lim_{n\to\infty} \tilde{\mu}_A(x_n) =$ [1,1]. Hence $\tilde{\mu}_A(\gamma) = [1,1]$.

Theorem 3.9. An i-v fuzzy subset $A = [\mu_A^-, \mu_A^+]$ of AB-algebra $(X;*,\gamma)$ is an i-v fuzzy AB-subalgebra of *X* if and only if μ_A^- and μ_A^+ are fuzzy AB-subalgebras of *X*.

Proof. If μ_A^- and μ_A^+ are fuzzy AB-subalgebras of , for any $x, y \in X$. Observe

 $\begin{array}{l} \mu_{A}^{-}\left(x\ast y\right)\geq\min\{\ \mu_{A}^{-}\left(x\right),\mu_{A}^{-}\left(y\right)\} \text{ and } \ \mu_{A}^{+}\left(x\ast y\right)\geq\min\{\ \mu_{A}^{+}\left(x\right),\mu_{A}^{+}\left(y\right)\}. \end{array}$

International Journal of Engineering and Information Systems (IJEAIS) ISSN: 2643-640X

Vol. 7 Issue 2, February - 2023, Pages: 1-6

$$\begin{split} \tilde{\mu}_A & (x * y) = [\mu_A^- & (x * y), \mu_A^+ & (x * y)] \\ & \geq [\min \{\mu_A^- & (x), \mu_A^- & (y)\} , \min \{\mu_A^+ & (x), \mu_A^+ & (y)\}] \\ & = [\min \{\mu_A^- & (x), \mu_A^+ & (x)\} , \min \{\mu_A^- & (y), \mu_A^+ & (y)]\} \\ & \geq \min \{[\mu_A^- & (x), \mu_A^+ & (x)], [\mu_A^- & (y), \mu_A^+ & (y)]\} \\ & = \min \{\tilde{\mu}_A & (x), \tilde{\mu}_A & (y)\} . \\ & \text{From what was mentioned above we can conclude that A is an i-v fuzzy AB-subalgebra of X. \\ & \text{Conversely, suppose that A is an i-v fuzzy AB-subalgebra of X. \\ & \text{Subalgebra of } X. \text{ For all } x, y \in X, \text{ we have } [\mu_A^- & (x * y), \mu_A^+ & (x * y)] = \tilde{\mu}_A & (x * y) \ge \min \{\tilde{\mu}_A & (x), \tilde{\mu}_A & (y)\} \\ & = [\min \{\mu_A^- & (x), \mu_A^+ & (x)\}, \min \{\mu_A^- & (y), \mu_A^+ & (y)\} \end{split}$$

(y)}]

= [min{ $\mu_{A}^{-}(x), \mu_{A}^{-}(y)$ }, min{ $\mu_{A}^{+}(x), \mu_{A}^{+}$

(y)

Therefore, $\mu_A^-(x * y) \ge \min\{\mu_A^-(x), \mu_A^-(y)\}$ and $\mu_A^+(x * y) \ge \min\{\mu_A^+(x), \mu_A^+(y)\}.$ [Hence, we get that μ_A^- and μ_A^+ are fuzzy AB-

subalgebras of X. \triangle

Theorem 3.10. Let $(X; *, \gamma)$ be an AB-algebra and A be an i-v fuzzy subset of X. Then A is an i-v fuzzy AB-subalgebra of X if and only if, the nonempty set \widetilde{U} (A;[δ_1, δ_2]):={ x \in X | $\widetilde{\mu}_A$ (x) \geq [δ_1, δ_2]} is an ABsubalgebra of X, for every $[\delta_1, \delta_2] \in D[\gamma, 1]$. We call \widetilde{U} (A; $[\delta_1, \delta_2]$) the i-v level AB-subalgebra of A. **Proof.** Assume that A is an i-v fuzzy AB-subalgebra of X and let $[\delta_1, \delta_2] \in D[\gamma, 1]$ be such that $x, y \in \tilde{U}$ $(A; [\delta_1, \delta_2])$, then

 $\tilde{\mu}_{A}(x * y) \geq \operatorname{rmin}\{\tilde{\mu}_{A}(x), \tilde{\mu}_{A}(y)\} \geq \operatorname{rmin}\{[\delta_{1}, \delta_{2}],$ $[\delta_1, \delta_2] \} = [\delta_1, \delta_2]$ and so $(x * y) \in \widetilde{U} (A; [\delta_1, \delta_2])$. Then $\widetilde{U}(A; [\delta_1, \delta_2])$ the i-v level AB-subalgebra of А.

Conversely, assume that \widetilde{U} (A; $[\delta_1, \delta_2]$) $\neq \emptyset$ is an AB-subalgebra of X, for every

 $[\delta_1, \delta_2] \in D[\gamma, 1]$. In the contrary, suppose that there exist $x_0, y_0 \in X$, such that

 $\tilde{\mu}_A(\mathbf{x}_0 * \mathbf{y}_0) \prec \operatorname{rmin}\{\tilde{\mu}_A(\mathbf{x}_0), \tilde{\mu}_A(\mathbf{y}_0)\}.$ Let $\tilde{\mu}_A(\mathbf{x}_0) = [\gamma_1, \gamma_2]$, $\tilde{\mu}_A(\mathbf{y}_0) = [\gamma_3, \gamma_4]$ and $\tilde{\mu}_A(\mathbf{x}_0 \ast$ $y_0) = [\delta_1, \delta_2].$ If

 $[\delta_1, \delta_2] \prec \min\{ [\gamma_1, \gamma_2], [\gamma_3, \gamma_4] \} = \min\{ \min\{\gamma_1, \gamma_3\}, \}$ min $\{\gamma_2, \gamma_4\}$.

So $\delta_1 < \min \{\gamma_1, \gamma_3\}$ and $\delta_2 < \min \{\gamma_2, \gamma_4\}$. Consider

$$[\lambda_1, \lambda_2] = \frac{1}{2} \{ \widetilde{\mu}_A (\mathbf{x}_0 \ast \mathbf{y}_0) + \mathbf{r} \min\{ \widetilde{\mu}_A (\mathbf{x}_0), \widetilde{\mu}_A \} \}$$

 (y_0) } We find that

$$[\lambda_1, \lambda_2] = \frac{1}{2} \{ [\delta_1, \delta_2] + r \min\{ [\gamma_1, \gamma_2], [\gamma_3, \gamma_4] \} \}$$

 $= \frac{1}{2} \{ (\delta_1 + \min\{\gamma_1, \gamma_3\}), (\delta_2 + \min\{\gamma_2, \gamma_4\} \} \}$

})}.

Therefore min $\{\gamma_1, \gamma_3\} > \lambda_1 = \frac{1}{2} (\delta_1 + \min\{\gamma_1, \gamma_3\})$

 $> \delta_1$,

$$\min \{\gamma_2, \gamma_4\} > \lambda_2 = \frac{1}{2} \ (\delta_2 + \min\{\gamma_2, \gamma_4\})$$

 $> \delta_2$.

Hence [min { γ_1 , γ_3 }, min { γ_2 , γ_4 }] > [λ_1 , λ_2] > [δ_1 . $\delta_2] = \widetilde{\mu}_A (x_0^* y_0) ,$

so that, $(x_0 * y_0) \notin \widetilde{U}(A; [\lambda_1, \lambda_2])$. which is a contradiction, since

 $\tilde{\mu}_A(x_0^*y_0) = [\gamma_1, \gamma_2] \ge [\min\{\gamma_1, \gamma_3\}, \min\{\gamma_2, \gamma_4\}]$ $> [\lambda_1, \lambda_2]$.

 $\widetilde{\mu}_A$ (y_0) =[γ_3, γ_4] ≥ [min{ γ_1, γ_3 }, min { γ_2, γ_4 }] > [λ_1, λ_2] , imply that

 $x_0, y_0 \in \widetilde{U}$ (A; $[\lambda_1, \lambda_2]$). Then

 $\tilde{\mu}_{A}(x * y) \geq \min{\{\tilde{\mu}_{A}(x), \tilde{\mu}_{A}(y)\}}, \text{ for all } x, y \in$ *X*. ∩

Theorem 3.13. Every AB-algebra of an AB-algebra $(X;*,\gamma)$ can be realized as an i-v level AB-subalgebra of an i-v fuzzy AB-subalgebra of X.

Proof. Let *Y* be an AB-subalgebra of *X* and let A be an i-v fuzzy subset on X defined by

 $\widetilde{\mu}_{A}(\mathbf{x}) = \begin{cases} [\alpha_{1}, \alpha_{2}] & if x \in Y \\ [\gamma, \gamma] & otherwind \end{cases}$ otherwise Where $\alpha_1, \alpha_2 \in (\gamma, 1]$ with $\alpha_1 < \alpha_2$. It is clear that \widetilde{U} $(A; [\alpha_1, \alpha_2]) = Y$. We show that A is an i-v fuzzy AB-subalgebra of X. Let $x, y, z \in X$, If x, $y \in Y$, then $(x * y) \in Y$, and therefore $\widetilde{\mu}_A (x * y) = [\alpha_1, \alpha_2] \ge \operatorname{rmin}\{[\alpha_1, \alpha_2], [\alpha_1, \alpha_2]\}$ =rmin{ $\tilde{\mu}_A(\mathbf{x}), \tilde{\mu}_A(\mathbf{y})$ }. If x, y \notin Y, then $\tilde{\mu}_A(x) = [\gamma, \gamma] = \tilde{\mu}_A(y)$ and so $\widetilde{\mu}_A (x * y) \ge [\gamma, \gamma] = \operatorname{rmin}\{[\gamma, \gamma], [\gamma, \gamma]\} \ge \operatorname{rmin}\{\widetilde{\mu}_A$ $(\mathbf{x}), \, \tilde{\mu}_A(\mathbf{y}) \} ,$ If $x \in Y$ and $y \notin Y$, then $\tilde{\mu}_A(x) = [\alpha_1, \alpha_2]$ and $\tilde{\mu}_A$

 $(y) = [\gamma, \gamma]$, then $\tilde{\mu}_A(x * y) \ge [\gamma, \gamma] = \operatorname{rmin}\{[\alpha_1, \alpha_2$],[γ , γ]} = rmin{ $\tilde{\mu}_A(\mathbf{x}), \tilde{\mu}_A(\mathbf{y})$ }.

Similarly for the case $x \notin Y$ and $y \in Y$ we get $\tilde{\mu}_A(x * y) \geq \min{\{\tilde{\mu}_A(x), \tilde{\mu}_A(y)\}}.$

Therefore A is an i-v fuzzy AB-subalgebra of X, the proof is complete. \triangle

Theorem 3.14. If A is an i-v fuzzy AB-subalgebra of AB-algebra $(X; *, \gamma)$, then the set $X_{\widetilde{M}_A} = \{x \in X | \tilde{\mu}_A\}$ (x)= $\tilde{\mu}_A(\gamma)$ } is an AB-subalgebra of X.

International Journal of Engineering and Information Systems (IJEAIS) ISSN: 2643-640X Vol. 7 Issue 2, February - 2023, Pages: 1-6

Proof. Let $x, y \in X_{\widetilde{M}_A}$. Then $\widetilde{\mu}_A(x) = \widetilde{\mu}_A(\gamma) = \widetilde{\mu}_A$ (y), and so $\widetilde{\mu}_A(x * y) \ge \min{\{\widetilde{\mu}_A(x), \widetilde{\mu}_A(y)\}} = \min{\{\widetilde{\mu}_A(\gamma), \widetilde{\mu}_A(\gamma)\}} = \widetilde{\mu}_A(\gamma)$. By Proposition (3.7), we get $\widetilde{\mu}_A(x * y) = \widetilde{\mu}_A(\gamma)$, that is $(x * y) \in X_{\widetilde{M}_A}$. Hence $X_{\widetilde{M}_A}$ is an AB-subalgebra of *X*. \bigtriangleup

4. Homomorphism of AB-algebra

Definition 4.1 ([26]). Let $f : (X; *, \gamma) \to (Y;$

*', γ') be a mapping from set *X* into a set *Y*. let B be an i-v fuzzy subset of *Y*. Then the inverse image of B, denoted by f^{-1} (B), is an i-v fuzzy subset of *X* with the membership function given by $\mu_{f^{-1}(B)}(x) = \tilde{\mu}_B (f(x))$, for all $x \in X$.

Proposition 4.2 ([26]). Let $f : (X; *, \gamma) \rightarrow (Y;$

* ', γ ') be a mapping from set X into a set , let $\widetilde{m} = [m^-, m^+]$,

and $\widetilde{n} = [n^-, n^+]$ be i-v fuzzy subsets of *X* and *Y* respectively. Then

(1) $f^{-1}(\tilde{n}) = [f^{-1}(n^{-}), f^{-1}(n^{+})],$ (2) $f(\tilde{m}) = [f(m^{-}), f(m^{+})].$

Theorem 4.3. Let $f : (X; *, \gamma) \to (Y; *', \gamma')$ be homomorphism from an AB-algebra *X* into an ABalgebra *Y*. If B is an i-v fuzzy AB-subalgebra of *Y*, then the pre-image f^{-1} (B) of B is an i-v fuzzy ABsubalgebra of *X*.

Proof. Since $B = [\mu_B^-, \mu_B^+]$ is an i-v fuzzy AB-subalgebra of *Y*, it follows that from Theorem (3.9),

that (μ_B^-) and (μ_B^+) are fuzzy AB-subalgebras of

Y. Using Proposition (2.23(1)), we know f^{-1} (μ_B^-)

and f^{-1} (μ_B^+) are fuzzy AB-subalgebras of X.

Hence by Proposition (4.2), we conclude that f^{-1} (B)

= $[f^{-1}(\mu_B), f^{-1}(\mu_B^+)]$ is an i-v fuzzy ABsubalgebra of X. \triangle

Definition 4.4 ([26]). Let $f : (X; *, \gamma) \to (Y; *', \gamma')$ be a mapping from a set X into a set Y. let A be a an i-v fuzzy set of X, then the image of A, denoted by f (A), is the i-v fuzzy subset of Y with membership function denoted by :

Theorem 5.5. Let f be an epimorphism from an AB-algebra X into an AB-algebra Y. If A is an i-v fuzzy AB-subalgebra of X with sup property, then f (A) of A is an i-v fuzzy AB-subalgebra of Y. **Proof.** Assume that $A = [\mu_A^-, \mu_A^+]$ is an i-v fuzzy AB-subalgebra of X. It follows that from Theorem (3.9), that (μ_A^-) and (μ_A^+) are fuzzy AB-subalgebras of X. Using Proposition (2.23(2)), that the images $f(\mu_A^-)$ and $f(\mu_A^+)$ are fuzzy AB-subalgebras of Y. Hence by Proposition (4.2), we conclude that $f(A) = [f(\mu_A^-), f(\mu_A^+)]$ is an i-v fuzzy AB-subalgebra of Y.

References

- A.T. Hameed and B.H. Hadi, Anti-Fuzzy AT-Ideals on AT-algebras, Journal Al-Qadisyah for Computer Science and Mathematics, vol.10, no.3(2018), 63-74.
- [2] A.T. Hameed and B.H. Hadi, Cubic Fuzzy ATsubalgebras and Fuzzy AT-Ideals on ATalgebra, World Wide Journal of Multidisciplinary Research and Development, vol.4, no.4(2018), 34-44.
- [3] A.T. Hameed and B.H. Hadi, Intuitionistic Fuzzy AT-Ideals on AT-algebras, Journal of Adv Research in Dynamical & Control Systems, vol.10, 10-Special Issue, 2018
- [4] A.T. Hameed and B.N. Abbas, AB-ideals of ABalgebras, Applied Mathematical Sciences, vol.11, no.35 (2017), pp:1715-1723.
- [5] A.T. Hameed and B.N. Abbas, Derivation of ABideals and fuzzy AB-ideals of AB-algebra, LAMBERT Academic Publishing, 2018.
- [6] A.T. Hameed and B.N. Abbas, On Some Properties of AB-algebras, Algebra Letters, vol.7 (2017), pp:1-12.
- [7] A.T. Hameed and B.N. Abbas, Some properties of fuzzy AB-ideal of AB-algebras, Journal of AL-Qadisiyah for Computer Science and Mathematics, vol.10, no. 1(2018), pp:1-7.
- [8] A.T. Hameed and E.K. Kadhim, Interval-valued IFAT-ideals of AT-algebra, Journal of Physics: Conference Series (IOP Publishing), 2020, pp:1-5.
- [9] A.T. Hameed and N.H. Malik, (2021), (β, α)-Fuzzy Magnified Translations of AT-algebra, Journal of Physics: Conference Series (IOP Publishing), 2021, pp:1-13.
- [10] A.T. Hameed and N.J. Raheem, (2020), Hyper SAalgebra, International Journal of Engineering and Information Systems (IJEAIS), vol.4, Issue 8, pp.127-136.
- [11] A.T. Hameed and N.J. Raheem, (2021), Intervalvalued Fuzzy SA-ideals with Degree (λ,κ) of SA-

Vol. 7 Issue 2, February - 2023, Pages: 1-6

algebra, Journal of Physics: Conference Series (IOP Publishing), 2021, pp:1-13.

- [12] A.T. Hameed, , R.A. Flayyih and S.H. Ali, (2021), Bipolar hyper Fuzzy AT-ideals of AT-Algebra, International Journal of Engineering and Information Systems (IJEAIS), vol.4, Issue 3, pp.145-152.
- [13] A.T. Hameed, A.H. Abed and I.H. Ghazi, (2020), Fuzzy β-magnified AB-ideals of AB-algebras, International Journal of Engineering and Information Systems (IJEAIS), vol.4, Issue 6, pp.8-13.
- [14] A.T. Hameed, A.S. abed and A.H. Abed, (2018), TL-ideals of BCC-algebras, Jour of Adv Research in Dynamical & Control Systems, Vol. 10, 11-Special Issue, 2018
- [15] A.T. Hameed, AT-ideals and Fuzzy AT-ideals of AT-algebras, Journal of Iraqi AL-Khwarizmi Society, vol.1, no.2, (2018).
- [16] A.T. Hameed, F. F. Kareem and S.H. Ali, Hyper Fuzzy AT-ideals of AT-algebra, Journal of Physics: Conference Series (IOP Publishing), 2021, pp:1-15.
- [17] A.T. Hameed, Fuzzy ideals of some algebras, PH. Sc. Thesis, Ain Shams University, Faculty of Sciences, Egypt, 2015.
- [18] A.T. Hameed, H.A. Faleh and A.H. Abed, (2021), Fuzzy Ideals of KK-algebra, Journal of Physics: Conference Series (IOP Publishing), 2021, pp:1-7.
- [19] A.T. Hameed, H.A. Mohammed and A.H. Abed, Anti-fuzzy AB-ideals of AB-algebras, (2022).
- [20] A.T. Hameed, I.H. Ghazi and A.H. Abed, (2019), Big Generalized fuzzy AB-Ideal of AB-algebras, Jour of Adv Research in Dynamical & Control Systems, vol. 11, no.11(2019), pp:240-249.
- [21] A.T. Hameed, I.H. Ghazi and A.H. Abed, (2020), Fuzzy α-translation AB-ideal of AB-algebras, Journal of Physics: Conference Series (IOP Publishing), 2020, pp:1-19.
- [22] A.T. Hameed, S. Mohammed and A.H. Abed, (2018), Intuitionistic Fuzzy KUS-ideals of KUS-Algebras, Jour of Adv Research in Dynamical & Control Systems, Vol. 10, 11-Special Issue, 2018, pp:154-160.
- [23] A.T. Hameed, S.H. Ali and , R.A. Flayyih, The Bipolar-valued of Fuzzy Ideals on AT-algebra, Journal of Physics: Conference Series (IOP Publishing), 2021, pp:1-9.
- [24] S.M. Mostafa, A.T. Hameed and A.H. Abed, Fuzzy KUS-ideals of KUS-algebra, Basra Journal of Science (A), vol.34, no.2 (2016), 73-84.
- [25] S.M. Mostafa, M.A. Abdel Naby, F. Abdel-Halim and A.T. Hameed, On KUS-algebra, International Journal of Algebra, vol.7, no.3(2013), 131-144.
- [26] S.M. Mostafa, M.A. Abdel Naby, F. Abdel-Halim and A.T. Hameed, Interval-valued fuzzy KUS-

ideal, IOSR Journal of Mathematics (IOSR-JM), vol.5, Issue 4(2013), 61-66.

[27] Zadeh L. A., **Fuzzy sets**, Inform. And Control, vol. 8 (1965), 338-353.