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Abstract— The aim of this paper is to introduce a new concept of lambda Ideal dense sets by using the concept of ideal 

and bitopological spaces (X,T,𝑻𝜶), in addition to studying some properties and generating theories for these sets.  
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1. INTRODUCTION  

 In this paper we will deals with several concepts that have a wide history in topology, one of These concepts is the ideal topological 

spaces, which was studied by Kuratowski .K. in 1933[16] and Vaidyanathaswamy.R in 1945[22] . After that,  concept was developed 

by presenting a different of studies related to the concept of dense sets . the other concept is the bitopological space defined by   Kelley 

in 1955 [18].   density concept introduced and studied in a different researcher and spaces  ,and one of these spaces is the ideal 

topological space ,like [4]. J.Dontchev ,M. Ganster in 1999 [15]defended a concept 𝑇∗- dense  as the subset of X satisfy the following 

condition 𝐶𝐿∗(A) =X and I- dense if  A*=X. 

 this paper deals with a new definition of dense set in ideal bitopological spaces with some of properties and relations.   

  

2. Elementary Materials   

2.1 Definition [𝟏𝟏]: 
A nonempty collection I of subsets of 𝑋 is said to be an ideal on 𝑋, if it satisfies the following two conditions: 

(A) 𝐴 ∈ 𝐼, and, 𝐵 ⊆ 𝐴 → 𝐵 ∈ 𝐼 (heredity). 

(B) 𝐴 ∈ 𝐼, and , 𝐵 ∈ 𝐼 ⟶ 𝐴 ∪ 𝐵 ∈ 𝐼 (finite additivity). 

2.2Definition [𝟏𝟕]: 
 Let (𝑋, 𝑇)  be a topological space with an ideal I on 𝑋 , a set operator (. )∗: 𝑝(𝑋) → 𝑝(𝑋) , defined as follow 𝐴∗(I, 𝑇) =
{𝑥 ∈ 𝑋: 𝐴 ∩ 𝑈 ∉ 𝐼, for every 𝑈𝑥 ∈ 𝑇}, Which is called the local function of 𝐴 with respect to 1 and T. 

2.3 Definition : 

Let (X,T) be a topological space, with an ideal I defined on X, and let A be a subset of X then:- 

1- If A*⊂A, then A is called A* - closed.[15] 

2-If A=A*, then A is called ∗ - perfect.[12] 

2.4 Definition [23]: 

An ideal I is called condense, iff T∩I== {Φ} 

2.5 Remark [15]: 

Every I-dense is T*-dense ,and then T- dense 

2.6 Definition [14]: 

A subset A of X is called 𝜆𝐼-open set iff for each x𝜖A and for each 𝛼𝐼-open set 𝑊𝑥 such that A⊆ 𝑊,satisfy that x∈{𝑈𝑥  ⊓ 𝑖𝑛𝑡𝑇(W)∉
𝐼, for each 𝑈𝑥 ∈ 𝑇} .The family of all 𝜆𝐼-open set denoted by 𝑂𝜆𝐼(𝑋). 
2.7 Definition [14]: 
Let (X, T, 𝑇𝛼 , 𝐼) be an ideal bi topological space then X is called true space if every open set is * - perfect 𝑠𝑒𝑡 . 
2.8 Proposition [14]: 

Let (X, T, 𝑇𝛼 , 𝐼) be an ideal bi topological space and let A is 𝜆𝐼 − 𝑜𝑝𝑒𝑛 𝑠𝑒𝑡 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑈𝜖𝑇 , 𝑈 𝑖𝑠 ∗
 − 𝑝𝑒𝑟𝑓𝑒𝑐𝑡 𝑠𝑒𝑡 , then A is 𝜆 − 𝑜𝑝𝑒𝑛 𝑠𝑒𝑡. 

2.9 Definition [14]:  
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Let (X,T,I) be an ideal topological space an operator (. )∗𝝀𝑰: 𝑃(𝑋)   →  𝑝(𝑋) called λI-local function of A with respect to I and λI-
open set is define as follow for any A ⊆ X. 
A∗λI (I, λI − open)={x∈ X:U⊓ A ∉ I, for every subset UX ∈ OλI(X)},when there is no chance for confusion A∗λI (I, λI − open) is 

denoted by A∗λI. 

2.10 Remark [14]: 

Let(X,T, Tα,I) be an ideal bitopological space and let A , B are sub set of X then 

1-If  I=P(X), then A∗λI(I)= {Φ}. 

2- If A⊆ 𝐵,then 𝐴∗𝜆𝐼 ⊆ 𝐵∗𝜆𝐼. 

2.11 Remark [14]: 

Let(X,T, Tα,I) be an ideal bitopological space and let A , B are sub set of X then 

1-  𝐴∗𝜆𝐼  ⊆ 𝐴∗ for each A⊆ 𝑋. If I is condense set. 
𝟐 − A∗ ⊆  A∗λI, for each A⊆ X. If x is true space. 

2.12 Remark [14]: 

Let(X,T, Tα,I) be an ideal Bi topological space and let A , B are sub set of X then 

If A∈ 𝐼, then 𝐴∗𝜆𝐼(I)= {Φ}. 

2.13 Proposition [14]:  

Let(X,T, Tα,I) be an ideal Bi topological space and let A , B are sub set of X then 

1- If I={ Φ}, then  A ⊂ 𝐴∗𝜆𝐼 . 
2- If I ={ Φ} , then A⊔ 𝐵 ⊂ 𝐴∗𝜆𝐼  ⊔ 𝐵∗𝜆𝐼 , 𝑎𝑙𝑠𝑜 𝐴 ⊓ 𝐵 ⊆ 𝐴∗𝜆𝐼  ⊓ 𝐵∗𝜆𝐼 . 
2.14 Definition [14]: 

Let(X,T, Tα,I) be an ideal Bi topological space for any A∈X we define: 

Cl∗λI(A)(I, T) = A ⊔ A∗λI. 
2.15 Theorem [14]: 

Let(X,T, Tα,I) be an ideal Bi topological space and let A , B are subset of X then :- 

1- Cl∗λI(A) ⊆ Cl(A). If  I is condense. 

2- Cl∗λI(A) ⊆  Cl∗(A) if X is true space. 
3-𝐴∗𝜆𝐼 ⊂ C𝑙∗𝜆𝐼(𝐴) 

4- Cl∗λI(X) = X. 

3. dense sets via 𝝀𝑰 −open set  

3.1 Definition : 

Let (X,T, Tα,I) be an ideal bitopological space and let A be subset of X is called 𝜆𝐼 − 𝑑𝑒𝑛𝑠𝑒 𝑠𝑒𝑡 iff 𝐴∗𝜆𝐼=X  

3.2 Example : 

Let X={a ,b, c} ,with a topology T={ X,Φ, {𝑎}}, and I={Φ},  

 then 𝜆𝐼 − 𝑑𝑒𝑛𝑠𝑒 𝑠𝑒𝑡={X ,{a ,b},{a ,c}} 

3.3Remark : 

By  remark (2.12) we have that if A∈ 𝐼, 𝑡ℎ𝑒𝑛 𝐴 𝑖𝑠 𝑛𝑜𝑡 𝜆𝐼 − 𝑑𝑒𝑛𝑠𝑒 𝑠𝑒𝑡 by the following example. 

3.4 Example : 

Let X={a ,b, c} ,with a topology T={ X,Φ, {𝑎}}, and I={Φ, {𝑏}, {𝑐}, {𝑏, 𝑐}} 

 then 𝜆𝐼 − 𝑑𝑒𝑛𝑠𝑒 𝑠𝑒𝑡={ Φ }. 

3.5 Remark : 

1- Φ 𝑖𝑠 𝑛𝑜𝑡 𝜆𝐼 − 𝑑𝑒𝑛𝑠𝑒 𝑠𝑒𝑡 . 

2- X is 𝑛𝑜𝑡 𝑛𝑐𝑒𝑠𝑠𝑎𝑟𝑦  𝜆𝐼 − 𝑑𝑒𝑛𝑠𝑒 𝑠𝑒𝑡 ,we show in the following example. 

3.6 Example : 

Let X={a ,b, c, d} ,with a topology T={ X,Φ, {a, b}, {c, d}}, and I={Φ, {a}} ,  

 then λI − dense set ={ Φ } clearly that  X and  Φ are  not λI − dense set. 

3.7 Remark : 
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Let (X,T, Tα,I) be an ideal Bi topological space and let A be subset of X if A is 𝑇∗-dense  and I-dense ,then A is not necessary 

λI − dense set by the following example. 

3.8 Example : 

Let X={a ,b, c} ,with a topology T={ X,Φ, {𝑎}} and I={Φ}, clearly that {a} is 𝑇∗-dense  and I-dense but not λI − dense set. 

3.9 Remark : 

Let (X,T, Tα,I) be an ideal Bi topological space and let A be subset of X if A is open , then is not necessary A is   λI − dense set 
by the following example. 

3.10 Example : 

Let X={a ,b, c} ,with a topology T={ X,Φ, {𝑎}} and I={Φ, {𝑏}, {𝑐}, {𝑏, 𝑐}} clearly that {a} is 𝑜𝑝𝑒𝑛   but not λI − dense set. 

3.11 Remark : 

Let (X,T, Tα,I) be an ideal Bi topological space ,then the following properties hold. 

1- Every λI − dense is I- dense set if (I is condense) . 

 2- Every λI − dense is 𝑇∗ − dense set if (I is condense) . 

3- Every λI − dense is T- dense set if (I is condense) . 

Proof 

1- Since  A is λI − dense set and A⊆ 𝑋 ,then 𝐴∗𝜆𝐼=X ,so by theorem ( 2.11)(1 ) and I is condense , then   

𝐴∗=X  , then A is  I- dense set . 

2- Since  A is λI − dense set and A⊆ 𝑋 ,then  𝐴∗𝜆𝐼=X ,so  by theorem (2.15)(3) and I is condense, then C𝑙∗(𝐴) = 𝑋 for each  A 

⊆ 𝑋  , then  A is 𝑇∗ − dense set. 

3- Since  A is λI − dense set and A⊆ 𝑋 ,then  𝐴∗𝜆𝐼=X ,so by theorem ( 2.15)(2)(3) and I is condense, then C𝑙∗𝜆𝐼(𝑋) = 𝑋 and by 

theorem(2.15)(1)  then C𝑙(𝐴) = 𝑋  , then  A is 𝑇 − dense set. 

3.12 Proposition : 

Let (X,T, Tα,I) be an ideal Bi topological space and let A,B are be subset of X , then the following  properties  hold 

1- If A , B are  λI − dense set ,then A⊔ 𝐵 is λI − dense set . 

2- If A , B are  λI − dense set ,then A⊓ 𝐵 is not necessary λI − dense set . 

3- If I⊆ 𝐽, 𝑡ℎ𝑒𝑛 𝜆𝐼 − 𝑑𝑒𝑛𝑠𝑒 set  and 𝜆𝐽 − 𝑑𝑒𝑛𝑠𝑒 set  are indpented . 

Proof 

1-Since A , B  are λI − dense set ,then 𝐴∗𝜆𝐼=X , 𝐵∗𝜆𝐼=X if possible that x∉ (𝐴 ⊔ 𝐵)∗𝜆𝐼 ,then  there exist λI − open set H , such 

that H⊓ (𝐴 ⊔ 𝐵) ∈ 𝐼, 𝑎𝑛𝑑 𝑡ℎ𝑒𝑛 𝐻 ⊓ 𝐴 ∈ 𝐼 𝑎𝑛𝑑 𝑡ℎ𝑖𝑠 𝑖𝑠 contradiction , also H⊓ 𝐵 ∈ 𝐼, and this is contradiction . 

2- Let X={a ,b, c} ,with a topology T={ X,Φ, {𝑎}}, and I={Φ}, clearly that A={a,b} and B={a,c} is λI − dense set but {a} is not 

𝜆𝐼 − 𝑑𝑒𝑛𝑠𝑒 𝑠𝑒𝑡 . 

3- Let X={a ,b, c} ,with a topology T={ X,Φ, {𝑎}}, I={Φ} 𝑎𝑛𝑑 𝐽 = {𝛷, {𝑏}, {𝑐}, {𝑏, 𝑐}}, 𝑡ℎ𝑒𝑛   

 𝜆𝐼 − 𝑑𝑒𝑛𝑠𝑒 set= {X, {a,b},{a,c}},  while  𝜆𝐽 − 𝑑𝑒𝑛𝑠𝑒 set  ={Φ}. 
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