Some properties of density related to lambda ideal open sets

Hawraa S. Abu Hamad Al-Ali1 and Yiezi K. Al-Talkany 2

1Faculty of Computer Science and Maths : dept. of mathematics University of kufa Najaf, Iraq e- hauraas.alali@uokufa.edu.iq 2Faculty of Education : dept. of mathematics University of kufa Najaf, Iraq e- yiezik.Altalkany@uokufa.edu.iq

Abstract— The aim of this paper is to introduce a new concept of lambda Ideal dense sets by using the concept of ideal and bitopological spaces (X,T,T^{α}) , in addition to studying some properties and generating theories for these sets.

Keywords— ideal topological space, λI -open sets, λI – local function, λI -dense sets.

1. INTRODUCTION

In this paper we will deals with several concepts that have a wide history in topology, one of These concepts is the ideal topological spaces, which was studied by Kuratowski .K. in 1933[16] and Vaidyanathaswamy.R in 1945[22]. After that, concept was developed by presenting a different of studies related to the concept of dense sets. the other concept is the bitopological space defined by Kelley in 1955 [18]. density concept introduced and studied in a different researcher and spaces ,and one of these spaces is the ideal topological space ,like [4]. J.Dontchev ,M. Ganster in 1999 [15] defended a concept T^* - dense as the subset of X satisfy the following condition $CL^*(A) = X$ and I- dense if $A^*=X$.

this paper deals with a new definition of dense set in ideal bitopological spaces with some of properties and relations.

2. Elementary Materials

2.1 Definition [11]:

A nonempty collection I of subsets of X is said to be an ideal on X, if it satisfies the following two conditions:

(A) $A \in I$, and, $B \subseteq A \rightarrow B \in I$ (heredity).

(B) $A \in I$, and , $B \in I \rightarrow A \cup B \in I$ (finite additivity).

2.2Definition [17]:

Let (X,T) be a topological space with an ideal I on X, a set operator $(.)^*: p(X) \to p(X)$, defined as follow $A^*(I,T) = \{x \in X : A \cap U \notin I, \text{ for every } U_x \in T\}$, Which is called the local function of A with respect to 1 and T.

2.3 Definition :

Let (X,T) be a topological space, with an ideal I defined on X, and let A be a subset of X then:-

1- If $A^* \subset A$, then A is called A^* - closed.[15]

2-If A=A*, then A is called * - perfect.[12]

2.4 Definition [23]:

An ideal I is called condense, iff $T \cap I = {\Phi}$

2.5 Remark [15]:

Every I-dense is T*-dense ,and then T- dense

2.6 Definition [14]:

A subset A of X is called λI -open set iff for each $x \in A$ and for each α_I -open set W_x such that $A \subseteq W$, satisfy that $x \in \{U_x \cap int_T(W) \notin I\}$, for each $U_x \in T\}$. The family of all λI -open set denoted by $O_{\lambda I}(X)$.

2.7 Definition [14]:

Let (X, T, T^{α}, I) be an ideal bit opological space then X is called true space if every open set is * - perfect set .

2.8 Proposition [14]:

Let (X, T, T^{α} , I) be an ideal bit opological space and let A is λI – open set such that for every $U \epsilon T$, U is *

- perfect set, then A is λ - open set.

2.9 Definition [14]:

Let (X,T,I) be an ideal topological space an operator $(.)^{*\lambda I}: P(X) \to p(X)$ called λ I-local function of A with respect to I and λ I-open set is define as follow for any A \subseteq X.

 $A^{*\lambda I}$ (I, λI – open)={x \in X: U \sqcap A \notin I, for every subset $U_X \in O_{\lambda I}(X)$ }, when there is no chance for confusion $A^{*\lambda I}$ (I, λI – open) is denoted by $A^{*\lambda I}$.

2.10 Remark [14]:

Let(X,T, T^{α} ,I) be an ideal bitopological space and let A , B are sub set of X then

1-If I=P(X), then $A^{*\lambda I}(I) = \{\Phi\}$.

2- If $A \subseteq B$, then $A^{*\lambda I} \subseteq B^{*\lambda I}$.

2.11 Remark [14]:

Let(X,T, T^{α} ,I) be an ideal bitopological space and let A , B are sub set of X then

1- $A^{*\lambda I}$ ⊆ A^* for each A⊆ *X*. If I is condense set.

 $\mathbf{2} - \mathbf{A}^* \subseteq \mathbf{A}^{*\lambda \mathbf{I}}$, for each $\mathbf{A} \subseteq \mathbf{X}$. If x is true space.

2.12 Remark [14]:

Let(X,T, T^{α},I) be an ideal Bi topological space and let A, B are sub set of X then If A $\in I$, then $A^{*\lambda I}(I) = \{\Phi\}$.

2.13 Proposition [14]:

Let(X,T, T^{α} ,I) be an ideal Bi topological space and let A , B are sub set of X then

1- If I={ Φ }, then A $\subset A^{*\lambda I}$.

2- If I = { Φ }, then A $\sqcup B \subset A^{*\lambda I} \sqcup B^{*\lambda I}$, also $A \sqcap B \subseteq A^{*\lambda I} \sqcap B^{*\lambda I}$.

2.14 Definition [14]:

Let(X,T, T^{α} ,I) be an ideal Bi topological space for any A \in X we define:

 $\mathrm{Cl}^{*\lambda \mathrm{I}}(\mathrm{A})(\mathrm{I},\mathrm{T}) = \mathrm{A} \sqcup \mathrm{A}^{*\lambda \mathrm{I}}.$

2.15 Theorem [14]:

Let(X,T, T^{α} ,I) be an ideal Bi topological space and let A, B are subset of X then :-1- $Cl^{*\lambda I}(A) \subseteq Cl(A)$. If I is condense. 2- $Cl^{*\lambda I}(A) \subseteq Cl^{*}(A)$ if X is true space. 3- $A^{*\lambda I} \subset Cl^{*\lambda I}(A)$ 4- $Cl^{*\lambda I}(X) = X$.

3. dense sets via λI – open set

3.1 Definition :

Let (X,T, T^{α} ,I) be an ideal bitopological space and let A be subset of X is called λI – dense set iff $A^{*\lambda I} = X$

3.2 Example :

Let X={a,b, c}, with a topology T={ X, Φ , {a}}, and I={ Φ },

then λI – dense set={X,{a,b},{a,c}}

3.3Remark :

By remark (2.12) we have that if $A \in I$, then A is not λI – dense set by the following example.

3.4 Example :

Let X={a,b, c}, with a topology T={ X, Φ , {a}}, and I={ Φ , {b}, {c}, {b, c}}

then λI – *dense set*={ Φ }.

3.5 Remark :

1- Φ is not λI – dense set .

2- X is not neessary λI – dense set, we show in the following example.

3.6 Example :

Let $X = \{a, b, c, d\}$, with a topology $T = \{X, \Phi, \{a, b\}, \{c, d\}\}$, and $I = \{\Phi, \{a\}\}$,

then λI – dense set ={ Φ } clearly that X and Φ are not λI – dense set.

3.7 Remark :

Let (X,T, T^{α},I) be an ideal Bi topological space and let A be subset of X if A is T^* -dense and I-dense, then A is not necessary λI – dense set by the following example.

3.8 Example :

Let X={a,b, c}, with a topology T={ X, Φ , {a}} and I={ Φ }, clearly that {a} is T^* -dense and I-dense but not λI – dense set.

3.9 Remark :

Let (X,T, T^{α},I) be an ideal Bi topological space and let A be subset of X if A is open, then is not necessary A is λI – dense set by the following example.

3.10 Example :

Let X={a,b, c}, with a topology T={ X, Φ , {a}} and I={ Φ , {b}, {c}, {b, c}} clearly that {a} is *open* but not λ I – dense set.

3.11 Remark :

Let (X,T, T^{α},I) be an ideal Bi topological space ,then the following properties hold.

1- Every λI – dense is I- dense set if (I is condense).

2- Every λI – dense is T^* – dense set if (I is condense).

3- Every λI – dense is T- dense set if (I is condense) .

Proof

1- Since A is λI – dense set and A $\subseteq X$, then $A^{*\lambda I} = X$, so by theorem (2.11)(1) and I is condense, then

 $A^* = X$, then A is I-dense set.

2- Since A is λI – dense set and A $\subseteq X$, then $A^{*\lambda I} = X$, so by theorem (2.15)(3) and I is condense, then $Cl^*(A) = X$ for each A $\subseteq X$, then A is T^* – dense set.

3- Since A is λI – dense set and A $\subseteq X$, then $A^{*\lambda I} = X$, so by theorem (2.15)(2)(3) and I is condense, then $Cl^{*\lambda I}(X) = X$ and by theorem(2.15)(1) then Cl(A) = X, then A is T – dense set.

3.12 Proposition :

Let (X,T,T^{α},I) be an ideal Bi topological space and let A,B are be subset of X, then the following properties hold

1- If A, B are λI – dense set, then A $\sqcup B$ is λI – dense set.

2- If A, B are λI – dense set, then A $\sqcap B$ is not necessary λI – dense set.

3- If $I \subseteq J$, then $\lambda I - dense$ set and $\lambda J - dense$ set are indpented.

Proof

1-Since A, B are λI – dense set ,then $A^{*\lambda I} = X$, $B^{*\lambda I} = X$ if possible that $x \notin (A \sqcup B)^{*\lambda I}$, then there exist λI – open set H, such that $H \sqcap (A \sqcup B) \in I$, and then $H \sqcap A \in I$ and this is contradiction, also $H \sqcap B \in I$, and this is contradiction.

2- Let X={a,b, c}, with a topology T={ X, Φ , {a}}, and I={ Φ }, clearly that A={a,b} and B={a,c} is λI – dense set but {a} is not λI – dense set .

3- Let X={a,b,c}, with a topology T={ X, Φ , {a}}, I={ Φ } and J = { Φ , {b}, {c}, {b, c}}, then

 λI - dense set= {X, {a,b}, {a,c}}, while λJ - dense set ={ Φ }.

4. REFERENCES

[1] Al Talkany, Y.K, (2007). "Study Special Case of bitopological Spaces" Journal ofbabylon, No. 17.

[2]Abd El-Monsef, M. E., Nasef, A. A., Radwan, A. E., & Esmaeel, R. B. (2014)., On α-open sets with respect to an ideal,. Journal of Advances studies in Topology, 5(3), 1-9.

[3] Ali Abdulsada, D,AI-Swidi,L.A.A.(2020). "Compatibility of center Topology", IOP conference Series : Materials Science and Engineering 928(4).

[4] Al Talkany, Y. K. M., & Al-Swidi, L. A. (2021). New concepts of dense set in i-topological space and proximity space. *Turkish Journal of Computer and Mathematics Education*, *12*(1S), 685-690.

[5] Al-Swidi, L. A., & AL-Rubaye, M. (2014). New classes of separation axiom via special case of local function. international Journal of mathematical analysis, 8(23). <u>http://dx.doi.org/10.12988/ijma.2014.45130</u>

[6] Altalkany, Y. K., & Al-Swidi, L. A. A. (2021). On Some Types of Proximity ψ -set. In Journal of Physics: Conference Series (Vol. 1963, No. 1, p. 012076). IOP Publishing.

[7] Ali, R. D., Al-Swidi, L. A., & Hadi, M. H. (2022). On fuzzy intense separation axioms in fuzzy ideal topological space. Journal of Interdisciplinary Mathematics, 25(5), 1357-1363. <u>https://doi.org/10.1080/09720502.2022.2040855</u>

[8] Al Talkany, Y. K., & Al-Swidi, L. A. (2022). On proximity focal congested sets in i-topological proximity spaces. Journal of Interdisciplinary Mathematics, 25(5), 1415-1420. <u>https://doi.org/10.1080/09720502.2022.2046337</u>

[9] Al-Swidi, L. A., Abdalbaqi, L. S., & Hasan Hadi, M. (2022). New frontier set in ideal topological spaces. Journal of Interdisciplinary Mathematics, 25(5), 1461-1466.: <u>https://doi.org/10.1080/09720502.2022.2046338</u>

[10] Abdalbaqi,L.S., Hadi, M.H.,Al-Swidi, L.A.,(2022) "On condensed set in ideal topologicalspaces" Mathematics ,pp1421-s1425https://doi.org/10.1080/09720502.2022.2046341

[11] Dragan Jankovic and T. R.Hamlett,"New Topologies from Old Via Ideals", The American Mathemtical Monthly. Vol.97. No. 4 (Apr., 1990), pp. 295-310. <u>https://doi.org/10.1080/00029890.1990.11995593</u>

[12] E. Hewitt(1943), A problem of set -theoretic topology ,Duke Math. J., Vol.10,(1943),pp.309-333.

[13] Hawraa. S. Abu Hamad Al-Ali, Yiezi .k .Al- Talkany ,On some properties of lambda ideal open sets, Journal of Interdisciplinary Mathematics. (to appear) .

[14] Hawraa. S. Abu Hamad Al-Ali, Yiezi .k .Al- Talkany, Special Case of local function in ideal bi topological spaces

, International Journal of Engineering and Information Systems (IJEAIS). (to appear).

[15] J. Dontchev, M Ganster, D. Rose.(1999), Ideal resolvability, Topology Appl. Vol. pp. 1-16.

[16] Kuratowski. K.(1933), Topology I, Warszawa,

[17] Kuratowski. K.(1966), Topology , Academic Press, New York .

[18] Kelley ,J. L. (1955) . General Topology ,D . Van Nastrand Company ,Inc.

[19] Kelly.J.C.(1963), Bi topological spaces, Proc. London Math., no.3, 71-89

[20] Lashien .E.F, A.A.Nasef.(1991), "On ideals in general topology" J.Sci. , 19-38

[21] Njästad, Olav.(1965) "On some classes of nearly open sets." Pacific journal of mathematics .961-970. : 10.2140/pjm.15.961

[22] R. Vaidyanathaswamy .(1945), The localization theory in set topology , Proc. Indian Acad . Sci. Vol , pp 51-61

[23] V.R. Devi, D. Sivaraj, T.T. Chelvam.(2005), Codense and completely condense ideals, Acta Math. Hungar.Vol.108, pp.197-205.

[24] W.W.Comfort and L.Feng.(1993), The union of resolvable spaces is resolvable, Math.Japon., Vol.38, pp.413-414.