ζ -Dot Cubic AB-subalgebras of AB-algebra

Dr. Areej Tawfeeq Hameed¹, Dr. Ahmed Hamzah Abed², Huda Adnan Mohammed³

¹Department of Mathematics, Faculty of Education for Girls, University of Kufa, Najaf, Iraq. E-mail: <u>areej.tawfeeq@uokufa.edu.iq</u> ²College of Islamic Sciences, AL Iraqia University, Baghdad, Iraq. E-mail: <u>ahmedh.abed@uokufa.edu.iq</u> ³Department of Mathematics, Faculty of Education for Girls, University of Kufa, Najaf, Iraq. E-mail: <u>areej238@gmail.com</u>

Abstract: The paper introduces the concepts of ζ -dot cubic AB-subalgebras in AB-algebras, and then explores their many features. They are defined, and both the image and inverse image of them in AB-algebras are investigated.

Keywords—AB-algebras, ζ-dot cubic AB-algebra, ζ-dot cubic AB-subalgebras, homomorphism of AB-algebra.

1. INTRODUCTION

K. Is'eki and S. Tanaka [22] looked into the ideals and congruences of BCK-algebras. KUS-algebras are a novel type of algebraic structure that were introduced and explored by S. M. Mostafa and coworkers [26]. L.A. Zadeh [30] first proposed the idea of a fuzzy set. Using the fuzzy set notion, O.G. Xi [28] described some of the characteristics of BCKalgebras. The concept of cubic ideals in BCK-algebras was proposed by Y. B. Jun and coauthors [23], who went on to examine some of the features associated with these ideals. Cubic KUS-ideals of KUS-algebra were first described by A.T. Hameed et al. in [21], and their homomorphisms were subsequently investigated. The concept of cubic AT-ideals of AT-algebra was first presented and some of its features were described by A.T. Hameed and coauthors in [1]. Here, we shall define the notion of ζ -dot cubic of AB- subalgebra, and we study some of the relations, theorems, propositions and examples of ζ -dot cubic of AB- subalgebra of AB-algebra. We define and investigate the homomorphic and inverse images of AB-algebraic cubic AB-subalgebra

2. Preliminaries

In this section, we introduce the concepts of AB-ideals and fuzzy AB-ideals in AB-algebra and provide some definitions and preliminary properties of these concepts.

Definition 2.1([2-4]) Let *X* be a set with a binary operation * and a constant 0. Then $(X;*,\aleph)$ is called **an AB-algebra** if the following axioms satisfied: for all m, y, x $\in X$,

(i)
$$((m * y) * (x * y)) * (m * x) = \aleph$$
,

(ii)
$$\aleph m = \aleph$$
,

(iii) $m * \aleph = m$,

Example 2.2([2-4]) Let $X = \{\aleph, 1, 2, 3, 4\}$ in which (*) is defined by the following table:

*	х	1	2	3	4
х	х	х	х	х	х

1	1	х	1	х	х
a 2	2	2	ж	х	х
3	3	3	1	ж	х
4	4	3	4	3	х

Then $(X;*,\aleph)$ is an AB-algebra.

Remark 2.3([2-4]) Define a binary relation \leq on ABalgebra (X; *, \aleph) by letting $x \leq y$ if and only if x * y = 0.

Proposition 2.4([2-4]) In any $AB - algebra(X;*,\aleph)$, the following properties hold: for all $x, y, z \in X$,

- (1) (m * y) * m = 0.
- (2) (m * y) * x = (m * x) * y.
- (3) (m * (m * y)) * y = 0.

Proposition 2.5([2-4]) Let $(X; *, \aleph)$ be an AB-algebra. X is satisfies for all m, y, $x \in X$,

(1) $m \le y$ implies $m^*x \le y^*x$.

(2) $m \le y$ implies $x^*y \le x^*m$.

Definition 2.6([2-4]). Let $(X; *, \aleph)$ be an AB – algebra and let *S* be a nonempty subset of *X*. *S* is called an **AB-subalgebra of** *X* if $m * y \in S$ whenever $m \in S$ and $y \in S$.

Definition 2.7([2-4]). A nonempty subset *I* of an AB – algebra (X; *, \aleph) is called **an AB-ideal of X** if it satisfies the following conditions: for any m, y,x \in X, (I₁) $\aleph \in I$,

 (I_2) $(m * y)*x \in I$ and $y \in I$ imply $m*x \in I$.

Proposition 2.9 ([2-4]). Every AB – ideal of AB – algebra is an AB – subalgebra.

Proposition 2.8 ([2-4]). Let $\{I_i \mid i \in \Lambda\}$ be a family of ABideals of AB-algebra $(X; *, \aleph)$. The intersection of *any set of AB – ideals of X is also an* AB-ideal. **Definition 2.9 ([13,14]).** Let $(X; *, \aleph)$ and $(Y; *', \aleph')$ *be nonempty sets. The mapping* $f:(X; *, \aleph) \to (Y;$ $*', \aleph')$ is called **a homomorphism** if it satisfies: f(m*y) = f(m) *'f(y), for all $m, y \in X$. The set $\{m \in X \mid f$

 $(m) = \aleph$ '} is called **the kernel of f** denoted by ker f.

International Journal of Academic and Applied Research (IJAAR) ISSN: 2643-9603

Vol. 7 Issue 3, March - 2023, Pages: 1-7

Theorem 2.10 ([2-4]). Let $f:(X; *, \aleph) \to (Y; *', \aleph)$ `)be a homomorphism of an AB – algebra X into an AB – algebra Y, then : A. $f(\aleph) = \aleph'$. B. f is *injective* if and only if ker $f = \{\aleph\}$. C. $m \le y$ implies $f(m) \le f(y)$. **Theorem 2.11 ([2-4]).** Let $f:(X; *, \aleph) \to (Y; *', \aleph)$ `) be a homomorphism of an AB – algebra X into an AB –algebra Y, then: (F₁) If S is an AB-subalgebra of X, then f(S) is an AB – subalgebra of Y. (F₂) If I is an AB-ideal of X, then f (I) is an AB ideal of Y, where f is onto. (F₃) If H is an AB – subalgebra of Y, then f^{-1} (H) is an AB-subalgebra of X. (F₄) If J is an AB-ideal of Y, then f^{-1} (J) s an AB $ideal \ of \ X$. (F₅) ker f is an AB-ideal of X. (F₆) Im(f) is an AB – subalgebra of Y. **Definition 2.12([30]).** Let (X; *, 8) be a nonempty set, a fuzzy subset μ of X is a function $\mu: X \rightarrow [\aleph, 1].$ Definition 2.13 ([29]). Let X be a nonempty set and μ be a fuzzy subset of (X; *, \aleph), for $t \in [\aleph, 1]$, the set $L(\mu, t) = \mu_t = \{m \in X \mid t \in X\}$ $\mu(m) \ge t$ is called **a level subset of** μ . **Definition 2.14([5]).** Let $(X; *, \aleph)$ be an AB – algebra, a fuzzy subset μ of X is called **a fuzzy** AB *subalgebra* of *X* if for all m, $y \in X$, $\mu(m^*y) \ge \min \{\mu\}$ (m), μ (y) $\}$. **Definition 2.15([5]).** Let $(X; *, \aleph)$ be an AB-algebra, a fuzzy subset μ of X is called **a fuzzy** AB ideal of X if it satisfies the following conditions, for all $m, y, z \in X$, $(FAB_1) \quad \mu(\aleph) \geq \mu(m),$ (FAB₂) μ (m*x) \geq min { μ ((m * y)*x), μ (y)}. Proposition 2.17([5]). 1-The intersection of any set of fuzzy AB ideals of AB-algebra is also fuzzy AB-ideal. 2-The union of any set of fuzzy AB-ideals of AB-algebra is also fuzzy AB – ideal where is chain. **Proposition 2.18([5]).** Every fuzzy AB – ideal of AB – algebra is a fuzzy AB-subalgebra. **Proposition 2.19([5]).** 1- Let μ be a fuzzy subset of AB – algebra (X; *, \aleph). If μ is a fuzzy AB – subalgebra of X if and only if for every $t \in [\aleph, 1], \mu_t$ is an AB-subalgebra of X. 2- Let μ be a fuzzy AB-ideal of AB-algebra (X;*, \aleph), μ is a fuzzy AB – ideal of X if and only if for every $t \in [\aleph]$,1], μ_t is an AB-ideal of X. Lemma 2.20([5]). Let µ be a fuzzy AB-ideal of AB-algebra X and if $m \le y$, then $\mu(m) \ge \mu(y)$, for all $m, y \in X$. **Definition 2.21 ([33]).** Let $f: (X; *, \aleph) \rightarrow (Y; *)$ $, \aleph$) be a mapping nonempty sets X and Y respectively. If μ is a fuzzy subset of X,

then the fuzzy subset β of Y defined by: $f(\mu)(y) =$ $\{\sup\{\mu(x): x \in f^{-1}(y)\}\$ *if* $f^{-1}(y) = \{x \in X, f(x) = y\} \neq \emptyset$ lx l otherwise is said to be **the image of** μ **under** f. Similarly if β is a fuzzy subset of Y, then the fuzzy subset $\mu = (\beta \circ f)$ of X (i.e the fuzzy subset defined by μ (m) = β (f (m)), for all $x \in X$ is called the pre-image of β under f. **Definition 2.22 ([29]).** A fuzzy subset μ of a set X has sup property if for any subset T of X, there exist $t_0 \in T$ such that $\mu(t_{\aleph}) =$ $\sup \{\mu(t) | t \in T\}.$ **Proposition 2.23** ([5]). Let $f: (X; *, \aleph) \rightarrow (Y; *, \aleph)$ be a homomorphism between AB - algebras X and Y respectively. 1 – For every fuzzy AB – subalgebra β of Y, $f^{-1}(\beta)$ is a fuzzy AB – subalgebra of X. 2- For every fuzzy AB – subalgebra μ of X, $f(\mu)$ is a fuzzy AB – subalgebra of Y. 3- For every fuzzy AB – ideal β of Y, $f^{-1}(\beta)$ is a fuzzy AB – ideal of X. 4- For every fuzzy AB – ideal μ of X with sup property, $f(\mu)$ is a fuzzy AB – ideal of Y, where f is onto. Now, we will recall the concept of interval-valued fuzzy subsets. **Remark 2.24[1,8].** An interval number is $\tilde{a} = [a^-, a^+]$, where $\aleph \leq a^{-} \leq a^{+} \leq 1$. Let I be a closed unit interval, (i.e., I = [×, 1]). Let D[X, 1] denote the family of all closed subintervals of $I = [\aleph, 1]$, that is, $D[\aleph, 1] = \{ \tilde{a} = [a^-, a^+] | a^- \le a^+, \text{ for } a^-, a^+ \in I \}$ Now, we define what is known as refined minimum (briefly, rmin) of two element in $D[\aleph, 1]$. **Definition 2.25[1,7].** We also define the symbols (\geq) , (\leq) , (=), rmin and rmax in case of two elements in $D[\aleph]$, 1] . Consider two interval numbers (elements numbers) $\tilde{a} = [a^-, a^+], \tilde{b} = [b^-, b^+]$ in D[\aleph , 1] : Then (1) $\tilde{a} \ge \tilde{b}$ if and only if, $a^- \ge b^-$ and $a^+ \ge b^+$, (2) $\tilde{a} \leq \tilde{b}$ if and only if, $a^{-} \leq b^{-}$ and $a^{+} \leq b^{+}$, (3) $\tilde{a} = \tilde{b}$ if and only if, $a^- = b^-$ and $a^+ = b^+$, (4) rmin { \tilde{a} , \tilde{b} } = [min { a^{-} , b^{-} }, min { a^{+} , b^{+} }], (5) rmax { \tilde{a}, \tilde{b} } = [max { a^-, b^- }, max { a^+, b^+ }], **Remark2.26[1,7].** It is obvious that $(D[\aleph, 1], \leq, \vee, \wedge)$) is a complete lattice with $\widetilde{\aleph} = [\aleph, \aleph]$ as its least element and $\tilde{1} = [1, 1]$ a sits greatest element. Let $\tilde{a}_i \in D[\aleph, 1]$ where $i \in \Lambda$. We define $\operatorname{rinf}_{i \in \Lambda} \tilde{a} = [\operatorname{rinf}_{i \in \Lambda} a^{-}, \operatorname{rinf}_{i \in \Lambda} a^{+}],$ $\operatorname{rsup}_{i\in\Lambda} \widetilde{a} = [\operatorname{rsup}_{i\in\Lambda} a^-, \operatorname{rsup}_{i\in\Lambda} a^+].$ Definition 2.27[1,7]. An interval valued fuzzy subset $\tilde{\mu}_A$ on X is defined as $\widetilde{\mu}_A = \{ < m, [\mu_A^-(m), \mu_A^+(m)] > | m \in X \}$. Where $\mu_A^-(m)$ $\leq \mu_{A}^{+}(m)$, for all $m \in$ X. Then the ordinary fuzzy subsets $\mu_A^-: X \to [\aleph, 1]$ and $\mu_{A}^{+}: X \to [\aleph, 1]$ are called a lower fuzzy subset and an

International Journal of Academic and Applied Research (IJAAR) ISSN: 2643-9603 Vol. 7 Issue 3, March - 2023, Pages: 1-7

upper fuzzy subset of $\tilde{\mu}_A$ respectively. Let $\tilde{\mu}_A$ (m) = $[\mu_A^-(m), \mu_A^+(m)],$ $\tilde{\mu}_A: X \to D[\aleph , 1], \text{ then } A = \{ < m, \tilde{\mu}_A (m) > | m \in X \} \}$. **Definition 2.28([1,7]).** Let $(X ; *, \aleph)$ be a nonempty set. A cubic set Ω in a structure $\Omega = \{ < m, \tilde{\mu}_\Omega (m), \lambda_\Omega (m) > | m \in \},$ which is briefly denoted by $\Omega = <\tilde{\mu}_\Omega , \lambda_\Omega >$, where $\tilde{\mu}_\Omega : X \to D[\aleph , 1], \tilde{\mu}_\Omega$ is an interval – valued fuzzy subset of Xand $\lambda_\Omega: X \to [\aleph, 1], \lambda_\Omega$ is a fuzzy subset of X. **Definition 2.29([1,7])**. For a family $\Omega_i = \{(m, \tilde{\mu}_{\Omega i}(m)) | m \in X\}$ on fuzzy subsets of X, where $i \in \Lambda$ and Λ is index set, we define the join (V) and meet (Λ) operations as follows:

$$\begin{split} & \bigvee_{i \in \Lambda} \Omega_i = \left(\bigvee_{i \in \Lambda} \tilde{\mu}_{\Omega i} \right)(m) = \sup \{ \tilde{\mu}_{\Omega i}(m) \big| i \in \Lambda \}, \\ & \bigwedge_{i \in \Lambda} \Omega_i = \left(\bigwedge_{i \in \Lambda} \tilde{\mu}_{\Omega i} \right)(m) = \inf \{ \tilde{\mu}_{\Omega i}(m) \big| i \in \Lambda \}, \end{split}$$

3. ζ -Dot Cubic AB-subalgebras of AB-algebra

In this section, we will introduce a new notion called

cubic AB – subalgebras of ABalgebra and study several properties of it.

Definition 3.1[19]. Let $(X ; *, \aleph)$ be an AB – algebra. A cubic set $\Omega = \langle \tilde{\mu}_{\Omega}(\mathbf{m}), \lambda_{\Omega}(\mathbf{m}) \rangle$ of X is called **cubic AB** – **subalgebra of X** if, for all $\mathbf{m}, \mathbf{y} \in X$: $\tilde{\mu}_{\Omega}(\mathbf{m}^*\mathbf{y}) \geq \min{\{\tilde{\mu}_{\Omega}(\mathbf{m}), \tilde{\mu}_{\Omega}(\mathbf{y})\}}$, and $\lambda_{\Omega}(\mathbf{m}^*\mathbf{y}) \leq \max{\{\lambda_{\Omega}(\mathbf{m}), \lambda_{\Omega}(\mathbf{y})\}}$.

Definition 3.2. Let $(X ; *, \aleph)$ be an AB – algebra. A cubic set $\Omega^{\zeta} = \langle \tilde{\mu}_{\Omega}^{\zeta}(\mathbf{m}), \lambda_{\Omega}^{\zeta}(\mathbf{m}) \rangle$ of X is called ζ -dot cubic AB-subalgebra of X if $\zeta \in (\aleph, 1]$, for all $\mathbf{m} \in X$, $\tilde{\mu}_{\Omega}^{\zeta} = \tilde{\mu}_{\Omega}(x) \cdot \zeta$ and $\lambda_{\Omega}^{\zeta} = \lambda_{\Omega}(x) \cdot \zeta$.

Example 3.3. Let $X = \{\aleph, 1, 2, 3\}$ in which the operation as in example \ast be define by the following table:

1	te by the following table.							
	*	х	1	2	3			
	х	х	х	х	х			
	1	1	х	х	х			
	2	2	2	х	х			
	3	3	3	3	х			

Then $(X;*,\aleph)$ is an AB – algebra. Define a cubic set $\Omega = \langle \tilde{\mu}_{\Omega}(m), \lambda_{\Omega}(m) \rangle$ of *X* is fuzzy subset $\mu: X \rightarrow [\aleph, 1]$ by:

$$\begin{split} \tilde{\mu}_{\Omega} \left(\mathbf{m} \right) &= \begin{cases} [0.3, 0.9] & if x = \{\aleph, 1\} \\ [0.1, 0.6] & otherwise \end{cases} \quad \text{and} \quad \lambda_{\Omega} = \\ \begin{cases} 0.1 & if x = \{\aleph, 1\} \\ 0.6 & otherwise \end{cases} . \end{split}$$

Define a cubic set $\Omega^{\zeta} = \langle \tilde{\mu}_{\Omega}^{\zeta}(m), \lambda_{\Omega}^{\zeta}(m) \rangle$ of *X* and $\zeta = 0.5$ as follows:

$$\begin{split} \tilde{\mu}_{\Omega}^{\zeta}(\mathbf{m}) &= \begin{cases} [0.15, 0.45] & if x = \{\aleph, 1\} \\ [0.05, 0.3] & otherwise \end{cases} \quad \text{and} \quad \lambda_{\Omega}^{\zeta} &= \\ \begin{cases} 0.05 & if x = \{\aleph, 1\} \\ 0.3 & otherwise \end{cases} . \end{split}$$

The ζ -dot cubic set $\Omega^{\zeta} = \langle \tilde{\mu}_{\Omega}^{\zeta}(\mathbf{m}), \lambda_{\Omega}^{\zeta}(\mathbf{m}) \rangle$ is a ζ - dot cubic AB – subalgebra of *X*.

Remark 3.4. Let $(X ; *, \aleph)$ be an AB – algebra, then it is clearly that

$$\Omega^{1} = <\tilde{\mu}_{\Omega}^{1}(m), \lambda_{\Omega}^{1}(m) > = \Omega = <\tilde{\mu_{\Omega}}(m), \lambda_{\Omega}(m) >$$

Proposition 3.5. Let $(X ; *, \aleph)$ be an AB-algebra and $\Omega = \langle \tilde{\mu}_{\Omega}(\mathbf{m}), \lambda_{\Omega}(\mathbf{m}) \rangle$ is a cubic AB – subalgebra of X such that $\Omega^{\zeta} = \langle \tilde{\mu}_{\Omega}^{\zeta}(\mathbf{m}), \lambda_{\Omega}^{\zeta}(\mathbf{m}) \rangle$ is ζ -dot cubic AB – subalgebra of X, where $\zeta \in (\aleph, 1]$, then for all $x, y \in X$, $\tilde{\mu}_{\Omega}(\mathbf{m}^*\mathbf{y}) \cdot \zeta \geq rmin\{\tilde{\mu}_{\Omega}(\mathbf{m}), \tilde{\mu}_{\Omega}(\mathbf{y})\} \cdot \zeta$, and $\lambda_{\Omega}(\mathbf{m}^*\mathbf{y}) \cdot \zeta \leq max\{\lambda_{\Omega}(\mathbf{m}), \lambda_{\Omega}(\mathbf{y})\} \cdot \zeta$. **Proof.** For all $x, y \in X$, we have $\tilde{\mu}_{\Omega}^{\zeta}(\mathbf{m}^*\mathbf{y}) = \tilde{\mu}_{\Omega}(\mathbf{m}^*\mathbf{y}) \cdot \zeta \geq rmin\{\tilde{\mu}_{\Omega}(\mathbf{m}), \tilde{\mu}_{\Omega}(\mathbf{y})\} \cdot \zeta$, $= rmin\{\tilde{\mu}_{\Omega}(\mathbf{m}) \cdot \zeta, \tilde{\mu}_{\Omega}(\mathbf{y}) \cdot \zeta\}$ $= rmin\{\tilde{\mu}_{\Omega}(\mathbf{m}) \cdot \zeta, \tilde{\mu}_{\Omega}(\mathbf{y}) \cdot \zeta\}$ and $\lambda_{\Omega}^{\zeta}(\mathbf{m}^*\mathbf{y}) = \lambda_{\Omega}(\mathbf{m}^*\mathbf{y}) \cdot \zeta \leq max\{\lambda_{\Omega}(\mathbf{m}), \lambda_{\Omega}(\mathbf{y})\} \cdot \zeta$

$$= \max \{ \lambda_{\Omega} (m) \cdot \zeta, \lambda_{\Omega} (y) \cdot \zeta \} = \max \{ \lambda_{\Omega}^{\zeta} (m), \lambda_{\Omega}^{\zeta} (y) \}. \Box$$

It is clear that ζ – dot cubic AB – subalgebra of an ABalgebra ($X; *, \aleph$) is a generalization of a cubic ABsubalgebra of X and a cubic AB-subalgebra of X is special case, when $\zeta = 1$.

Proposition 3.6. Let $\Omega^{\zeta} = \langle \tilde{\mu}_{\Omega}^{\zeta}(\mathbf{m}), \lambda_{\Omega}^{\zeta}(\mathbf{m}) \rangle$ be a ζ -dot cubic AB – subalgebra of AB-algebra $(X; *, \aleph)$, then $\tilde{\mu}_{\Omega}^{\zeta}(\aleph) \geq \tilde{\mu}_{\Omega}^{\zeta}(\mathbf{m})$ and $\lambda_{\Omega}^{\zeta}(\aleph) \geq \lambda_{\Omega}^{\zeta}(\mathbf{m})$, for all

$$\begin{split} m \in X \ . \\ \textbf{Proof.} \quad & \text{For all } m \in X \text{, we have} \\ \tilde{\mu}_{\Omega}^{\zeta} \left(\aleph \right) &= \tilde{\mu}_{\Omega} \left(\aleph \ast m \right) \cdot \zeta \\ &\geq rmin \{ \tilde{\mu}_{\Omega}^{\zeta} \left((\aleph \ast m) \ast \aleph \right), \tilde{\mu}_{\Omega}(m) \} \cdot \zeta \\ &= rmin \{ [\mu_{A}^{-}((\aleph \ast m) \ast \aleph), \mu_{A}^{-}(m)], [\mu_{A}^{+}((\aleph \ast m) \ast \aleph), \mu_{A}^{-}(m)], [\mu_{A}^{+}((\aleph \ast m) \ast \aleph), \mu_{A}^{+}(m)] \} \cdot \zeta \\ &= rmin \{ [\mu_{A}^{-}(\aleph), \mu_{A}^{-}(m)], [\mu_{A}^{+}(\aleph), \mu_{A}^{+}(m)] \} \cdot \zeta \\ &= [\mu_{A}^{-}(m), \mu_{A}^{+}(m)] \cdot \zeta \\ &= \tilde{\mu}_{\Omega} \left(m \right) \cdot \zeta \\ &= \tilde{\mu}_{\Omega}^{\zeta} \left(m \right) \text{.} \\ \text{Similarly, we can show that} \\ \lambda_{\Omega}^{\zeta} \left(\aleph \right) &\leq max \{ [\lambda_{\Omega}^{\zeta} \left(\aleph \right), \lambda_{\Omega}^{\zeta} \left(m \right)] \} = \lambda_{\Omega}^{\zeta} \left(m \right) \text{.} \end{split}$$

International Journal of Academic and Applied Research (IJAAR) ISSN: 2643-9603 Vol. 7 Issue 3, March - 2023, Pages: 1-7

Proposition 3.7. If a ζ -dot cubic set $\Omega^{\zeta} = <$ $\tilde{\mu}_{O}^{\zeta}(m), \lambda_{O}^{\zeta}(m) > \text{of AB-algebra}(X ; *, \aleph) \text{ is a } \zeta \text{ -dot cubic}$ AB-subalgebra, then $\Omega^{\zeta}(m * y) = \Omega^{\zeta}(m * ((y * \aleph)) *$ \aleph)), for all m, y ∈ X. Proof. Let X be an AB – algebra and $y \in X$, then we know that $y = (y * \aleph) * 0$. Hence, $\tilde{\mu}_{O}^{\zeta}(m * y) = \tilde{\mu}_{O}^{\zeta}(m * ((y * \aleph) * \aleph)) \text{ and } \lambda_{O}^{\zeta}(m * \chi)$ y)= λ_{Ω}^{ζ} (m * ((y * \aleph) * \aleph)). Therefore Ω^{ζ} (m * y) = $\Omega^{\zeta}(m * ((y * \aleph)) * \aleph)). \triangle$ **Proposition 3.8.** Let (X ;*, \aleph) be an AB – algebra and $\Omega = <$ $\mu_{\Omega}(m), \lambda_{\Omega}(m) > \text{ is a cubic subset of X such that } \Omega^{\zeta} = <$ $\tilde{\mu}_{O}^{\zeta}(m), \lambda_{O}^{\zeta}(m) > \text{is } \zeta \text{ -dot cubic AB} - \text{subalgebra of}$, for some $\zeta \in [\aleph, 1]$, then $\Omega = \langle \mu_{\Omega}(m), \lambda_{\Omega}(m) \rangle$ is a cubic AB – subalgebra of X. Proof. Assume that $\Omega^{\zeta} = \langle \tilde{\mu}_{\Omega}^{\zeta}(m), \lambda_{\Omega}^{\zeta}(m) \rangle$ is a ζ – dot cubic AB – subalgebra of X for some $\zeta \in (\aleph, 1]$. Let $m, y \in X$, then $\tilde{\mu}_{\Omega}(m * y) \cdot \zeta = \tilde{\mu}_{\Omega}^{\zeta}(m * y)$ $\geq min\{\tilde{\mu}_{\Omega}^{\zeta}(m), \tilde{\mu}_{\Omega}^{\zeta}(y)\}$ $= \min\{\tilde{\mu}_{\Omega}(m) \cdot \zeta , \tilde{\mu}_{\Omega}(y) \cdot \zeta\}$ $= \min\{\widetilde{\mu}_{\Omega}(m), \widetilde{\mu}_{\Omega}(y)\} \cdot \zeta.$ $\tilde{\mu}_{\Omega}(m * y) \geq \min\{\tilde{\mu}_{\Omega}(m), \tilde{\mu}_{\Omega}(y)\}$ and so $\lambda_{\Omega}(m * y) \cdot \zeta = \lambda_{\Omega}^{\zeta}(m * y)$ $\leq max\{\lambda_{\Omega}^{\zeta}(m), \lambda_{\Omega}^{\zeta}(y)\}$ $= max\{\lambda_{\Omega}(m) \cdot \zeta , \lambda_{\Omega}(y) \cdot \zeta\}$ $= max\{\lambda_{\Omega}(m), \mu(y)\} \cdot \zeta.$ $\lambda_{\Omega}(x * y) \leq max\{\lambda_{\Omega}(m), \lambda_{\Omega}(y)\}$ Hence $\Omega = \langle \tilde{\mu}_{\Omega}(m), \lambda_{\Omega}(m) \rangle$ is a cubic AB – subalgebra of X. \Box

Proposition 3.9.

Let (X ;*, \aleph) be an AB – algebra and $\Omega = <$ $\mu_{\Omega}(m), \lambda_{\Omega}(m) >$ is a cubic subset of X such that $\Omega^{\zeta} = <$ $\tilde{\mu}_{\Omega}^{\zeta}\left(m\right),\lambda_{\Omega}^{\zeta}(m)\ >$ is ζ – dot cubic AB – subalgebra of $\ ,$ for some $\zeta \in [\aleph, 1]$, then then the cubic Ω of X is a fuzzy S – extension of the ζ -dot cubic Ω^{ζ} of X. **Proof:**

Since $\tilde{\mu}_{\Omega}(m) \ge \mu(m)$, $\zeta = \tilde{\mu}_{\Omega}^{\zeta}(m)$, and $\lambda_{\Omega}(m) \ge 1$ $\lambda_{\Omega}(m)$. $\zeta = \lambda_{\Omega}^{\zeta}(m)$ then $\Omega(m)$ is a fuzzy S-extension of $\Omega^{\zeta}(m)$, for all $m \in X$ and since Ω is a fuzzy AB – subalgebra of X, then Ω^{ζ} of μ is a ζ -dot cubic AB – subalgebra, by Proposition (3.8). \Box

Definition 3.10[19].

For a fuzzy subset μ of an AB – algebra $(X; *, \aleph)$, $\zeta \in (\aleph, 1]^X$ and $x, y \in X$, then $\tilde{t} \in D[\aleph, 1]$ and $s \in [\aleph, 1]$, with $t \leq \zeta$, let $\tilde{U}(\Omega; \tilde{t}, s) =$ $\{ m \in X \mid \tilde{\mu}_{\Omega}(m) \geq \tilde{t}, \lambda_{\Omega}(m) \leq s \}.$

Proposition 3.11.

Let (X ;*, \aleph) be an AB – algebra. A ζ -dot cubic subset $\Omega^{\zeta} = <$ $\tilde{\mu}_{\Omega}^{\zeta}(m), \lambda_{\Omega}^{\zeta}(m) > of$. If Ω^{ζ} is a ζ -dot cubic AB – subalgebra of X, then for all $\zeta \in (\aleph, 1]$, $\tilde{t} \in D[\aleph, 1]$ and $s \in [\aleph, 1]$ 1], with $t \leq \zeta$, then the set $\widetilde{U}(\Omega; \tilde{t}, s)$ is an AB-subalgebra of X. Proof. Assume that $\Omega^{\zeta} = \langle \tilde{\mu}_{\Omega}^{\zeta}(m), \lambda_{\Omega}^{\zeta}(m) \rangle$ is a ζ -dot cubic AB – subalgebra of X and let $\tilde{t} \in D[\aleph, 1]$ and $s \in [\aleph, 1]$, be such that $\widetilde{U}(\Omega; \tilde{t}, s) \neq \emptyset$. Let $x, y \in X$ such that $y \in \tilde{U}(\Omega; \tilde{t}, s)$, then $\tilde{\mu}_{\Omega}^{\zeta}(m) \ge \tilde{t}$ $\tilde{\mu}_{\Omega}^{\zeta}(\mathbf{y}) \geq \tilde{t} \text{ and } \lambda_{\Omega}^{\zeta}(\mathbf{m}) \leq \mathbf{s}, \lambda_{\Omega}^{\zeta}(\mathbf{y}) \leq \mathbf{s}.$ Since Ω^{ζ} is a ζ dot cubic AB – subalgebra of X, we get $\widetilde{\mu}_{\Omega}^{\zeta}(\mathsf{m}^{*} y) \geq \min\{ \widetilde{\mu}_{\Omega}^{\zeta}(\mathsf{m}), \widetilde{\mu}_{\Omega}^{\zeta}(y) \} \geq \widetilde{t} \text{ and } \lambda_{\Omega}^{\zeta}(\mathsf{m}^{*} y) \leq \max\{\lambda_{\Omega}^{\zeta}(\mathsf{m}), \lambda_{\Omega}^{\zeta}(y) \} \leq s.$ Hence the set $\tilde{U}(\Omega; \tilde{t}, s)$ is an AB – subalgebra of X. \triangle **Proposition 3.12.** Let $(X; *, \aleph)$ be an AB – algebra. A ζ – dot cubic subset

$$\begin{split} \Omega^{\zeta} &= < \tilde{\mu}_{\Omega}^{\zeta}(\mathbf{m}), \lambda_{\Omega}^{\zeta}(\mathbf{m}) > \text{of . If the set } \widetilde{U}(\Omega; \tilde{t}, s) \text{ is an} \\ & \text{AB} - \text{subalgebra of } X, \text{ for all } \zeta \in (\aleph, 1], \quad \tilde{t} \in D[\aleph, 1] \end{split}$$
and $s \in [\aleph, 1]$, with $t \leq \zeta$, then Ω^{ζ} is a ζ -dot cubic AB subalgebra of X.

Proof.

Suppose that $\tilde{U}(\Omega; \tilde{t}, s)$ is an AB – subalgebra of X and let *x*, *y* \in *X* be such that $\tilde{\mu}_{\Omega}^{\zeta}$ (m*y) < rmin { $\tilde{\mu}_{\Omega}^{\zeta}$ (m), $\tilde{\mu}_{\Omega}^{\zeta}$ (y)} and $\lambda_{\Omega}^{\zeta}(m*y) > \max \{\lambda_{\Omega}^{\zeta}(m), \lambda_{\Omega}^{\zeta}(y)\}.$ Consider $\tilde{\zeta} = 1/2 \{ \tilde{\mu}_{\Omega}^{\zeta}(m*y) + \min\{\tilde{\mu}_{\Omega}^{\zeta}(m), \tilde{\mu}_{\Omega}^{\zeta}(y)\} \}$

} and

$$\begin{split} \zeta &= 1/2 \; \{ \; \lambda_{\Omega}^{\zeta} \; (m*y) \; + \max\{ \lambda_{\Omega}^{\zeta} \; (m), \; \lambda_{\Omega}^{\zeta} \; (y) \} \}. \\ \text{We have } \tilde{\zeta} \in D[\aleph \; , \; 1] \; \text{and} \; \zeta \in (\aleph \; , \; 1], \; \text{and} \\ \tilde{\mu}_{\Omega}^{\zeta} \; (m*y) \prec \tilde{\zeta} \prec \min \{ \tilde{\mu}_{\Omega}^{\zeta} (m), \tilde{\mu}_{\Omega}^{\zeta} \; (y) \; \}, \; \; \text{and} \end{split}$$

 $\lambda_{\mathcal{O}}^{\zeta}(m*y) > \zeta > \max \{\lambda_{\mathcal{O}}^{\zeta}(m), \lambda_{\mathcal{O}}^{\zeta}(y)\}.$

It follows that $x, y \in \tilde{U}(\Omega; \tilde{t}, s)$, and $(m*y) \notin \tilde{U}(\Omega; \tilde{t}, s)$. This is a contradiction and therefore Ω^{ζ} is a ζ -dot cubic AB-subalgebra of X. \triangle

Theorem 3.13. Let ($X := , \aleph$) be an AB – algebra. A ζ dot cubic subset

 $\Omega^{\zeta} = \langle \tilde{\mu}_{\Omega}^{\zeta}(\mathbf{m}), \lambda_{\Omega}^{\zeta}(\mathbf{m}) \rangle$ of *X* is a ζ -dot cubic AB subalgebra of X if and only if, $\mu^{-\zeta}_{\Omega}$, and $\mu^{+\zeta}_{\Omega}$ are fuzzy AB – subalgebras of X and λ_{Ω}^{ζ} are anti – fuzzy AB – subalgebra of X. **Proof.** Let $\mu_{\Omega}^{-\zeta}$, $\mu_{\Omega}^{+\zeta}$ and λ_{Ω}^{ζ} be fuzzy AB – subalgebras of $\mu^{-\zeta}_{\ \Omega} \ (m \ast y) \geq \min\{\mu^{-\zeta}_{\ \Omega} \ (m), \mu^{-\zeta}_{\ \Omega}(y)\}, \quad \mu^{+\zeta}_{\ \Omega} \ (m \ast y) \geq$ $\min\{\mu^{+\zeta}_{\Omega}(m),\mu^{+\zeta}_{\Omega}(y)\}$ and

International Journal of Academic and Applied Research (IJAAR) ISSN: 2643-9603 Vol. 7 Issue 3, March - 2023, Pages: 1-7

 $\lambda_{\Omega}^{\zeta}(m * y) \le \max{\{\lambda_{\Omega}^{\zeta}(m), \lambda_{\Omega}^{\zeta}(y)\}}.$ Now, $\tilde{\mu}_{\Omega}^{\zeta}(m * y) = [\mu_{\Omega}^{-\zeta}(m * y), \mu_{\Omega}^{+\zeta}(m * y)]$ $\approx [\min\{\mu_{\Omega}^{-\zeta}(m), \mu_{\Omega}^{-\zeta}(y)\}, \min\{\mu_{\Omega}^{+\zeta}(m), \mu_{\Omega}^{+\zeta}(y)\}]$ = $\min\{[\mu_{\Omega}^{-\zeta}m), \mu_{\Omega}^{+\zeta}(m)], [\mu_{\Omega}^{-\zeta}(y), \mu_{\Omega}^{+\zeta}(y)]\}$ = rmin{ $\tilde{\mu}_{\Omega}^{\zeta}$ (m), $\tilde{\mu}_{\Omega}^{\zeta}$ (y)}, therefore Ω is a ζ -dot cubic AB – subalgebra of X. Conversely, assume that Ω^{ζ} is a ζ –dot cubic AB – subalgebra of X, for any $x, y \in X$, $[\mu_{\Omega}^{-\zeta}(\mathbf{m} \ast \mathbf{y}), \mu_{\Omega}^{+\zeta}(\mathbf{m} \ast \mathbf{y})] = \tilde{\mu}_{\Omega}^{\zeta}(\mathbf{m} \ast \mathbf{y}) \ge \min{\{\tilde{\mu}_{\Omega}^{\zeta}(\mathbf{m}), \tilde{\mu}_{\Omega}^{\zeta}(\mathbf{m})\}}$ (\mathbf{y}) $= \operatorname{rmin} \{ [\mu_{\Omega}^{-\zeta}(m), \mu_{\Omega}^{+\zeta}(m)], [\mu_{\Omega}^{-\zeta}(y), \mu_{\Omega}^{+\zeta}(y)] \}$ = [min { $\mu_{\Omega}^{-\zeta}(m), \mu_{\Omega}^{-}(m), \min \{ \mu_{\Omega}^{+\zeta}(y), \mu_{\Omega}^{+\zeta}(y) \}$]. $\mu_{\Omega}^{-\zeta}(m * y) \ge \min \{\mu_{\Omega}^{-\zeta}(m), \mu_{\Omega}^{-\zeta}(m)\}, \mu_{\Omega}^{+\zeta}(m * y) \ge \min \{\mu_{\Omega}^{+\zeta}(m), \mu_{\Omega}^{+\zeta}(m)\} \text{ and }$ $\begin{array}{l} \lambda_{\Omega}^{\zeta} \ (m \ast y) \leq \max \{ \lambda_{\Omega}^{\zeta}(m), \lambda_{\Omega}^{\zeta}(y) \} , \\ \text{Therefore, } \mu_{\Omega}^{-\zeta} \ \text{ and } \mu_{\Omega}^{+\zeta} \ \text{ are fuzzy AB} - \\ \text{subalgebras of X and } \lambda_{\Omega}^{\zeta} \ \text{are anti} - \text{fuzzy AB} - \end{array}$

subalgebra of X. \Box

Proposition 3.14.

Let (*X* ;*, \aleph) be an AB – algebra and $\Omega = <$ $\mu_{\Omega}(m), \lambda_{\Omega}(m) > \text{ is a cubic AB} - \text{ subalgebra of X and}$ $\zeta_1, \zeta_2 \in (\aleph, 1]$. If $\zeta_2 \geq \zeta_1$, then the ζ -dot cubic AB subalgebra Ω^{ζ^2} is a fuzzy S – extension of the $\Omega^{\zeta^1} \zeta$ dot cubic AB — subalgebra of X.

Proof: For every $m \in X$ and $\zeta_1, \zeta_2 \in (\aleph, 1]$ and $\zeta_2 \ge$ ζ_1 ,we have

$$\begin{split} &\tilde{\mu}_{\Omega}^{\zeta_2}(m) = \tilde{\mu}_{\Omega}(m). \zeta_2 \geqslant \tilde{\mu}_{\Omega}(m). \zeta_1 = \tilde{\mu}_{\Omega}^{\zeta_1}(m), \text{ and} \\ &\lambda_{\Omega}^{\zeta_2}(m) = \lambda_{\Omega}(m). \zeta_2 \ge \lambda_{\Omega}(m). \zeta_1 = \lambda_{\Omega}^{\zeta_1}(m), \text{ then} \\ &\tilde{\mu}_{\Omega}^{\zeta_2}(m) \geqslant \tilde{\mu}_{\Omega}^{\zeta_1}(m), \text{ and } \lambda_{\Omega}^{\zeta_2}(m) \ge \lambda_{\Omega}^{\zeta_1}(m), \text{ therefore} \\ &\Omega^{\zeta_2} \text{ is a fuzzy S-extension of } \Omega^{\zeta_1}. \end{split}$$

Since Ω is a cubic AB – subalgebra of *X*, then Ω^{ζ} is a ζ dot cubic AB – subalgebra of μ , by Proposition (3.8). Hence Ω^{ζ^2} of X is a fuzzy S-extension of the ζ – dot cubic AB – subalgebra $\Omega^{\zeta 1}$ of X. \Box

4. Homomorphism of ζ -Dot Cubic AB-ideals (ABsubalgebras) of AB-algebra

In this section, we will present some results on images and preimages of ζ dot cubic AB – ideals of AB – algebras.

Definition 4.1[3].

Let : $(X;*,\aleph) \rightarrow (Y;*',\aleph')$ be a mapping from the set X to a set Y. If $\Omega^{\zeta} = <$ $\tilde{\mu}_{\Omega}^{\zeta}(m), \lambda_{\Omega}^{\zeta}(m) > \text{ is a } \zeta \text{ -dot cubic subset of } X,$ then the cubic subset $\beta = \langle \tilde{\mu}_{\beta} \rangle$, $\lambda_{\beta} > \text{of } Y$ defined by: $= \begin{cases} rsup_{m \in f^{-1}(y)} \tilde{\mu}_{\Omega}^{\zeta}(x) if f^{-1}(y) = \{m \in X, f(m) = y\} \neq \varphi \\ \underbrace{\mathsf{X}}_{\mathbf{X}} \quad \text{otherwith} \end{cases}$ otherwise $f(\lambda_{\Omega}^{\zeta})(y)$ $= \begin{cases} \inf_{m \in f^{-1}(y)} \lambda_{\Omega}^{\zeta}(m) iff^{-1}(y) = \{m \in X, f(m) = y\} \neq \varphi \end{cases}$ (1 otherwise is said to be **the image of** Ω under **f**. Similarly if $\beta^{\zeta} = \langle \tilde{\mu}_{\beta}^{\zeta}(m), \lambda_{\beta}^{\zeta}(m) \rangle$ is a ζ dot cubic subset of Y , then the cubic subset $\ \Omega^\zeta=(\beta^\zeta \ ^\circ f)$ in X (i.e the ζ -dot cubic subset defined by

 $\tilde{\mu}_{\Omega}^{\zeta}(m) = \tilde{\mu}_{\beta}^{\zeta}(f(m)), \lambda_{\Omega}^{\zeta}(m) = \lambda_{\beta}^{\zeta}(f(m)) \text{ for all } m \in X)$ is called **the preimage of \beta under f**.

Theorem 4.2. A homomorphic preimage of ζ dot cubic AB – subalgebra is also

 ζ -dot cubic AB-subalgebra. **Proof.** Let $f: (X; *, \aleph) \rightarrow (Y; *', \aleph')$ be homomorphism from an AB-algebra X into an ABalgebra Y.

If $\beta^{\zeta} = \langle \tilde{\mu}_{\beta}^{\zeta}(m), \lambda_{\beta}^{\zeta}(m) \rangle$ is a cubic AB-subalgebra of Y and $\Omega^{\zeta} = \langle \tilde{\mu}_{\Omega}^{\zeta}(\mathbf{m}), \tilde{\lambda}_{\Omega}^{\zeta}(\mathbf{m}) \rangle$ the preimage of β^{ζ} under f, then $\tilde{\mu}_{\Omega}^{\zeta}(\mathbf{m}) = \tilde{\mu}_{\beta}^{\zeta}(f(\mathbf{m})), \lambda_{\Omega}^{\zeta}(\mathbf{m}) = \lambda_{\beta}^{\zeta}(f(\mathbf{m})),$ for all $\mathbf{m} \in X$

Let
$$m \in X$$
, then
 $(\tilde{\mu}_{\Omega}^{\zeta})(\aleph) = \tilde{\mu}_{\beta}^{\zeta}(f(\aleph)) \ge \tilde{\mu}_{\beta}^{\zeta}(f(m)) = \tilde{\mu}_{\Omega}^{\zeta}(m)$, and
 $(\lambda_{\Omega}^{\zeta})(\aleph) = \lambda_{\beta}^{\zeta}(f(\aleph))) \le \lambda_{\beta}^{\zeta}(f(m)) = \lambda_{\Omega}^{\zeta}(m)$.
Now, let $x, y \in X$, then
 $\tilde{\mu}_{\Omega}^{\zeta}(m*y) = \tilde{\mu}_{\beta}^{\zeta}(f(m*y)) = \tilde{\mu}_{\beta}^{\zeta}(f(m)*'f(y))$
 $\ge rmin \{\tilde{\mu}_{\beta}^{\zeta}(f(m),\tilde{\mu}_{\beta}^{\zeta}(f(y))\}\}$
 $= rmin \{\tilde{\mu}_{\Omega}^{\zeta}(m),\tilde{\mu}_{\Omega}^{\zeta}(y)\}$, and
 $\lambda_{\Omega}^{\zeta}(m*y) = \lambda_{\beta}^{\zeta}(f(m*y)) = \lambda_{\beta}^{\zeta}(f(m)*'f(y))$
 $\le max \{\lambda_{\beta}^{\zeta}(f(m),\lambda_{\beta}^{\zeta}(f(y))\}\$
 $= max \{\lambda_{\Omega}^{\zeta}(m),\lambda_{\Omega}^{\zeta}(y)\}$. \Box

Definition 4.3. Let $f: (X; *, \aleph) \rightarrow (Y; *', \aleph')$ be a mapping from a set X into a set Y. $\Omega^{\zeta} = <$ $\tilde{\mu}_{\Omega}^{\zeta}(\mathbf{m}), \lambda_{\Omega}^{\zeta}(\mathbf{m}) > \text{is a } \zeta \text{ -dot cubic subset of } X$ **has sup and inf properties** if for any subset T of X, there exist t, $s \in T$ such that

$$\tilde{\mu}_{\Omega}^{\zeta}(t) = \underset{t0\in T}{rsup} \tilde{\mu}_{\Omega}^{\zeta}(t0) \text{ and } \lambda_{\Omega}^{\zeta}(s) = \underset{s0\in T}{inf} \lambda_{\Omega}^{\zeta}(s0).$$

Theorem 4.4. Let $f: (X; *, \aleph) \rightarrow (Y; *', \aleph')$ be an epimorphism from an AB – algebra X into an ABalgebra Y. For every ζ -dot cubic AB – subalgebra

$$\begin{split} \Omega^{\zeta} &= \langle \tilde{\mu}_{\Omega}^{\zeta}(\mathbf{m}), \lambda_{\Omega}^{\zeta}(\mathbf{m}) > \text{of} \\ \text{with } \mathbf{sup and inf properties, then } f(\Omega^{\zeta}) \text{ is a} \\ \zeta \text{-dot cubic } AB - \text{subalgebra of } Y. \\ \mathbf{Proof. By definition } \tilde{\mu}_{\beta}^{\zeta}(y') &= f(\tilde{\mu}_{\Omega}^{\zeta})(y') = \\ rsup \tilde{\mu}_{\Omega}^{\zeta}(m) \text{ and} \\ &\pi \in f^{-1}(y') \\ \lambda_{\beta}^{\zeta}(y') &= f(\lambda_{\Omega}^{\zeta})(y') = \inf_{x \in f^{-1}(y')} \lambda_{\Omega}^{\zeta}(m) \text{ for all } y' \in Y \text{ and} \\ rsup(\emptyset) &= [\aleph, \aleph] \text{ and inf}(\emptyset) = \aleph \\ \text{We have prove that} \\ \tilde{\mu}_{\beta}^{\zeta}(\mathbf{m}'*y') &\geq rmin \{ \tilde{\mu}_{\beta}^{\zeta}(\mathbf{m}'), \tilde{\mu}_{\beta}^{\zeta}(y') \}, \text{ and} \\ \lambda_{\beta}^{\zeta}(\mathbf{m}'*y') &\leq max\{\lambda_{\beta}^{\zeta}(\mathbf{m}'), \lambda_{\beta}^{\zeta}(y')\}, \text{ for all } \mathbf{m}', y' \in Y \\ &\tilde{\mu}_{\beta}^{\zeta}(\mathbf{m}'*y') = \sup_{t \in f^{-1}(x'*y')} \tilde{\mu}_{\Omega}^{\zeta}(t) = \tilde{\mu}_{\Omega}^{\zeta}(x_{\aleph} * y_{\aleph}) \\ &\geq rmin \{ \tilde{\mu}_{\Omega}^{\zeta}(x_{\aleph}), \tilde{\mu}_{\Omega}^{\zeta}(t), rsup \tilde{\mu}_{\Omega}^{\zeta}(t) \}, \\ &= rmin \{ \tilde{\mu}_{\beta}^{\zeta}(m'), \tilde{\mu}_{\beta}^{\zeta}(y') \} \text{ and} \\ \lambda_{\Omega}^{\zeta}(m'*y') &= \inf_{t \in f^{-1}(x'*y')} \lambda_{\Omega}^{\zeta}(t) \\ &\leq max \{ \lambda_{\Omega}^{\zeta}(m_{\aleph}), \lambda_{\Omega}^{\zeta}(t), \inf_{t \in f^{-1}(y')} \lambda_{\Omega}^{\zeta}(t) \} \\ &= max \{ \inf_{t \in f^{-1}(x)} \lambda_{\Omega}^{\zeta}(t), \inf_{t \in f^{-1}(y')} \lambda_{\Omega}^{\zeta}(t) \} \\ &= max \{ \inf_{t \in f^{-1}(x)} \lambda_{\Omega}^{\zeta}(t), \inf_{t \in f^{-1}(y')} \lambda_{\Omega}^{\zeta}(t) \} \\ &= max \{ \inf_{t \in f^{-1}(x)} \lambda_{\Omega}^{\zeta}(m) > \text{ is a } \zeta - \text{ dot cubic } AB - \text{ subalgebra of } . \Box \end{split}$$

References

- A.T. Hameed and B.H. Hadi, Anti-Fuzzy AT-Ideals on AT-algebras, Journal Al-Qadisyah for Computer Science and Mathematics, vol.10, no.3(2018), 63-74.
- [2] A.T. Hameed and B.H. Hadi, Cubic Fuzzy ATsubalgebras and Fuzzy AT-Ideals on AT-algebra, World Wide Journal of Multidisciplinary Research and Development, vol.4, no.4(2018), 34-44.
- [3] A.T. Hameed and B.H. Hadi, Intuitionistic Fuzzy AT-Ideals on AT-algebras, Journal of Adv Research in Dynamical & Control Systems, vol.10, 10-Special Issue, 2018
- [4] A.T. Hameed and B.N. Abbas, AB-ideals of AB-algebras, Applied Mathematical Sciences, vol.11, no.35 (2017), pp:1715-1723.
- [5] A.T. Hameed and B.N. Abbas, Derivation of AB-ideals and fuzzy AB-ideals of AB-algebra, LAMBERT Academic Publishing, 2018.
- [6] A.T. Hameed and B.N. Abbas, **On Some Properties of AB**algebras, Algebra Letters, vol.7 (2017), pp:1-12.
- [7] A.T. Hameed and B.N. Abbas, Some properties of fuzzy ABideal of AB-algebras, Journal of AL-Qadisiyah for Computer Science and Mathematics, vol.10, no. 1(2018), pp:1-7.
- [8] A.T. Hameed and E.K. Kadhim, Interval-valued IFAT-ideals of AT-algebra, Journal of Physics: Conference Series (IOP Publishing), 2020, pp:1-5.
- [9] A.T. Hameed and N.H. Malik, (2021), (β, α)-Fuzzy Magnified Translations of AT-algebra, Journal of

Physics: Conference Series (IOP Publishing), 2021, pp:1-13.

- [10] A.T. Hameed and N.H. Malik, (2021), Magnified translation of intuitionistic fuzzy AT-ideals on AT-algebra, Journal of Discrete Mathematical Sciences and Cryptography, (2021), pp:1-7.
- [11] A.T. Hameed and N.J. Raheem, (2020), Hyper SAalgebra, International Journal of Engineering and Information Systems (IJEAIS), vol.4, Issue 8, pp.127-136.
- [12] A.T. Hameed and N.J. Raheem, (2021), Intervalvalued Fuzzy SA-ideals with Degree (λ,κ) of SAalgebra, Journal of Physics: Conference Series (IOP Publishing), 2021, pp:1-13.
- [13] A.T. Hameed, F. F. Kareem and S.H. Ali, Hyper Fuzzy AT-ideals of AT-algebra, Journal of Physics: Conference Series (IOP Publishing), 2021, pp:1-15.
- [14] A.T. Hameed, H.A. Faleh and A.H. Abed, (2021), Fuzzy Ideals of AB-algebra, Journal of Physics: Conference Series (IOP Publishing), 2021, pp:1-7.
- [15] A.T. Hameed, I.H. Ghazi and A.H. Abed, (2020), Fuzzy α-translation AB-ideal of AB-algebras, Journal of Physics: Conference Series (IOP Publishing), 2020, pp:1-19.
- [16] A.T. Hameed, N.J. Raheem and A.H. Abed, (2021), Anti-fuzzy SA-ideals with Degree (λ,κ) of SAalgebra, Journal of Physics: Conference Series (IOP Publishing), 2021, pp:1-16.
- [17] A.T. Hameed, S.H. Ali and , R.A. Flayyih, The Bipolar-valued of Fuzzy Ideals on AT-algebra, Journal of Physics: Conference Series (IOP Publishing), 2021, pp:1-9.
- [18] A.T. Hameed, H.A. Mohammed and A.H. Abed, Antifuzzy AB-ideals of AB-algebras, to appear .
- [19] A.T. Hameed, H.A. Mohammed and A.H. Abed, Cubic AB-subalgebras and AB-ideals of AB-algebras, to appear.
- [20] A.T. Hameed, S.M. Mostafa and A.H. Abed, Cubic
 KUS-ideals of KUS-algebras, Asian Journal of Mathematical Sciences, vol.8, no.2, pp:36 - 43, (2017).
- [21] K. Is'eki and S. Yanaka, An Introduction to Theory of BCK-algebras, Math. Japonica, vol. 23 (1979), pp:1-20.
- [22] Y.B. Jun, C.S. Kim, and M.S. Kang, Cubic subalgebras and ideals of BCK/BCI-algebras, Far East Journal of Math. Sciences, vol. 44, no. 2 (2010), 239-250.
- [23] Y. Komori, The Class of BCC-algebras isnot A Variety, Math. Japon., vol. 29 (1984), pp:391-394.
- [24] J. Meng and Y. B. Jun, BCK-algebras, Kyung Moon Sa Co., Korea, 1994.
- [25] S.M. Mostafa, A.T. Hameed and A.H. Abed, Fuzzy KUS-Ideals of KUS-Algebras, Basra, Journal of Science (A),vol.34, no.2, (2016), pp:73-84.
- [26] C. Prabpayak and U. Leerawat, On Ideals and Congurences in KU-algebras, Scientia Magna J., vol. 5, no.1 (2009), pp:54-57.

- [27] C. Prabpayak and U. Leerawat, On Isomorphisms of KU-algebras, Scientia Magna J., vol. 5, no.3 (2009), pp:25-31.
- [28] O.G. Xi, **Fuzzy BCK-algebras**, Math. Japan., vol. 36(1991), pp:935-942.
- [29] L. A. Zadeh, **Fuzzy sets**, Inform. Control, vol.8 (1965), pp:338-353.