Interval-valued Fuzzy AB-ideals on AB-Algebra

Dr. Areej Tawfeeq Hameed¹, Dr. Ahmed Hamzah Abed², Huda Adnan Mohammed³

¹Department of Mathematics, Faculty of Education for Girls, University of Kufa, Najaf, Iraq. E-mail: areej.tawfeeq@uokufa.edu.iq
²College of Islamic Sciences, AL Iraqia University, Baghdad, Iraq. E-mail: ahmedh.abed@uokufa.edu.iq
³Department of Mathematics, Faculty of Education for Girls, University of Kufa, Najaf, Iraq. E-mail: areej238@gmail.com

Abstract: In this paper, the notion of interval-valued fuzzy AB-ideals (briefly i-v fuzzy AB-ideal) in AB-algebras is introduced. Several theorems are stated and proved. The image and inverse image of i-v fuzzy AB-ideals are defined.

Keywords—AB-algebras, fuzzy AB-ideals, interval-valued fuzzy AB-ideals of AB-algebra.

1. Introduction

A. T. Hameed and et al ([4-7]) introduced a new algebraic structure, called AB-algebra, they have studied a few properties of these algebras, the notion of AB-ideals and fuzzy AB-ideal on AB-algebras was formulated and some of its properties are investigated. In [13,20,21], they defined the notions of α translation, β-magnified and generalized fuzzy ABsubalgebra, generalized fuzzy AB-ideal of AB-algebra and investigate in some of their properties. The concept of a fuzzy set, was introduced by L.A. Zadeh [27]. A.T. Hameed and et al, ([19]) we introduce the notion of anti-fuzzy AB-ideals of AB-algebras and then we study the homomorphism image and preimage of anti-fuzzy AB-ideals. S. M. Mostafa and et al. [22,24-26] were introduced a new algebraic structure which is called KUS-algebras and investigated some related properties. In [1-3,8-9,12,15-16], A.T. Hameed and et al. introduced ATideals on AT-algebras and introduced the notions fuzzy AT-subalgebras, fuzzy AT-ideals of ATalgebras and investigated relations among them. They introduced the notion of cubic AT-ideals of ATalgebra and they discussed some related properties of it. They also prove that some properties of anti-fuzzy AT-ideals and anti-fuzzy AT-subalgebras. A.T. Hameed and et al, ([1]). In [19], A.T. Hameed and et al., prove that the Cartesian product of anti-fuzzy ABideals are anti-fuzzy AB-ideals. In this paper, using the notion of interval-valued fuzzy set, we introduce the concept of an interval-valued fuzzy AB-ideals (briefly, i-v fuzzy AB-ideals) of a AB-algebra, and study some of their properties. Using an i-v level set of an i-v fuzzy set, we state a characterization of an i-v fuzzy AB-ideals. We prove that every AB-ideals of an AB-algebra X can be realized as an i-v level AB-ideals of an i-v fuzzy AB-ideals of X. In connection with the notion of homomorphism, we study how the images and inverse images of i-v fuzzy AB-ideals become i-v fuzzy AB-ideals.

2. Preliminaries

In this section, we give some basic definitions and preliminaries proprieties of AB-ideals and fuzzy AB-ideals in AB-algebra such that we include some elementary aspects that are necessary for this paper. **Definition 2.1([4-6])** Let X be a set with a binary operation * and a constant γ . Then $(X;*,\gamma)$ is called **an AB-algebra** if the following axioms satisfied: for all $y,z \in X$.

(i)
$$((x * y) * (z * y)) * (x * z) = \gamma$$
,

(ii)
$$\gamma * x = \gamma$$
,

(iii)
$$x * y = x,$$

Example 2.2([4-6]) Let $X = \{\gamma, 1, 2, 3, 4\}$ in which (*) is defined by the following table:

*	γ	1	2	3	4
γ	γ	γ	γ	γ	γ
1	1	γ	1	γ	γ
2	2	2	γ	γ	γ
3	3	3	1	γ	γ
4	4	3	4	3	γ

Then $(X; *, \gamma)$ is an AB-algebra.

Remark 2.3([4-6]) Define a binary relation \leq on AB-algebra $(X; *, \gamma)$ by letting $x \leq y$ if and only if $x * y = \gamma$.

Proposition 2.4([4-6]) In any AB-algebra $(X; *, \gamma)$, the following properties hold: for all $x, y, z \in X$,

- (1) $(x * y) * x = \gamma$.
- (2) (x * y) * z = (x * z) * y.
- (3) $(x * (x * y)) * y = \gamma$.

Proposition 2.5([4-6]) Let $(X; *, \gamma)$ be an ABalgebra. X is satisfies for all $x, y, z \in X$,

- (1) $x \le y$ implies $x * z \le y * z$.
- (2) $x \le y$ implies $z * y \le z * x$.

Definition 2.6([4-6]). Let $(X; *, \gamma)$ be an ABalgebra and let S be a nonempty subset of X. S is called an **AB-subalgebra of** X if $x * y \in S$ whenever $x \in S$ and $y \in S$.

Definition 2.7([4-6]). A nonempty subset I of an AB-algebra $(X; *, \gamma)$ is called **an AB-ideal of** X if it satisfies the following conditions: for any $x, y, z \in X$, $(I_1) \in I$,

(I₂) $(x * y) * z \in I$ and $y \in I$ imply $x * z \in I$. **Proposition 2.9** ([**4-6**]). Every AB-ideal of AB-algebra is an AB-subalgebra.

Proposition 2.8 ([4-6]). Let $\{I_i \mid i \in \Lambda\}$ be a family of AB-ideals of AB-algebra $(X; *, \gamma)$. The intersection of any set of AB-ideals of X is also an AB-ideal.

Definition 2.9 ([13,20,21]). Let $(X; *, \gamma)$ and $(Y; *`, \gamma`)$ be nonempty sets. The mapping $f: (X; *, \gamma) \rightarrow (Y; *`, \gamma`)$ is called **a homomorphism** if it satisfies:

f(x*y) = f(x) *`f(y), for all $x, y \in X$. The set $\{x \in X \mid f(x) = \gamma'\}$ is called **the kernel of** f denoted by ker f.

Theorem 2.10 ([4-6]). Let $f: (X; *, \gamma) \rightarrow (Y; *`, \gamma`)$ be a homomorphism of an AB-algebra X into an AB-algebra Y, then:

- A. $f(\gamma) = \gamma'$.
- B. f is injective if and only if ker $f = \{\gamma\}$.
- C. $x \le y$ implies $f(x) \le f(y)$.

Theorem 2.11 ([4-6]). Let $f:(X; *, \gamma) \to (Y; *`, \gamma`)$ be a homomorphism of an AB-algebra X into an AB-algebra Y, then:

- (F₁) If S is an AB-subalgebra of X, then f (S) is an AB-subalgebra of Y.
- (F₂) If I is an AB-ideal of X, then f (I) is an AB-ideal of Y, where f is onto.
- (F₃) If H is an AB-subalgebra of Y, then f^{-1} (H) is an AB-subalgebra of .
- (F₄) If J is an AB-ideal of Y, then f^{-1} (J) is an AB-ideal of X.
- (F_5) ker f is an AB-ideal of X.
- (F_6) Im(f) is an AB-subalgebra of Y.

Definition 2.12([27]). Let $(X; *, \gamma)$ be a nonempty set, a fuzzy subset μ of X is a function $\mu: X \to [\gamma, 1]$.

Definition 2.13 ([27]). Let X be a nonempty set and μ be a fuzzy subset of $(X; *, \gamma)$, for $t \in [\gamma, 1]$, the set $L(\mu, t) = \mu_t = \{ x \in X \mid \mu(x) \ge t \}$ is called a **level subset of** μ .

Definition 2.14([7]). Let $(X; *, \gamma)$ be an ABalgebra, a fuzzy subset μ of X is called **a fuzzy ABsubalgebra of** X if for all $x, y \in X$, $\mu(x*y) \ge \min \{\mu(x), \mu(y)\}$.

Definition 2.15([7]). Let $(X; *, \gamma)$ be an ABalgebra, a fuzzy subset μ of X is called **a fuzzy ABideal of X** if it satisfies the following conditions, for all $x, y, z \in X$,

 $(FAB_1) \quad \mu(\gamma) \geq \mu(x),$

(FAB₂) $\mu(x * z) \ge min \{\mu((x * y) * z), \mu(y)\}$. **Proposition 2.17([7]).**

- 1- The intersection of any set of fuzzy AB-ideals of AB-algebra is also fuzzy AB-ideal.
- 2- The union of any set of fuzzy AB-ideals of AB-algebra is also fuzzy AB-ideal where is chain.

Proposition 2.18([7]). Every fuzzy AB-ideal of AB-algebra is a fuzzy AB-subalgebra.

Proposition 2.19([7]).

1- Let μ be a fuzzy subset of AB-algebra $(X; *, \gamma)$. If μ is a fuzzy AB-subalgebra of X if and only if for every $t \in [\gamma, 1], \mu_t$ is an AB-subalgebra of X.

2- Let μ be a fuzzy AB-ideal of AB-algebra $(X;*,\gamma)$, μ is a fuzzy AB-ideal of X if and only if for every $t \in [\gamma,1]$, μ_t is an AB-ideal of X.

Lemma 2.20([7]). Let μ be a fuzzy AB-ideal of AB-algebra X and if $\leq y$, then $\mu(x) \geq \mu(y)$, for all $x, y \in X$.

Definition 2.21 ([27]). Let $f:(X; *, \gamma) \to (Y; *', \gamma')$ be a mapping nonempty sets X and Y respectively. If μ is a fuzzy subset of X, then the fuzzy subset β of Y defined by: $f(\mu)(y) = \{\sup\{\mu(x): x \in f^{-1}(y)\} \quad \text{if } f^{-1}(y) = \{x \in X, f(x) = y\} \neq \emptyset \}$ otherwise is said to be **the image of** μ **under** f.

Similarly if β is a fuzzy subset of, then the

fuzzy subset $\mu = (\beta \circ f)$ of X (i.e the fuzzy subset defined by $\mu(x) = \beta(f(x))$, for all $x \in X$) is called **the pre-image of** β **under** f.

Definition 2.22 ([27]). A fuzzy subset μ of a set X has sup property if for any subset T of X, there exist $t_0 \in T$ such that $\mu(t_V) = \sup \{\mu(t) | t \in T\}$.

Proposition 2.23 ([7]). Let $f:(X; *, \gamma) \to (Y; *`, \gamma`)$ be a homomorphism between AB-algebras X and Y respectively.

- 1- For every fuzzy AB-subalgebra β of Y, $f^{-1}(\beta)$ is a fuzzy AB-subalgebra of X.
- 2- For every fuzzy AB-subalgebra μ of X, $f(\mu)$ is a fuzzy AB-subalgebra of Y.
- 3- For every fuzzy AB-ideal β of Y, $f^{-1}(\beta)$ is a fuzzy AB-ideal of X.
- 4- For every fuzzy AB-ideal μ of X with sup property, $f(\mu)$ is a fuzzy AB-ideal of Y, where f is onto."

3. Interval-valued fuzzy AB-ideals of AB-algebra

In this section, we will introduce a new notion called interval-valued AB-ideals of AB-algebra and study several properties of it.

Remark 3.1([8,11,23,26]).

An interval number is $\tilde{a} = [a^-, a^+]$, where $\gamma \leq$ $a^- \le a^+ \le 1$. Let I be a closed unit interval, (i.e., I = $[\gamma,$ 1]). Let $D[\gamma, 1]$ denote the family of all closed subintervals of $I = [\gamma, 1]$, that is, $D[\gamma, 1] = {\tilde{\alpha} =$ $[a^-, a^+] \mid a^- \le a^+, \text{ for } a^-, a^+ \in I\}$.

Now, we define what is known as refined minimum (briefly, rmin) of two element in $D[\gamma, 1]$.

Definition 3.2([8,11,23,26]).

We also define the symbols (\geq) , (\leq) , (=), rmin and rmax in case of two elements in $D[\gamma, 1]$. Consider two interval numbers (elements numbers) $\tilde{a} = [a^-, a^+], \tilde{b} = [b^-, b^+] \text{in D}[\gamma, 1] : \text{Then}$

(1) $\tilde{a} \ge \tilde{b}$ if and only if, $a^- \ge b^-$ and $a^+ \ge b^+$,

(2) $\tilde{a} \leq \tilde{b}$ if and only if, $a^- \leq b^-$ and $a^+ \leq b^+$,

(3) $\tilde{a} = \tilde{b}$ if and only if, $a^- = b^-$ and $a^+ = b^+$,

(4) rmin $\{\tilde{a}, \tilde{b}\}=[\min\{a^-, b^-\}, \min\{a^+, b^+\}],$

(5) rmax $\{\tilde{a}, \tilde{b}\}=[\max\{a^-, b^-\}, \max\{a^+, b^+\}],$

Remark 3.3([8,11,23,26]).

It is obvious that $(D[\gamma, 1], \leq, V, \Lambda)$ is a complete lattice with $\tilde{\gamma} = [\gamma, \gamma]$ as its least element and $\tilde{1} = [1, \gamma]$ 1] as its greatest element. Let $\tilde{a}_i \in D[\gamma, 1]$ where $i \in \Lambda$

We define $r \inf_{i \in \Lambda} \tilde{a} = [r \inf_{i \in \Lambda} a^-, r \inf_{i \in \Lambda} a^+],$ $r \sup_{i \in \Lambda} \tilde{a} = [r \sup_{i \in \Lambda} a^-, r \sup_{i \in \Lambda} a^+].$

In what follows, let X denote an AB-algebra unless otherwise specified, we begin with the following definition.

Definition 3.4([8,11,23,26]).

An interval-valued fuzzy subset $\widetilde{\mu}_A$ on X is defined

$$\begin{split} \widetilde{\mu}_A &= \{<\mathbf{x}, [\mu_A^-(\mathbf{x})\,, \mu_A^+(\mathbf{x})\,] > \mid \mathbf{x} \in X\} \;. \; \text{Where} \; \mu_A^-(\mathbf{x}) \\ &\leq \mu_A^+(\mathbf{x}), \, \text{for all} \; \mathbf{x} \in X. \; \text{Then the ordinary fuzzy} \end{split}$$
subsets $\mu_A^-: X \to [\gamma, 1]$ and $\mu_A^+: X \to [\gamma, 1]$ are called a lower fuzzy subset and an upper fuzzy subset of $\widetilde{\mu}_A$ respectively.

Let $\widetilde{\mu}_A^-(x) = [\mu_A^-(x), \mu_A^+(x)], \widetilde{\mu}_A: X \to D[\gamma, 1],$ then $A = \{ \langle x, \widetilde{\mu}_{\Delta}(x) \rangle | x \in X \}$.

Definition 3.5. An i-v fuzzy subset $A = \{ \langle x, \tilde{\mu}_A(x) \rangle \}$ $> | x \in X$ of AB-algebra $(X; *, \gamma)$ is called **an** interval-valued fuzzy AB-ideal (i-v fuzzy AB-ideal, in short) if it satisfies the following conditions: (A_1) $\tilde{\mu}_A(\gamma) \geq \tilde{\mu}_A(x)$,

(A₂) $\tilde{\mu}_A$ (x * z) \geq rmin{ $\tilde{\mu}_A$ ((x * y) * z), $\tilde{\mu}_A$ (y)}, for all $x, y, z \in X$.

Proposition 3.6. An i-v fuzzy subset $A = [\mu_A^-, \mu_A^+]$ of AB-algebra $(X; *, \gamma)$ is an i-v fuzzy AB-ideal of Xif and only if μ_A^- and μ_A^+ are fuzzy AB-ideals of X. **Proof.** Suppose that A is an i-v fuzzy AB-ideal of X. For all $x, y, z \in X$ we have $[\mu_A^-(x*z), \mu_A^+(x*z)]$ $z)]=\tilde{\mu}_{A}\left(x*z\right) \geqslant \min\{\tilde{\mu}_{A}\left(\left(x*y\right)*z\right),\,\tilde{\mu}_{A}\left(y\right)\}$ = $[\min{\{\min{\{\mu_A^-((x*y)*z), \mu_A^+((x*y)*z), \mu_A$ z), min { μ_A^- (y), μ_A^+ (y) }]

Therefore $\text{min}~\{\gamma_1,\gamma_3\}>\lambda_1=\frac{1}{2}\left(\delta_1+\,\text{min}\{\gamma_1,\gamma_3\}\right)~>\delta_1$ $\min \{ \gamma_2, \gamma_4 \} > \lambda_2 = \frac{1}{2} (\delta_2 + \min \{ \gamma_2, \gamma_4 \}) > \delta_2$.

Hence $[\min \{\gamma_1, \gamma_3\}, \min \{\gamma_2, \gamma_4\}] > [\lambda_1, \lambda_2] > [\delta_1]$ δ_2] = $\tilde{\mu}_A (z_0 * x_0)$,

so that, $(x_0 * z_0) \notin \widetilde{U}(A; [\lambda_1, \lambda_2])$. which is a contradiction, since

 $\tilde{\mu}_A$ ($(x_0 * y_0) * z_0$) = $[\gamma_1, \gamma_2] \ge [\min{\{\gamma_1, \gamma_3\}}, \min$ $\{\gamma_2, \gamma_4\} \} > [\lambda_1, \lambda_2]$.

 $\tilde{\mu}_A$ (y₀) = [y₃, y₄] \geq [min{y₁, y₃}, min {y₂, y₄}] > [\lambda_1, \lambda_2] , imply that

 $((x_0^*y_0)*z_0)$, $(y_0) \in \widetilde{U}(A; [\lambda_1, \lambda_2])$. Then $\tilde{\mu}_A(x * z) \geq \text{rmin}\{\tilde{\mu}_A((x * y) * z), \tilde{\mu}_A(y)\}, \text{ for }$ all $x, y, z \in X$. \triangle

Theorem 3.7. Every AB-ideal of an AB-algebra $(X;*,\nu)$ can be realized as an i-v level AB-ideal of an i-v fuzzy AB-ideal of X.

Proof. Let Y be an AB-ideal of X and let A be an iv fuzzy subset on X defined by

 $\widetilde{\mu}_{A}\left(\mathbf{x}\right) = \begin{cases} \left[\alpha_{1}, \alpha_{2}\right] & if \, x \in Y \\ \left[\gamma, \gamma\right] & otherwise \end{cases}.$

Where $\alpha_1, \alpha_2 \in [\gamma, 1]$ with $\alpha_1 < \alpha_2$. It is clear that \widetilde{U} $(A; [\alpha_1, \alpha_2]) = Y$. We show that A is an i-v fuzzy AB-ideal of X. Let $x, y, z \in X$,

If ((x * y) * z), $y \in Y$, then $(x * z) \in Y$, and

 $\widetilde{\mu}_A(x*z) = [\alpha_1, \alpha_2] \geqslant \text{rmin}\{[\alpha_1, \alpha_2], [\alpha_1, \alpha_2]\}$ $= \operatorname{rmin} \{ \tilde{\mu}_A ((x * y) * z), \tilde{\mu}_A (y) \}.$

If ((x * y) * z), $y \notin Y$, then $\tilde{\mu}_A((x * y) * z) = [\gamma, \gamma]$ $=\tilde{\mu}_A$ (y) and so

 $\tilde{\mu}_A(x * z) \ge [\gamma, \gamma] = \min\{[\gamma, \gamma], [\gamma, \gamma]\} \ge \min\{\tilde{\mu}_A(x * z) \ge [\gamma, \gamma]\}$ $((x * y) * z), \tilde{\mu}_A(y)\},$

If $((x * y) * z) \in Y$ and $y \notin Y$, then $\tilde{\mu}_A ((x * y) * z)$ =[α_1, α_2] and $\tilde{\mu}_A$ (y)=[γ, γ], then $\tilde{\mu}_A$ (x * z) \geq $[\gamma,\gamma] = \operatorname{rmin}\{[\alpha_1,\alpha_2],[\gamma,\gamma]\} = \operatorname{rmin}\{\tilde{\mu}_A((x*y)*z),$

Similarly for the case $((x * y) * z) \notin Y$ and $y \in Y$ we get

 $\tilde{\mu}_A(x*z) \geq \min\{\tilde{\mu}_A((x*y)*z), \tilde{\mu}_A($

y)}.

Therefore A is an i-v fuzzy AB-ideal of X, the proof is complete. △

Corollary 3.8. Let $(X; *, \gamma)$ be an AB-algebra, B be a fuzzy subset of X and let A be an i-v fuzzy subset on X defined by $\widetilde{\mu}_A(x) = \begin{cases} [\alpha_1, \alpha_2] & if x \in Y \\ [\gamma, \gamma] & otherwise \end{cases}$. Where $\alpha_1, \alpha_2 \in (\gamma, 1]$ with $\alpha_1 < \alpha_2$. If A is an i-v fuzzy AB-subalgebra of X, then B is a fuzzy AB-subalgebra of X.

Theorem 3.9. If A is an i-v fuzzy AB-ideal of AB-algebra $(X; *, \gamma)$, then the set $X_{\widetilde{M}_A}$ is an AB-ideal of X.

Proof. Let ((x * y) * z), $y \in X_{\widetilde{M}_A}$. Then $\widetilde{\mu}_A$ $((x * y) * z) = \widetilde{\mu}_A (\gamma) = \widetilde{\mu}_A (\gamma)$, and so $\widetilde{\mu}_A (x * z) \geq \min{\{\widetilde{\mu}_A ((x * y) * z), \widetilde{\mu}_A (y)\}} = \min{\{\widetilde{\mu}_A (\gamma), \widetilde{\mu}_A (\gamma)\}} = \widetilde{\mu}_A (\gamma)$.

Combining this with condition (1) of Definition (4.1), we get $\widetilde{\mu}_A(x*z) = \widetilde{\mu}_A(\gamma)$, that is $(x*z) \in X_{\widetilde{M}_A}$. Hence $X_{\widetilde{M}_A}$ is an AB-ideal of X. \triangle

Definition 3.10 ([26]). Let $f:(X; *, \gamma) \to (Y; *', \gamma')$ be a mapping from set X into a set Y. let B be an i-v fuzzy subset of Y. Then the inverse image of B, denoted by $f^{-1}(B)$, is an i-v fuzzy subset of X with the membership function given by $\mu_{f^{-1}(B)}(x) = \tilde{\mu}_{B}(f(x))$, for all $x \in X$.

Proposition 3.11 ([26]). Let $f:(X; *, \gamma) \to (Y; *', \gamma')$ be a mapping from set X into a set , let $\widetilde{m} = [m^-, m^+]$, and $\widetilde{n} = [n^-, n^+]$ be i-v fuzzy subsets of X and Y respectively. Then

(1)
$$f^{-1}(\tilde{n}) = [f^{-1}(n^{-}), f^{-1}(n^{+})],$$

(2)
$$f(\widetilde{m}) = [f(m^-), f(m^+)].$$

Definition 3.12 ([26]). Let $f:(X; *, \gamma) \to (Y; *', \gamma')$ be a mapping from a set X into a set Y. let A be a an i-v fuzzy set of X, then the image of A, denoted by f(A), is the i-v fuzzy subset of Y with membership function denoted by :

$$\begin{split} &\mu_{f(A)} \\ &(\mathbf{x}) = \begin{cases} \sup_{z \in f^{-1}(y)} \tilde{\mu}_A(z) & if \ f^{-1}(y) \neq \varphi, y \in Y \\ \left[\gamma, \gamma\right] & otherwise \end{cases}, \\ & \text{where } f^{-1} \ (y) := \{x \in X \mid f(x) = y\}. \end{split}$$

Theorem 3.14. Let $f:(X; *, \gamma) \to (Y; *', \gamma')$ be homomorphism from an AB-algebra X into an AB-algebra Y. If B is an i-v fuzzy AB-ideal of Y, then the pre-image $f^{-1}(B)$ of B is an i-v fuzzy AB-ideal of X. **Proof.** Since $B = [\mu_B^-, \mu_B^+]$ is an i-v fuzzy AB-ideal of Y, it follows that from

Theorem (5.3), that (μ_B^-) and (μ_B^+) are fuzzy ABideals of Y. Using Theorem (2.23(3)), we know f^{-1} (μ_B^-) and f^{-1} (μ_B^+) are fuzzy AB-ideals of X. Hence by Proposition (5.2), we conclude that f^{-1} (B) = $[f^{-1}$ (μ_B^-) , f^{-1} (μ_B^+)] is an i-v fuzzy AB-ideal of X. \triangle

Theorem 5.7. Let f be an epimorphism from an AB-algebra X into an AB-algebra Y. If A is an i-v fuzzy AB-ideal of X with sup property, then f (A) of A is an i-v fuzzy AB-ideal of Y. **Proof.** Assume that $A = [\mu_A^-, \mu_A^+]$ is an i-v fuzzy AB-ideal of X. it follows that from Theorem (4.3), that (μ_A^-) and (μ_A^+) are fuzzy AB-ideals of X. Using Theorem (2.23(4)), that the images f (μ_A^-) and f (μ_A^+) are fuzzy AB-ideals of Y. Hence by Proposition (5.2), we conclude that f (A)= [f (μ_A^-), f (μ_A^+)] is an i-v fuzzy AB-ideal of Y. \triangle

Acknowledgment

References

- [1] A.T. Hameed and B.H. Hadi, **Anti-Fuzzy AT-Ideals on AT-algebras**, Journal Al-Qadisyah for Computer Science and Mathematics , vol.10, no.3(2018), 63-74.
- [2] A.T. Hameed and B.H. Hadi, Cubic Fuzzy AT-subalgebras and Fuzzy AT-Ideals on AT-algebra, World Wide Journal of Multidisciplinary Research and Development, vol.4, no.4(2018), 34-44
- [3] A.T. Hameed and B.H. Hadi, **Intuitionistic Fuzzy AT-Ideals on AT-algebras**, Journal of Adv
 Research in Dynamical & Control Systems, vol.10,
 10-Special Issue, 2018
- [4] A.T. Hameed and B.N. Abbas, **AB-ideals of AB-algebras**, Applied Mathematical Sciences, vol.11, no.35 (2017), pp:1715-1723.
- [5] A.T. Hameed and B.N. Abbas, Derivation of ABideals and fuzzy AB-ideals of AB-algebra, LAMBERT Academic Publishing, 2018.
- [6] A.T. Hameed and B.N. Abbas, **On Some Properties of AB-algebras**, Algebra Letters, vol.7 (2017), pp:1-12.
- [7] A.T. Hameed and B.N. Abbas, Some properties of fuzzy AB-ideal of AB-algebras, Journal of AL-Qadisiyah for Computer Science and Mathematics, vol.10, no. 1(2018), pp:1-7.
- [8] A.T. Hameed and E.K. Kadhim, Interval-valued IFAT-ideals of AT-algebra, Journal of Physics: Conference Series (IOP Publishing), 2020, pp:1-5.
- [9] A.T. Hameed and N.H. Malik, (2021), (β, α)-Fuzzy Magnified Translations of AT-algebra, Journal of Physics: Conference Series (IOP Publishing), 2021, pp:1-13.

- [10] A.T. Hameed and N.J. Raheem, (2020), **Hyper SA-algebra**, International Journal of Engineering and Information Systems (IJEAIS), vol.4, Issue 8, pp.127-136.
- [11] A.T. Hameed and N.J. Raheem, (2021), **Intervalvalued Fuzzy SA-ideals with Degree** (λ,κ) of **SA-algebra**, Journal of Physics: Conference Series (IOP Publishing), 2021, pp:1-13.
- [12] A.T. Hameed, , R.A. Flayyih and S.H. Ali, (2021), **Bipolar hyper Fuzzy AT-ideals of AT-Algebra**, International Journal of Engineering and Information Systems (IJEAIS), vol.4, Issue 3, pp.145-152.
- [13] A.T. Hameed, A.H. Abed and I.H. Ghazi, (2020), Fuzzy β-magnified AB-ideals of AB-algebras, International Journal of Engineering and Information Systems (IJEAIS), vol.4, Issue 6, pp.8-13.
- [14] A.T. Hameed, A.S. abed and A.H. Abed, (2018), TL-ideals of BCC-algebras, Jour of Adv Research in Dynamical & Control Systems, Vol. 10, 11-Special Issue, 2018
- [15] A.T. Hameed, **AT-ideals and Fuzzy AT-ideals of AT-algebras**, Journal of Iraqi AL-Khwarizmi Society, vol.1, no.2, (2018).
- [16] A.T. Hameed, F. F. Kareem and S.H. Ali, Hyper Fuzzy AT-ideals of AT-algebra, Journal of Physics: Conference Series (IOP Publishing), 2021, pp:1-15.
- [17] A.T. Hameed, **Fuzzy ideals of some algebras**, PH. Sc. Thesis, Ain Shams University, Faculty of Sciences, Egypt, 2015.
- [18] A.T. Hameed, H.A. Faleh and A.H. Abed, (2021), **Fuzzy Ideals of KK-algebra**, Journal of Physics: Conference Series (IOP Publishing), 2021, pp:1-7.
- [19] A.T. Hameed, H.A. Mohammed and A.H. Abed, Anti-fuzzy AB-ideals of AB-algebras, (2022).
- [20] A.T. Hameed, I.H. Ghazi and A.H. Abed, (2019), Big Generalized fuzzy AB-Ideal of AB-algebras, Jour of Adv Research in Dynamical & Control Systems, vol. 11, no.11(2019), pp:240-249.
- [21] A.T. Hameed, I.H. Ghazi and A.H. Abed, (2020), Fuzzy α-translation AB-ideal of AB-algebras, Journal of Physics: Conference Series (IOP Publishing), 2020, pp:1-19.
- [22] A.T. Hameed, S. Mohammed and A.H. Abed, (2018), Intuitionistic Fuzzy KUS-ideals of KUS-Algebras, Jour of Adv Research in Dynamical & Control Systems, Vol. 10, 11-Special Issue, 2018, pp:154-160.
- [23] A.T. Hameed, S.H. Ali and , R.A. Flayyih, **The Bipolar-valued of Fuzzy Ideals on AT-algebra**, Journal of Physics: Conference Series (IOP Publishing), 2021, pp:1-9.
- [24] S.M. Mostafa, A.T. Hameed and A.H. Abed, Fuzzy KUS-ideals of KUS-algebra, Basra Journal of Science (A), vol.34, no.2 (2016), 73-84.

- [25] S.M. Mostafa, M.A. Abdel Naby, F. Abdel-Halim and A.T. Hameed, **On KUS-algebra**, International Journal of Algebra, vol.7, no.3(2013), 131-144.
- [26] S.M. Mostafa, M.A. Abdel Naby, F. Abdel-Halim and A.T. Hameed, **Interval-valued fuzzy KUS-ideal**, IOSR Journal of Mathematics (IOSR-JM), vol.5, Issue 4(2013), 61-66.
- [27] Zadeh L. A., **Fuzzy sets**, Inform. And Control, vol. 8 (1965), 338-353.