Study New Types of Resolvable Spaces via Ideal bitopological space

Hawraa S. Abu Hamad Al-Ali¹ and Yiezi K. Al-Talkany²

Faculty of Computer Science and Maths :dept.of mathematics, University of Kufa, Najaf, Iraq e-hauraas.alali@uokufa.edu.iq Faculty of Education:dept.of mathematics, University of Kufa, Najaf, Iraq **e-**yiezi k .Altalkany@uokufa.edu.iq

Abstract: In this paper we define a new type of resolvable spaces depended on the lambda ideal open set, these new types includ: weakly- λI -resolvable space, weakly- λI -I-resolvable space, λI -T-resolvable space, in addition to studying some properties and generating theorem for these sets and paces.

Keywords: ideal space, bitopological space, I-density, λ I-dense, weakly- λ I-dense set and λ I-resolvable space.

1. INTRODUCTION

Kuratowski [18] has introduced the concept of ideal in topological spaces. One of the most important concepts which they were defined in ideal topological spaces of local function was studied by Kuratowski [19]. After that, tis concept was developed by presenting a different of studies related to concept of ideal topological spaces, such as Jankovic and Hamlet [13], R.Vaidyanathaswamy [25], who were among the first to present a studies related to some topological concepts, Also A.Abdel Monsef, Radwan [2], Lashien.E.F, Nasef.A.A [22], and Al-Swidi,L.A, AL. Rubaye M.S [5] where they presented an important studied deals with the concept of I-open set in addition Al-Swidi .L.A., introduced a different studies with some of researchers in a different types of spaces and sets we can see that in [17,9,10,14,15].

Njasted.O [24] defined concept α -open sets and defined via ideal concept and this study introduced by Abdel-Monsef.M.E, Nasef, Radwan.A.E. and Esmaeel. A.B [2].

Kelly [21] has introduced the concepts of bitopological spaces by defining two topologies on a set X.

The investigation on various aspects of resolvability of topological spaces has been carried the concept of resolvable space was studied by Hewitt [14] called a resolvable space. After that Chandan Chattopadhyay and Uttam Kumar Roy [12] studies the resolvability, irresolvability space and properties of maximal spaces.

Al-Swidi, L.A Abdaalbaqi, L.S., Hawraa Abbas Al-Bawi [11] introduced the concept of the weakly-I-dense set and invested it with other topological spaces.

2. PRELIMINARIES

2.1 Definition [18]

A nonempty collection I of subsets of X is called to be an ideal on X, if it satisfies the following two conditions:

(1) $A \in I$, and, $B \subseteq A \rightarrow B \in I$ (heredity).

(2) $A \in I$, and $B \in I \rightarrow A \cup B \in I$ (finite additivity).

2.2 Definition [19]

Let (X,T) be a topological space with an ideal I on X, a set operator (.)*: $p(X) \rightarrow p(X)$, defined as follow A*(I,T)={ $x \in X$: A $\cap U \notin I$, for every U_x \in T}, Which is called the local function of A with respect to I and T.

2.3 Remark [15]

Every I-dense is T*-dense and, then T- dense

2.4 Definition [15]

Let (X,T,I)be an ideal topological space ,then X is called a resolvable space iff there exist two disjoint dense set A,B ,such that $A \sqcup B = X$

2.5 Definition [15]

Let (X,T,I) be an ideal topological space , then X is called I- resolvable space iff X has two disjoint I- dense set A,B , such that $A \sqcup B = X$.

2.6 Theorem1[15]

If (X,T,I) is I-resolvable space, then I is condense.

2.7 Definition [17]

A subset A of X is called λI -open set iff for each $x \in A$, and for each α_I -open set W_x such that $A \subseteq W$, satisfy that $x \in \{x: U_x \sqcap int_T^{\alpha} (W) \notin I$, for each $U_x \in T$ }. The family of all λI -open set denoted by $O_{\lambda I}(x)$

2.8 Definition [17]

Let (X,T,I) be an ideal topological space an operator $(.)^{*\lambda I} : P(X) \longrightarrow P(X)$ called λI -local function of A with respect to I and λI -open set is define as follow, for each A $\subseteq X$

 $A^{*\lambda I}(I, \lambda I\text{-open}) = \{x \in X: U \sqcap A \notin I, \text{for each subset } U \in O_{\lambda I}(x)\}, \text{when there is no chance for confusion } A^{*\lambda I}(I, \lambda I\text{-open}) \text{ denoted by } A^{*\lambda I}$.

2.9 Theorem [17]

Let (X,T,T^{α},I) be an ideal bitopological space and let A,B are subset of X, then the following statement is hold:

1- If $A \in I$, then $A^{*\lambda I}(I) = \phi$.

2- If $I = \{\phi\}$, then $A \sqcup B \subseteq A^{*\lambda I} \sqcup B^{*\lambda I}$

3- For any ideal , then $(A \sqcup B)^{*\lambda I} = A^{*\lambda I} \sqcup B^{*\lambda I}$

4- For any ideal , then $(A \sqcap B)^{*\lambda I} = A^{*\lambda I} \sqcap B^{*\lambda I}$

5- If $I \subseteq J$, then $A^{*\lambda J} \subseteq A^{*\lambda I}$

6- If U∈ T ,then U⊓ A^{*λI}⊂(U⊔ A)^{*λI}

7- If $U \in T^{\alpha}$, then $U \sqcap A^{*\lambda I} \subset (U \sqcup A)^{*\lambda I}$

8- $A^{*\lambda I} \subseteq Cl^{\lambda I}(A)$.

9- $A^{*\lambda I} \subseteq Cl^{\lambda I}(A^{*\lambda I})$.

 $10 - (A^{*\lambda I})^{*\lambda I} \subseteq A^{*\lambda I}$

2.10 Definition [17]

Let(X,T,T^{α},I) be an ideal bitopological space for any A \subseteq X we define:

 $\operatorname{Cl}^{*\lambda I}(A)(I,T) = A \sqcup A^{*\lambda I}$

2.11 Theorem

Let(X,,T,T^{α},I) be an ideal bitopological space and let A, B are sub set of X, then the following statement is hold: *1*-Cl^{* λ I}(x) =X.

2- If $A \subseteq B$, then $Cl^{*\lambda I}(A) \subseteq Cl^{*\lambda I}(B)$

 $3 - A \subseteq Cl^{*\lambda I}(A)$.

4- $Cl^{*\lambda I}(A \sqcup B) = Cl^{*\lambda I}(A) \sqcup Cl^{*\lambda I}(B)$.

5- $Cl^{*\lambda I}(A \sqcap B) = Cl^{*\lambda I}(A) \sqcap Cl^{*\lambda I}(B)$.

6- $Cl^{*\lambda I}(A) = Cl^{*\lambda I}(Cl^{*\lambda I}(A))$.

7- $Cl^{*\lambda I}(A) \subseteq Cl(A)$. If I is condense.

8- $\operatorname{Cl}^{*\lambda I}(A) \subseteq \operatorname{Cl}^{*}(A)$. If x is true space.

$$9-\operatorname{Cl}(A^{*\lambda I}) = A^{*\lambda I}$$

10 - $\operatorname{Cl}^*(A) \subset \operatorname{Cl}^{*\lambda I}(A)$. If I is condense.

 $11\text{-} A^{*\lambda I} {\subset} \operatorname{Cl}^{*\lambda I} \left(A \right).$

2.12 Proposition [17]

Let (X,T,T^{α},I) be an ideal bitopological space and let A, B are sub set of X then the following statement is hold:

1-If I is condense set, then $A^{*\lambda I} \subseteq A^*$.

2-If X is true space, then $A^* \subseteq A^{*\lambda I}$

2.13 Definition[16]

Let (X,T,T^{α},I) be an ideal bitopological space and let A be subset of X is called λI -dense set iff $A^{*\lambda I} = X$

2.14 Proposition [16]

Let (X,T,T^{α},I) be an ideal bitopological space, then the following properties hold:

- 1- Let I is condense, then every λ I- dense is I –dense set.
- 2- Let x is true space, then every λ I-dense is T^{*}-dense set
- 3- Let I is condense, then every λI dense is T- dense set.

2.15 Definition [11]

Let (X,T,I) be an ideal topological space and $A \subseteq X$, then A is called weakly –I-dense if $A^{**} = X$

2.16Remark [11]

Every weakly - I - dense is I - dense and hence T*- dense and T- dense.

2.17 Remark [11]

Let (X,T,I) be an ideal topological space and $A \subset X$ with I is condense, then if A is I-dense in X, then A is weakly -I-dense in X. **2.18 Lemma** [11]

Let(X,T,I) be an ideal topological space , then the following statements are hold:

1- if A is weakly -I-dense of X, then $A \sqcap U \neq \phi$ for each U ϵT

2- if A is weakly -I-dense of X , then $A^* \sqcap U \neq \phi$ for each U ϵT

2.19 Remark [11]

 $\mbox{Let}(X\ ,T,I)$ be an ideal topological space with I and J ideals on X and A subset of X , then :

If $I \subseteq J$, then $A^{**}(J) \subseteq A^{**}(I)$.

2.20 Corollary[11]

Let (X,T,I) be a topological space, I and J ideals on X such that $I \subseteq J$. If A is weakly -J-dense in X, then A is weakly -I-dense in X.

3. On λ I-resolvable spaces

3.1 Definition:

Let (X,T,T^{α},I) be an ideal bitopological space and $A \subseteq X$, then A is called weakly $-\lambda I$ -dense if $(A^{*\lambda I})^{*\lambda I} = X$.

3.2 Example:

Let X = {a,b,c} with a topology T = {X, Φ , {a}} and I = Φ , then weakly - λI -dense = {X, {a,b}, {a,c}}.

3.3 Definition:

Let (X,T,T^{α},I) be an ideal bitopological space, then I is called λI - condense if $I \sqcap O_{\lambda I}(x) = \Phi$.

3.4 Example:

Let X={a,b,c}, with a topology T={X, Φ ,{a}} and I= Φ , then I $\sqcap O_{\lambda I}(x)=\Phi$

3.5 Theorem :

Let (X,T,T^{α},I) be an ideal bitopological space .If I is λI - condense, then $X^{*\lambda I}=X$

Proof

Suppose $X^{*\lambda I} \neq X$, then there exist $x \in X$ such that $x \notin X^{*\lambda I}$, then there exist $H \in O_{\lambda I}(x)$

Such that $H \sqcap x \in I$, then $H \in I$. Since $H \in O_{\lambda I}(x)$, then $H \in I \sqcap O_{\lambda I}(x)$

But I is λ I- condense, then H $\notin I \sqcap O_{\lambda I}(x)$ and this is contradiction, and then $X^{*\lambda I} = X$.

3.6 Remark :

Let (X,T,T^{α},I) be an ideal bitopological space. I and J ideals on X such that $I \subseteq J$. If A is weakly - λJ -dense then A is weakly- λI -dense

Proof:

Since $I \subseteq J$ by theorem (2.9)(5) we have $(A^{*\lambda J})^{*\lambda J}$ (J) $\subseteq (A^{*\lambda I})^{*\lambda I}$ (I), and since $(A^{*\lambda J})^{*\lambda J}$ (J)=X, then X = $(A^{*\lambda I})^{*\lambda I}$ (I), hence A is weakly - λI -dense.

3.7 Proposition:

Let (X, T, T^{α}, I) be an ideal bitopological space, then : If I is condense, then every $Cl^{\lambda I}(A) \subset Cl(A)$.

Proof:

Let $x \in Cl^{\lambda I}(A)$, then $U \sqcap A \neq \phi$ for each $U \in O_{\lambda I}(x)$ if $x \notin Cl(A)$, then there exist $H \in T(x)$, $H \sqcap A = \phi$ since I is condense, then H is λI - open set, ther exist λI -open set H, $H \sqcap A = \phi$ and this is contradiction.

3.8 Theorem :

Let (X,T,T^{α},I) be an ideal bitopological space, then the following properties hold :

1-If x is true space, then every weakly– λI -dense is dense set.

2- If I is condense , then every weakly – λI -dense is I- dense .

3- every weakly – λI -dense is λI -dense.

4- If I is condense and λI -codense, then every dense is weakly - λI -dense.

5- If I is λI -codense, then every I-dense is weakly– λI -dense.

6- If I is λI -codense, then every λI -dense is weakly- λI -dense

Proof:

1- since $(A^{*\lambda I})^{*\lambda I} = X$, by theorem (2.9)(10), $(A^{*\lambda I})^{*\lambda I} \subset A^{*\lambda I}$,

Then $A^{*\lambda I} = X$, by theorem (2.11)(8), then $A^{*\lambda I} \subset CL(A)$, then $A^{*\lambda I} = X$

2-since $(A^{*\lambda I})^{*\lambda I} = X$, by theorem (2.9)(10), $(A^{*\lambda I})^{*\lambda I} \subset A^{*\lambda I}$ and by theorem (2.12)(1), then $A^{*\lambda I} \subset A^*$, then $A^* = X$

3- since
$$(A^{*\lambda I})^{*\lambda I}$$
 = x by theorem(3.8)(2), by theorem (2.12)(2) then $A^{*\lambda I} = X$

4- Since A is dense set then Cl (A)=X by proposition (3.7), then $Cl^{\lambda I}=X$ by theorem (2.9)(8), then $A^{*\lambda I}=X$, since I is λI -codense, then $(A^{*\lambda I})^{*\lambda I}=X$.

5-Since A is I-dense, then A^{*}=X, by proposition (2.12)(2),then $(A^*)^{*\lambda I} \subset (A^{*\lambda I})^{*\lambda I}$, then $X^{*\lambda I} \subset (A^{*\lambda I})^{*\lambda I}$ since I is λ I-codense, then $x \subset (A^{*\lambda I})^{*\lambda I}$, then $(A^{*\lambda I})^{*\lambda I} = X$.

6- Since A is λI -dense. Then $A^{*\lambda I} = X$ and I is λI -codense, then $(A^{*\lambda I})^{*\lambda I} = X$.

3.9 Theorem :

Let (X,T,T^{α},I) be an ideal bitopological space and A subset of X ,then the following properties hold :

1- if A is λI - dense , then A \sqcap U $\neq \Phi$ for each U $\in O_{\lambda I}$

2- If A is weakly $-\lambda I$ -dense, then $A^{*\lambda I} \sqcap U \neq \Phi$ for each $U \in O_{\lambda I}$.

Proof

1-Since $A^{*\lambda I} = X$ for each $x \in X$, $x \in A^{*\lambda I}$, then $U \sqcap A \notin I$ for each $U \in O_{\lambda I}$.

2-Since $(A^{*\lambda I})^{*\lambda I} = X$ for each $x \in X$, $x \in A^{*\lambda I}$ then $A^{*\lambda I} \sqcap U \notin I$ for each $U \in O_{\lambda I}$.

3.10 Definition:

Let (X,T,T^{α},I) be an ideal bitopological space ,then X is called λI - resolvable space iff X has two disjoint λI -dense set A,B subset of X, such that $A \sqcup B = X$.

3.11 Proposition:

Let (X,T,T^{α},I) be an ideal bitopological space and A,B subset of X, then the following properties hold :

1-If I is condense, then every $\lambda I\text{-resolvable space}$ is I-resolvable space .

2-Let X is true space, then every I-resolvable space is λ I-resolvable space.

3-every λ I-resolvable space is resolvable space.

4-If X is resolvable space, then X is not necessary λ I-resolvable space.

Proof:

1-Since X is λ I-resolvable, then there exist A,B subset of x such that $A \sqcup B = X$ and $A \sqcap B = \phi$ where A and B are λ I-dense sets. So by proposition(3.8). We have that A and B are I-dense sets and, then X is I-resolvable space.

2- Since X is I-resolvable, then there exist A,B subset of X such that $A \sqcup B = X$ and $A \sqcap B = \phi$ where A and B are I-dense sets . So by proposition(2.12)(2). We have that A and B are λ I-dense sets and, then X is λ I-resolvable space .

3-Since X is λ I-resolvable space, then there there exist A,B subset of X such that $A \sqcup B = X$ and $A \sqcap B = \phi$ where A and B are λ I-dense sets. So by proposition(3.8)(3). We have that A and B are dense sets and, then X is resolvable space.

4-Let $X = \{a, b, c\}$, with a topology $T = \{X, \phi, \{a\}\}$ and $I = \{\phi\}$. Clearly that x is resolvable space but not λI -resolvable space.

3.11 Proposition:

Let (X,T,T^{α},I) be an ideal bitopological space with tow ideals I,J and $I \subseteq J$. If X is weakly $-\lambda J$ -resolvable, then X is weakly $-\lambda I$ -resolvable.

Proof:

Since X is weakly- λ J-resolvable, then there exist A,B subset of x such that A \sqcup B=X and A \sqcap B= ϕ where A and B are weakly λ J-dense sets. So by proposition(3.6). We have that A,B are weakly $-\lambda$ I-dense set, and then X is weakly $-\lambda$ I-resolvable.

3.12 Definition:

A nonempty (X,T,T^{α},I) is called:

- 1- weakly- λ I- resolvable , if X is the disjoint union of two weakly- λ I-dense.
- 2- weakly- λ I- I -resolvable, if X is the disjoint union of two weakly- λ I-dense and I-dense.
- 3- weakly- λ I-T-resolvable, if X is the disjoint union of two weakly- λ I-dense and T-dense.
- 4- λ I-T-resolvable, if X is disjoint union of two λ I-dense and T- dense.

3.13 Theorem:

1- Let I is condense, if X is weakly - λ I- resolvable, then X is weakly- λ I- I –resolvable.

2- Let X is true space, if X is weakly - λ I- resolvable, then X is weakly- λ I-T-resolvable.

3- Let X is true space, if X is weakly - λ I- resolvable, then X is λ I-T-resolvable.

4-Let I is condense, if X is weakly- λ I- I –resolvable space, then X is weakly- λ I-T-resolvable space.

5- If X is weakly- λ I- I –resolvable space ,then X is λ I-T-resolvable space.

6-If X is weakly- λ I-T-resolvable space, then X is λ I-T-resolvable space.

7- Let I is λI - condense, if X is weakly- λI - I –resolvable, then X is weakly - λI - resolvable space.

8- Let I is condense and I is λ I- condense, if X is weakly- λ I-T-resolvable space then X is weakly - λ I- resolvable space.

9- Let I is condense and I is λ I- condense, if X is λ I-T-resolvable space then X is weakly - λ I- resolvable space.

10- Let I is λ I- condense, if X is λ I-T-resolvable space, then X is weakly - λ I-T- resolvable space.

Proof:

1- Since X is weakly - λ I- resolvable, then there exist A,B subset of X where A and B *are weakly* - λ I-dense sets such that A \sqcup *B*=X, and A \sqcap *B* = Φ . So by theorem (3.8)(2). We have that B is I-dense set and then X is weakly- λ I- I –resolvable.

2- Since X is weakly - λ I- resolvable, then there exist A,B subset of X where A and B *are weakly* - λ I-dense sets such that A \square *B*=x and A \square *B* = Φ , and by theorem (3.8)(1). We have that B is T- dense set and, then x is weakly- λ I-T-resolvable.

3- Since X is weakly - λ I- resolvable, then there exist A,B subset of X where A and B *are weakly* - λ I-dense sets such that A \sqcup B=X, A \sqcap B = Φ and by theorem (3.8)(3), then A is λ I- dense set and by theorem(3.8)(1) B is T-dense set such that A is λ I-dense and B is T-dense where A \sqcup B=X and A \sqcap B = Φ then X is λ I-T-resolvable.

4- Since X is weakly - λ I-I- resolvable, then there exist A,B subset of X such that A is weakly - λ I-dense set and B is I-dense where A \Box B = ϕ and A \sqcup B = X. So by theorem(2.3) we have that B is T –dense set, then X is weakly – λ I-T-resolvable space.

5- Since X is weakly - λ I-I- resolvable, then there exist A,B subset of X such that A \sqcup B=X and A \sqcap B = Φ ,and A is weakly - λ I-dense set and B is I-dense set by theorem(3.8)(3), then A is λ I-dense and by theorem (2.3) B is T-dense set , then X is $\lambda I - T - r$ esolvable space.

6- Since X is weakly - λ I-I- resolvable, then there exist A,B subset of X such that A \sqcup B=X and A \sqcap B = Φ , and A is weakly - λ I-dense set and B is T-dense set by theorem(3.8)(3), then A is λ I-dense, then X is $\lambda I - T$ –resolvable space.

7- Since X is weakly - λ I-I- resolvable, then there exist A,B subset of X such that $A \sqcup B = X$ and $A \sqcap B = \Phi$, A is weakly - λ I-dense set and B is I-dense set, since I is λ I- condense, then B is weakly - λ I-dense and A is weakly - λ I-dense set, then X is weakly - λ I-resolvable.

8-Since X is weakly- λ I-T-resolvable, then there exist A,B subset of X such that A \sqcup B=X and A \sqcap B= Φ ,A is weakly – λ I- dense and B is T-dense by theorem (3.8)(4) ,then B is weakly – λ I- dense ,then X is weakly – λ I-resolvable.

9-Since X is λI -T-resolvable, then there exist A,B subset of X such that $A \sqcup B = X$ and $A \sqcap B = \phi$ where A is λI -dense set and B is T-dense set by theorem(3.8)(4), then B is weakly λI -dense and by theorem (3.8)(6) A is weakly λI -dense set dense set, then X is weakly $-\lambda I$ -resolvable space.

10-Since X is λ I-T-resolvable, then there exist A,B subset of X such that A \sqcup B=X and A \sqcap B= ϕ where A is λ I-dense set and B is T-dense set by theorem(3.8)(6), then A is weakly λ I-dense, then X is weakly $-\lambda$ I-resolvable space.

3.14 Remark:

1-Since not every T-dense set is I-dense set , then not necessary that weakly $-\lambda I$ -T- resolvable space is weakly $-\lambda I$ -I- resolvable space .

2-Since not every T-dense set is I-dense set , then not necessary that λ I-T- resolvable pace is weakly – λ I-I- resolvable space **Reference**

[1] Al Talkany, Y.K, "Study Special Case of Bitopological Spaces" Journal ofbabylon , No.1 (2007), 17.

[2] Abd El-Monsef.M.E, Nasef.A.A, Radwan .A.E., Esmaeel.R.B "On - open sets with respect to an ideal "Journal of Advanced Studies in topology 5(3) (2014),1-9.

[3] Ali Abdulsada, D,AI-Swidi,L.A.A "Compatibility of center Topology", IOP conference Series : Materials Science and Engineering 928(4). 2020.

[4] Almohammed, R., AL-Swidi, L.A, "New concepts of fuzzy local function" Baghdad Science Journal 17(2), pp.515-522,2020.

[5] Al-Swidi, L.A., AL-Rubaye, M.S., "New classes of separation axiom via special case of local function," International Journal of Mathematical Analysis,8(21-24)pp.1119-1131,2014.

[6] Altalkany, Y.K., AL-Swidi, L.A.A., "On Some Types of Proximity W-set" Journal of physics: Conference Series, 2021.1963(1),012076.

[7] Ali, R.D., Al-Swidi, L.A., Hadi, M.H.," On fuzzy intense separation axioms in fuzzy ideal topological space", Journal of Inter disciplinary Mathematics, 2022,25(5), pp1357-1363.

[8] Al-Swidi, L.A., Qahtan, G.A., Hadi, M.H., Omran, A.A., "On the soft Dsdense and Dc-dense in soft ideal topological spaces", Journal of Inter disciplinary Mathematics, 2022, 25(5), pp.1341-1346.

[9] Al Talkany, Y.K., Al-Swidi, L.A. "On proximity focal congested set intopological proximity spaces Journal of Inter disciplinary Mathematics 2022, 25(5), pp. 1415-1420.

[10] Abdalbaqi,L.S., Hadi, M.H.,Al-Swidi, L.A., "On condensed set in ideal topologicalspaces" Mathematics, 2022, 25(5), pp1421s1425

[11] Al-Swidi, L.A. Abdalbaqi,L.S., Hawraa Abbas Al-Bawi," Various Resolvable Space in Ideal topological spaces "Journal of the University of Babylon –Pure and Applied Sciences Volume (24), Issue (4) of the Journal (2016).

[12] C.Chattopdhyay "Dense sets ,Nowhere Dense sets and Ideal in Generalized Closure spaces" 59(2007),181-188.

[13] Dragan Jankovic and T. R.Hamlett,"New Topologies from Old Via Ideals", The American Mathemtical Monthly. Vol.97. No. 4 (Apr., 1990), pp. 295-310.

[14] E. Hewitt, A problem of set –theoretic topology ,Duke Math. J., Vol.10,(1943),pp.309-333.

[15] J. Dontchev, M Ganster, D.Rose, Ideal resolvability, Topology Appl. Vol.93(1999), pp. 1-16.

[16] Hawraa s. Abu Hamed Al-Ali, Yiezi K. Al-talkany "Some properties of density related to lambda ideal open sets" Internation Journal Of Engineering and Information Systems (IJEAIS).2023. Vol.7. Iss: 2. pp.42-45.

[17] Hawraa s. Abu Hamed Al-Ali, Yiezi K. Al-talkany "Specil Case Of Local Function" Internation Journal Of Engineering and

Information Systems (IJEAIS).2023 .Vol.7 .Iss:2 .pp.73-78. [18] Kuratowski. K., Topology I, Warszawa, 1933.

[19] Kuratowski, K., Topology A, Walszawa, 1955. [19] Kuratowski, K., Topology Academic Press, New York ,1966.

[20] Kelley J. L., 1955 . General Topology ,D . Van Nastrand Company ,Inc.

[21] Kelly.J.C, Bi topological spaces, Proc. London Math. Soc. 13 (1963), no.3, 71-89.

[22] Lashien .E.F, A.A.Nasef., "On ideals in general topology" J.Sci. 15(2) 1991, 19-3.

[23] M.Ganster, "Preopen sets and resolvable spaces" Kyungpook Math.J., Vol .27, (2)(1987), pp.135-143.

[24] Njastad, Olav. "On some classes of nearly open sets." Pacific journal of mathematics 15.3(1965):961-970. :

10.2140/pjm.1965.15.961

[25] R.Vaidyanathaswamy, The localization theory in set topology, Proc. Indian Acad. Sci.Vol. 20 (1945), pp 51-61.

[26] S.Modak, "Remarks on Dense sets" International Mathematical forum, Vol. 6, (2011), No. 44, 2153-2158.

[27] V.R. Devi, D. Sivaraj, T.T. Chelvam, Codense and completely condense ideals, Acta Math. Hungar.Vol.108(2005), pp.197-205.

[28] W.W.Comfort and L.Feng, The union of resolvable spaces is resolvable, Math. Japan., Vol.38,(3)(1993), pp.413-414.