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1. Introduction:  

      Ordinary differential equations are very essential for solving some physical and biological phenomena, which are used to solve 

some problems in all different sciences fields [5]. There are a lot of applications for first order ordinary differential equations, for 

example, population growth to know the extent of diseases among the population, Nuclear physics problem, problem 

pharmacokinetics, the problem of steady heat transfer and a problem in Newton's law of cooling [6,13,14]. Analytically, there are 

several ways to solve ordinary differential equations of first order [1,3]: 

                                                 �́� = 𝑓(𝑥, 𝑦),              𝑦(0) = 𝑦0                            …(1) 

      In addition, numerical methods are extensively used to find the approximate solution of differential equations, therefore, there 

are several methods such as the Taylor' method, Picard’s method, Euler method  and Hyun (modified Uller)  …etc [10, 2,4 , 9].  

      A lot of people have been working on developing these methods and using them to solve some important applications, among 

these important applications are the ones mentioned above when we talked about ordinary differential equations of first order. 

      Runge Kutta is one of the effective approximate methods for solving ordinary differential equations[7, 11], this method is an 

elementary value problem that can be defined as a number of equations consisting of number of first order equations which are 

subject to initial conditions involving two types of problems: a single step problem [8] and a multistep problem [12].   

2-Derivation of Runge-Kutta Methods 

       Runge-Kutta Methods are considered of the most widely used and common methods, however, and many researchers are still looking to develop them. 

𝑦𝓃+1 = 𝑦𝓃  + ∑ 𝑊𝑖𝐾𝑖                                            ⋯ (2)

𝑣

𝑖=1

 

where  𝐾𝑖 is defined as:- 

𝐾𝑖=𝒽. 𝑓(𝑡𝑛  + 𝑐𝑖𝒽, 𝑦𝓃 + ∑ 𝑎𝑖𝑗
𝑖−1
𝑗=1  𝐾𝑗)     ,   𝑐1 = 0,         𝑖 = 1,2, … , 𝑣 

Or in the form:  

𝐾1 =  𝒽 ∙ 𝑓(𝑡𝑛, 𝑦𝑛)  

𝐾2 = 𝒽 ∙ 𝑓(𝑡𝑛  + 𝑐2 𝒽 , 𝑦𝑛 + 𝑎21 𝑘1)   

𝐾3 = 𝒽 ∙ 𝑓(𝑡𝑛  + 𝑐3 𝒽 , 𝑦𝑛 + 𝑎31 𝑘1 + 𝑎32𝑘2 )             

𝐾4 = 𝒽 ∙ 𝑓(𝑡𝑛  + 𝑐4 𝒽 , 𝑦𝑛 + 𝑎41 𝑘1 + 𝑎42𝑘2 + 𝑎43  𝑘3) .      
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⋮         

𝑦𝓃+1 = 𝑦𝓃  + ∑ 𝑊𝑖𝐾𝑖
𝑣
𝑖=1 . 

where  𝑊𝒊  ,      𝑎2𝑗 , 𝑎3𝑗 , 𝑎4𝑗 , ⋯ , 𝑎𝑣(𝑣−1)     , 𝑐2, 𝑐3, 𝑐4, ⋯ , 𝑐𝑣   Optional constant. 

To calculate the values of the constants, we spread 𝑦𝑛+1 according to the powers of h, so that it matches the Tayler series to solve differential equation for 

terms. 

2-1  Runge-Kutta of second order 

       The constitution that arises from (1) is may be one of the simplest Runge-Kutta constitutions: 

𝑦𝓃+1 = 𝑦𝓃  + ∑ 𝑊𝑖𝐾𝑖
2
𝑖=1 = 𝑦𝓃 + 𝑊1𝐾1 + 𝑊2𝐾2 , 

where  

𝐾1 =  𝒽 ∙ 𝑓(𝑡𝑛, 𝑦𝑛) ,                ⋯ (3) 

𝐾2 = 𝒽 ∙ 𝑓(𝑡𝑛  + 𝑐2 𝒽 , 𝑦𝑛 + 𝑎21 𝐾1) . 

And 𝑤1 , 𝑤2, 𝑎21, 𝑐2   undefind coefficients that must be specified to match 𝑦𝓃+1 in (3) to Tayler's series of the highest order possible. 

We assume that y(t) is a solution of problem (1),which is continuous and differentiable as many times as necessary on a domain[a,b] 

so that it can be spread y(t) about 𝑡𝑛 ,and substitute each t in 𝑡𝑛+1 to produce: 

𝑦(𝑡𝑛+1) = 𝑦(𝑡𝑛) +  𝒽 𝑦′(𝑡𝑛) + 
𝒽2

2!
𝑦′′(𝑡𝑛) + 

𝒽3

3!
𝑦(3)(𝑡𝑛) + ⋯   

In other words, 

𝑦(𝑡𝑛+1) = 𝑦(𝑡𝑛) +  𝒽 𝑓(𝑡𝑛 , 𝑦𝑛) +  
𝒽2

2
(𝑓𝑡 + 𝑓𝑦. 𝑓)

𝑛
𝑦′′(𝑡𝑛) 

+
𝒽3

6
(𝑓𝑡 + 2𝑓𝑡𝑦 . 𝑓 + 𝑓𝑦𝑦  . 𝑓2 + 𝑓𝑦 . 𝑓𝑡  + 𝑓𝑦

2 . 𝑓)𝑛                             … (4)  

All derivatives of the function are calculated in(𝑡𝑛 , 𝑦𝑛). 

𝐾2

𝒽
= 𝑓(𝑡𝑛 , 𝑐2𝒽 , 𝑦𝑛 + 𝑎21𝐾1) = 𝑓(𝑡𝑛 , 𝑦𝑛) + 𝑐2𝒽𝑓𝑡 + 

                                    𝑎21𝐾1𝑓𝑦 +
𝑐2

2𝒽2

2
𝑓𝑡𝑡 +

𝑎21
2 𝐾1

2

2
𝑓𝑦𝑦 + 𝑐2 𝒽𝑎21𝐾1𝑓𝑡𝑦                     …(5) 

 And compensate for the value of  𝐾1 =  𝒽 𝑓(𝑡𝑛 , 𝑦𝑛) , 𝐾2 from the (5) in (2) and arrange them according to the powers 𝒽, we find 

that : 

𝑦𝓃+1 = 𝑦𝓃 + (𝑤1 + 𝑤2)𝒽𝑓 + 𝑤2𝒽2(𝑐2𝑓𝑡 + 𝑎21𝑓𝑓𝑦) + 

                                           𝑎21𝒽2 (
𝑐2

2

2
 𝑓𝑡𝑡 + 𝑐2𝑎21𝑓𝑡𝑦 𝑓 +

𝑎21
2

2
 𝑓2𝑓𝑦𝑦).                      ⋯ (6) 

From the relation (4) and (6) we get: 

 (𝑤1 + 𝑤2 ) 𝒽 =  𝒽    ⟹   (𝑤1 + 𝑤2 ) = 1 

𝑤2𝒽2𝑐2 = 𝑎21𝒽2𝑤2 =
𝒽2

2
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where the above equation has the solution :- 

𝑤1 = 𝑤2 =
1

2
 

𝑐2 = 𝑎21 = 1 

therefore, there are four unknown coefficients from which the Runge-kutta method results from the second order, and it is written in 

the following: 

𝑦𝓃+1 = 𝑦𝓃 +
1

2
[𝐾1 + 𝐾2] 

                                                              𝐾1 =  𝒽 ∙ 𝑓(𝑡𝑛, 𝑦𝑛)                          

                                                              𝐾2 = 𝒽 ∙ 𝑓(𝑡𝑛  +  𝒽 , 𝑦𝑛 + 𝐾1)                        ⋯ (7) 

2-2  Runge-Kutta method of third  order 

        In similar  way, a third order Runge-kutta method can be derived to solve the ordinary differential equation ,which has the 

form:- 

                         𝑦𝓃+1 = 𝑦𝓃 +
1

6
(𝐾1 + 4𝐾2+𝐾3) 

                                 𝐾1 =  𝒽 ∙ 𝑓(𝑡𝑛, 𝑦𝑛)  

                                 𝐾2 = 𝒽 ∙ 𝑓 (𝑡𝑛  +  
𝒽

2
 , 𝑦𝑛 +

𝑘1

2
)   

                               𝐾3 = 𝒽 ∙ 𝑓(𝑡𝑛  + 𝒽 , 𝑦𝑛 + 2𝑘2 −  𝑘1 )                       ⋯ (8)                        

and  𝑡𝑛 = 𝑡0 + 𝑖𝒽                   

2-3  Runge-Kutta method of fourth  order. 

                      We write the generalized fourth order Runge-kutta formula as follows: 

                                 𝑦𝓃+1 = 𝑦𝓃 +
1

6
(𝐾1 + 2𝐾2+2𝐾3+𝐾4) 

                                 𝐾1 =  𝒽 ∙ 𝑓(𝑡𝑛, 𝑦𝑛)  

                                 𝐾2 = 𝒽 ∙ 𝑓 (𝑡𝑛  +
𝒽

2
 , 𝑦 +

𝑘1

2
)   

                                       𝐾3 = 𝒽 ∙ 𝑓 (𝑡𝑛  +
𝒽

2
 , 𝑦𝑛 +

𝑘2

2
 )             

                                       𝐾4 = 𝒽 ∙ 𝑓(𝑡𝑛  + 𝒽 , 𝑦𝑛 +  𝑘3)                               ⋯ (9) 

3   Remark 

      The numerical error is the difference between the exact and approximate solution. There are different errors which dependent in this work. 

3-1 Definition: Absolute Error 
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       The absolute error is the difference between the exact value and the approximate value                                          𝜉ϒ = |ϒ𝑒𝑥𝑎𝑐𝑡 −ϒ𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒|                                           

⋯ (10) 

3-2  Definition: Relative Error 

       The relative error is the ratio of the absolute error to the exact value. 

                                                                   𝜉𝑟 =
|𝜉ϒ|

ϒ𝑒𝑥𝑎𝑐𝑡
  × 100%                           ⋯ (11)                                

4  Applications:- 

       In this section , some applied differential equations are solved by Runge-Kutta method: 

Example(1): ( Newton's law of cooling) 

       A hot Nescafe of 115 Fahrenheit kept in a room temperature of 350 Fahrenheit. The temperature is varying at a pace of 200 Fahrenheit each 

minute. How long will it take for Nescafe to cool to 400 degrees F.? Suppose that Nescafe applies Newton's law of cooling. 

            After represent the above problem as a equation of first order, 

ᶁƮ

ᶁʈ
= −0 ∙ 25(Ʈ − 35)                                ⋯ (12) 

  Ʈ(0) = 115        . ɧ = 0 ∙ 1    ,          0 < ʈ <
1

2
 

The exact solution isƮ(ʈ) = 35 − 80𝑒−0∙25(ʈ) 

We solve  this equation using Runge-Kutta for second, third and four order as in Table(1) 

 

           Table(1) The solution of equation (12) by second, third and fourth order 

𝑡𝑛 Exact 

solution  

RK-2nd order Error RK-3rd order Error RK-4th order Error 

0.1 113.024793 113.025000 1.83145657
3-E5 

113.02479166 118558058

3-E7 
113.02479296 3539046

517-E9 

0.2 111.098354 111.098757 3.62741647

8-E5 
111.09835143 231326559

5-E7 
111.09835397 2700310

033-E9 

0.3 109.2194789 109.2200697 5409291511

-E5 
109.21947520 338767410

1-E7 
109.21947892
4 

2197410

228-E9 

0.4 107.3869934 107.3877617 7154497725

-E5 
107.3869886 446981505

7-E7 
107.38699346
69 

6229804

735-E9 

0.5 105.5997522 105.6006888 8869338995

-E5 
105.5997463 558713432

3-E7 
105.59975223
60 

3409098

909-E9 

 

Example( 2):  (Nuclear physics problem) 
 

The equation  

             
𝒹𝒫 

𝒹ţ
 +Ԓ𝒫 = 0                   ,    𝒫(0)=𝒫0                                                               ⋯ (13) 

is the quantity of atoms in a sample of a radioactive isotope that are motionless un decayed at time t, 𝑠𝑜𝑚𝑒𝑤ℎ𝑒𝑟𝑒 Ԓ is the decay 

constant. 

𝐿𝑒𝑡      𝒫0 = 1       ⟹      𝒫(0) = 1     ¸   𝐿𝑒𝑡  Ԓ = −1   

The Exact solution is  𝒫 = ℯţ  . 
Second, third, and fourth order of Runge-Kutta methods are used to solve this equation as shown below in Table (2) 

                 Table(2) The solution of equation (13) by second, third and fourth order 
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𝑡𝑛 Exact solution  RK-2nd order Error RK-3rd order Error RK-4th order Error 

0.1 1.105170918 1.105170918 1.5465300

18-E3 

1.105166666 3.8473687

02-E5 

1.105170833 7.691118

054-E7 

0.2 1.221402758 1.221402758 3.0928209

19-E3 

1.221393361 7.6936128

88-E5 

1.221402570 1.539213

816-E6 

0.3 1.349858808 1.349858808 4.6388777

57-E3 

1.349843229 1.1541207

06-E4 

1.349858497 2.303944

666-E6 

0.4 1.491824698 1.491824698 6.1846944

97-E3 

1.491321742 3.3714148

9-E3 

1.491824240 3.070065

81-E6 

0.5 1.648721271 1.648721271 7.7302696

48-E3 

1.648689559 1.9234300

28-E4 

1.648720638 3.839339

075-E6 

 

Example (3): (Problem of Pharmacokinetics) 

     The problem of pharmacokinetics can be considered as equation: 
𝑑𝒦(𝓉) 

𝑑𝓉
 + 𝒶𝒦(𝓉) =

𝔓

𝓋𝒪ℒ
                           , 𝓉 > 0                                              ⋯ (14) 

𝑤𝑖𝑡ℎ 𝒦(0)=0    ,   

Here 𝒦(𝓉): drug concentration in the blood at any time  , 

 𝒶: elimination velocity constant 

𝔙: infusion rate (in mg/min) ,  

𝓋𝒪ℒ: volume in which drug is distributed   

The exact solution is ℯ𝓉   − 1 

The result obtained using Runge-kutta formula of the second, third and fourth order are calculated  in Table(3): 

           Table(3) The solution of equation (14) by second, third and fourth order 

𝑡𝑛 Exact solution  RK-2nd order Error RK-3rd order Error RK-4th order Error 

0.1 0.1051709181 0.1050000000 1.6251460

3-E2 

0.1051666666 4.0424673

25-E4 

0.1051708333 8.063065

487-E6 

0.2 0.2214027582 0.2210250000 1.7062036

76-E2 

0.2213933611 4.2443464

01-E4 

0.2214025708 8.464212

529-E6 

0.3 0.3498588076 0.3492326250 1.7898151

67-E2 

0.3498432295 4.4526819

57-E4 

0.3498458499 7.069409

6-E4 

0.4 0.4918246976 0.4909020506 1.8759671

98-E2 

0.4918017425 4.6673337

29-E4 

0.4918242400 9.304128

122-E6 

0.5 0.6487212707 0.6474467659 1.9646416

07-E2 

0.6486895591 4.8883243

75-E24 

0.6487206385 9.745325

59-E6 

 

Example(4):(Problem A Steady Heat Transform)  

     Consider the stable heat transform problem. 

𝑑ϻ(ȶ) 

𝑑ȶ
+ ɀϻ(ţ) = ţ             , with ϻ(0)=0 .                                       ⋯ (15) 

Where  ɀ   represents the “thermal diffusivity”, and ϻ(𝑡) is “the temperature. 

 The exact solution  ţ − 1 + ℯ−ţ, when  ɀ = 1. 

In order to solve this equation for the second, third, and fourth orders, we use the Runge-Kutta methods such as in Table(4). 

          Table(4) The solution of equation (15) by second, third and fourth order 

𝑡𝑛 Exact solution  RK-2nd order Error RK-3rd order Error RK-4th order Error 
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0.1 0.00483741 0.00500000 3.3610961

24-E1 

0.00483333 8.4342654

44-E3 

0.00483750 1.860499

73-E4 

0.2 0.01873075 0.01902500 1.5709461

71-E1 

0.01872336 3.9453839

27-E3 

0.01873090 8.008221

774-E5 

0.3 0.04081822 0.041217625 9.7849685

75-E2 

0.04080818 2.4596858

95-E3 

0.04081842 4.899772

7-E5 

0.4 0.07032004 0.07080125 6.8431417

27-E2 

0.07030794 1.7207043

68-E3 

0.07032028 3.412967

342-E5 

0.5 0.10653065 0.10707576 5.1169311

37-E2 

0.10651696 1.2850761

73-E3 

0.10653093 2.628344

651-E5 

 

Example (5): (Problem of Population Growth)  

       A town's population growth is proportionate to its present population. if after three years, the population doubles, and after five 

years, it reaches 10,000. Calculate the town's original population. 

Mathematically, the aforementioned application (problem) can be detailed as: 
𝑑Ŋ

𝑑𝜏
= 0 ∙ 231Ŋ      ¸     Ŋ(0) = 3151  ⋯ (16) 

t is the number of people who live in the city at any given moment, 𝑡 is denoted by Ŋ(𝑡) and  𝜍 =0.231 is the proportionality constant. 

The original population of the town at the time 𝜏 =0 is given by 𝑁0. 

The exact solution is 3151 𝑒0.231(  𝜏) 

The Runge_Kutta method of the second, third and fourth order can be used to solve this problem as in table (5) 

           Table(5) The solution of equation (16) by second, third and fourth order 

𝑡𝑛 Exact solution  RK-2nd order Error RK-3rd order Error RK-4th order Error 

0.1 3224.635314 3224.628802 2.0194531

68-E5 

3224.635275 1.2094390

9-E7 

3224.635313 3.101125

872-E9 

0.2 3299.991401 3299.978074 4.0384953

72-E5 

3299.991324 2.3333394

13-E7 

3299.991400 3.030310

927-E9 

0.3 3377.108476 3377.088019 6.0575856

73-E5 

3377.108357 3.5237245

37-E7 

3377.108475 2.961113

056-E9 

0.4 3456.027689 3455.999776 6.0575856

73-E5 

3456.027527 4.6874624

45-E7 

3456.027688 2.893495

336-E9 

0.5 3536.791155 3536.755449 1.0095591

86-E4 

3536.790949 5.8244886

67-E7 

3536.791154 2.827421

683-E9 

 

Form comparison Runge-Kutta methods in tables 1, 2, 3, 4 and 5 with exact solution, we conclude the fourth order method is the 

most accurate for analytical solution. 
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