On The ψ -subalgebras of ψ -algebra

Dr. Areej Tawfeeq Hameed¹ and Nabaa Hassoon Jaber AL-Saedi²

¹Department of Mathematics, Faculty of Education for Girls, University of Kufa, Iraq.

E-mail: areej.tawfeeq@uokufa.edu.iq or areej238@gmail.com

²Department of Mathematics, Faculty of Education for Girls, University of Kufa, Iraq.

E-mail: areej.tawfeeg@uokufa.edu.ig

Abstract: In this article, we present the concept of -algebras, a novel type of two-operation algebraic structure, as well as its subalgebra and some of its features. In particular, we demonstrate that $(X; \neg)$ is a semigroup with identity $\exists if(X; \neg, \neg, \exists)$ is a -algebra. We also discussed the connection between congruences and subalgebras.

Keywords— ψ -algebras, ψ -subalgebra, homomorphism of ψ -algebra.

1. Introduction

algebra and BCK – algebra, respectively.

The BCK – algebras istinctive subclass of the BCI –algebras, as is widely know. In this essay, we define the

terms algebra, subalgebra, and

homomorphism of algebras.

2. ψ -algebras

In this section, we introduced an algebraic structure called a ψ -algebra, as the following:

Definition 2.1. The algebraic system $(X; \neg, \lambda, \beth)$ with two operations (\neg) and (\wr) and constant (\beth) is called ψ -algebras, if it satisfies the following properties: for all w, $\mu, z \in X$,

- $(\psi_1) \ w \wr w = \beth$
- $(\psi_2) (\exists \wr w) \neg w = \exists,$
- (ψ_2) $(w \land h) \land z = w \land (z \neg h)$.
- $(\psi_4)(h \neg w) \land (w \land z) = h \neg z.$

For brevity we shall call $(X; \neg, \lambda, \beth)$ a ψ -algebra unless otherwise specified.

In X we can define a binary relation (\leq) by: $w \leq h$ ⇔if $w \wr \mu = \exists$.

Lemma 2.2. Let $(X; \neg, \lambda, \beth)$ be a ψ -algebra. Then for any w, h, $z \in X$,

- (L_1) Since $w \in X$, then $(\wr w) \in X$,
- (L_2) $w \neg h = h \neg w$,
- (L_3) $w \wr h = \wr h \neg w$,
- (L_4) $\exists \wr w = \wr w, w = \wr (\wr w)$

1. Introduction
$$(L_5) \quad \Box \neg \Box = \Box, \quad \Box \wr \Box = \Box,$$

$$(L_6) \quad \wr (w \wr h) = \wr w \neg h \text{ and } \wr (w \neg h) = \wr w \wr h,$$
 The abstract was introduced by Y. Imai and K. Iseki. algebras BCI $\stackrel{(L_7)}{=}$ $((w \wr z) \neg (z \wr h)) = w \wr h \text{ and } ((w \wr z) \wr (h u \wr h)) = w \wr h \text{ and } ((w \wr z) \wr (h u \wr h)) = w \wr h \text{ and } ((w \wr z) \wr h) = w \wr h \text{ and } ($

Proposition 2.3. Let $(X; \neg, \lambda, \beth)$ be a ψ -algebra. Hence the following is true: for any w, $u, z \in X$,

$$(a_1)$$
 $w \wr h = \exists$ and $h \wr w = \exists$ imply $w = h$,

$$(a_2)$$
 $w \neg h = w \wr (\wr h),$
 (a_3) $w \wr h = w \neg (\wr h),$

$$(a_3)$$
 $w \in \mu = w \neg (\in \mu),$
 (a_4) $(w \in \mu) \wr z = (w \wr z) \wr \mu,$

$$(a_5) \quad (w \land fu) \land w = \exists \land fu,$$

$$(a_6) \supseteq (w \wr h) = h \iota w,$$

$$(a_7)$$
 $(\exists \wr w) = \exists$ implies that $w = \exists$,

$$(a_8)$$
 $w = (w \wr \beth) \wr \beth$,

$$(a_9)$$
 $z \wr w = z \wr h$ implies that $\exists \wr w = \exists \wr h$.

Proof:

$$(a_1)$$
 $w \in hu = \exists \ and \ hu \in w = \exists$, then $w \leq hu$ and $hu \leq w \text{ imply } w = hu$.

- (a_2) It is clear by lemma $(2.4(L_1))$.
- (a_3) It is clear by lemma $(2.4 (L_3))$ and (L_2) .

$$(a_4)(w \wr [\mu]) \wr z = w \wr (z \neg [\mu]) by (\psi_3)$$

$$= w \wr ([\mu \neg z]) by lemma (2.2(L_2))$$

$$= (w \wr z) \wr [\mu] by (\psi_3).$$

$$(a_5)$$
 $(w \land h) \land w = (w \land w) \land h, by(a_4) = \exists \land h, by(\psi_1).$

$$(a_6) \ \exists \ \wr \ (w \wr \ \mu) = \exists \ \wr \ (\iota \ \mu \neg w) \ by \ lemma \ (2.2(L_3))$$

$$= \wr \ (\iota \ \mu \neg w) \neg \exists \ by \ lemma \ (2.2(L_3))$$

$$= (\mu \wr w) \neg 0by lemma \ (2.2(L_6))$$

$$= \mu \wr w \ by \ (\psi_2).$$

$$(a_7)$$
 $\exists \wr w = \exists$ implies that $w = \exists$, by (ψ_2) .

$$(a_8)$$
 $(w \wr \beth) \wr \beth = w \wr (\beth \neg \beth)$, by (ψ_3)
= $w \wr \beth$ and, by lemma $(2.2(L_5))$
= w , by (ψ_2) .

$$(a_9) \ \exists \ \ w = (z \land z) \land w, by(\psi_1)$$

$$= (z \land w) \land z, \ by \ (a_4)$$

$$= (z \land \mu) \land z, \ by \ assumption$$

$$= (z \land z) \land \mu, \ by \ (a_4)$$

$$= \exists \land \ \mu, \ by \ (\psi_1). \ \triangle$$

<u>Proposition</u> 2.4. Let $(X; \neg, \lambda, \beth)$ be a ψ -algebra, then the following holds: for any w, $\{u, z \in X\}$,

$$(b_1)$$
 $w \in h \le z$ imply $w \in z \le h$,

$$(b_2)$$
 $w \le \mu$ implies that $z \neg \mu \le z \neg w$,

$$(b_3)$$
 $w \le \mu$ implies $w \wr z \le \mu \wr z$,

$$(b_4)$$
 $(w \wr \mu) \wr (z \wr \mu) \leq w \wr z$,

$$(b_5)$$
 $(w \wr \mu) \wr (w \wr z) \leq z \wr \mu$,

$$(b_6)$$
 $w \le \mu$ and $\mu \le z$ imply $w \le z$.

Proof:

$$(b_1)$$
 $w \in h \le z$ imply $(w \in h) \in z = \exists$ imply

$$(w \wr z) \wr \mu = \exists by proposition (2.3(a_4)) imply w \wr z \le \mu.$$

$$(b_2)(w\neg z) \wr (|\mu\neg z) = (w \wr |\mu), \ by \ (\psi_4)$$

$$= \wr (|\mu \wr w|),$$

$$by \ lemma \ (2.2(L_6) \ and \ (L_2)),$$

$$= \exists, \ by \ assumption \ (w \le |\mu). \ Then$$

$$z\neg \ |\mu \le z\neg w|.$$

$$(b_3) \ (w \wr z) \wr (|\mu \wr z|) = (w \wr |\mu|),$$

$$by \ lemma \ (2.2(L_7))$$

$$= \exists, \ by \ assumption \ (w \le |\mu|),$$

Then $w \wr z \leq \mu \wr z$.

$$(b_4) [(w \wr h) \wr (z \wr h)] \wr (w \wr z)$$

$$= (w \wr h) \wr [(z \wr h) \neg (w \wr z)], by (\psi_3)$$

$$= (w \wr h) \wr (w \wr h), by lemma (2.2(L_7))$$

$$= \exists, by (\psi_1)$$

Then $(w \wr h) \wr (z \wr h) \leq w \wr z$.

$$= (w \wr \mu) \wr [(w \wr z) \neg (z \wr \mu)] \ by \ (\psi_3)$$

$$= (w \wr \mu) \wr (w \wr \mu), \ by \ lemma \ (2.2(L_7))$$

$$= \exists, \ by \ (\psi_1)$$
Then $(w \wr \mu) \wr (w \wr z) \le z \wr \mu$.
$$(b_6) \text{ By applying } (\psi_2), \ (x \le y) \text{ and } (\psi_4),$$

$$z \wr w = (z \wr \exists) \wr w, \quad by \ (\psi_2)$$

$$= (z \wr (\mu \neg \mu)) \wr w, \ by \ (\psi_1)$$

$$= z \wr ((\mu \wr \mu) \wr w), \ by \ (\psi_3)$$

 $= z \land \mu, \ by \ (\psi_2)$ = \(\mathbf{1}\), \(by \) (\(\mu \le z\)) Hence, \(z \le w = \mathbf{1}\) and so \(w \le z\).

 $= (z \wr \beth) \wr \mu, by (\psi_3)$

 $= z \wr (h_{\neg}(w \wr h)), by (\psi_3)$

 $= z \wr (\mu \neg \exists), by (w \leq \mu)$

 $(b_5)[(w \wr h) \wr (w \wr z)] \wr (z \wr h)$

<u>Proposition</u> 2.5. *Let* $(X; \neg, \wr, \beth)$ be ψ -algebra and (\le) be a *relation* on X, then (X, \le) is a partially ordered set.

Proof:

Let $(X; \neg, \lambda, \beth)$ be ψ -algebra and let w, $[u, z \in X]$, since $x - x = \beth$.

Suppose that $w \le h$ and $h \le w$, then x - y = b = y - x and x = y, by Proposition (2.3(a_1)).

Suppose that $w \le |u|$ and $|u| \le z$, then by Proposition $(2.6(b_6))$, $x \le z$. Thus (X, \le) is a partially ordered set. \triangle

3. On ψ -subalgebras of ψ -algebras

We explain the idea of -subalgebra in -algebra in this section and provide some instances and results.

Definition 3.1.

Let $(X; \neg, \lambda, \beth)$ be a ψ -algebra and S be a nonempty set of X. S is know a ψ -subalgebra of X if $w \neg h u \in S$ and $u \land h u \in S$, whenever $u \in S$.

Example 3.2. Let $(Z_6; \neg_6, \wr_6, \beth)$ the following tables to form a set.:

Then $(Z_4; \neg_4, \wr_4, \beth)$ is a ψ -algebra. It is easy to show that $I_1 = \{\bar{\beth}, \bar{\beth}\} = <\bar{\beth}>$ and $I_2 = Z_4 = <\bar{\beth}>$ are ψ -subalgebras of $(Z_4; \neg_4, \wr_4, \beth)$.

Proposition 3.3. Let *I* be a ψ -subalgebra of ψ -algebra $(X; \neg, \lambda, \beth)$ and *J* be a ψ -subalgebra of *I*. Then *J* is a ψ -subalgebra of *X*.

Proof:

Let w, $\mu \in X$, such that $w \neg \mu \in J$ and $w \lor \mu \in J$, we see that $w \neg \mu \in I$ and $w \lor \mu \in I$, by assumption, I is a ψ -subalgebra of X, it follows that $w \neg \mu \in J \subseteq I$ and $w \lor \mu \in J \subseteq I$. Therefore I is a ψ -subalgebra of X. \triangle

Proposition 3.4. Let $\{I_i: i \in \Lambda\}$ be a family of ψ -subalgebras of ψ -algebra $(X; \neg, \lambda, \beth)$, then $\bigcap_{i \in \Lambda} I_i$ is a ψ -subalgebra of X.

Proof:

Remark 3.5.

The union of ψ -subalgebra of ψ -algebra (X; \neg , \wr , \supset), is not a ψ -subalgebra as seen in the following example.

Example 3.6.

Let $(Z_6; \neg_6, \wr_6, \beth)$ be a set *with* the *following* tables:

٦	J	2	4	3	Ī	5
J	בֿ	Ž	4	3	1	5
1	1	3	5	4	2	בֿ
2	2	4	בֿ	5	3	1
3	3	5	1	בֿ	4	2
4	4	בֿ	2	1	5	3
5	5	1	3	2	'n	4

≀	בֿ	4	5	Ī	Ž	3
בֿ	בֿ	Ž	1	5	4	3
Ī	1	3	2	בֿ	5	4
2	2	4	3	1	בֿ	5
3	3	5	4	2	1	בֿ
4	4	בֿ	5	3	2	1
5	5	1	בֿ	4	3	2

Then $(Z_6; \neg_6, \lambda_6, \beth)$ is a ψ -algebra. It is easy to show that $I_1 = \{\bar{\beth}, \bar{3}\} = \langle \bar{3} \rangle$ and $I_2 = \{\bar{\beth}, \bar{2}, \bar{4}\} = \langle \bar{2} \rangle$ are ψ -

Γ	2	3	Ī	בֿ
בֿ	2	3	1	ā
Ī	3	בֿ	2	1
3	Ī	Ž	בֿ	3
Ž	בֿ	Ī	3	Ž

?	Ī	3	2	בֿ
בֿ	3	1	Ž	בֿ
Ī	בֿ	2	3	1
3	Ž	בֿ	Ī	3
Ž	1	3	בֿ	Ž

subalgebras of $(Z_6; \neg_6, \wr_6, \beth)$, but the union $I \cup J = \{ \beth, 2, 3 \}$ is not a ψ -subalgebra of X, since

$$(2\neg 1) = 3 \in (I \cup J)$$
, but $(2 \wr 1) = 1 \notin (I \cup J)$.

Proposition 3.7. assume $\{I_i: i \in \Lambda\}$ the family of ψ -subalgebras on ψ -algebra $(X; \neg, \wr, \beth)$, where $I_i \subseteq I_{i\neg 1}$, $\forall i \in \Lambda$. Then $\bigcup_{i\in\Lambda}^{\infty} I_i$ is a ψ -subalgebra of X.

Proof:

4. Homomorphism of ψ -algebras

We examine and discuss the characteristics of -algebra homomorphism in this section.

1-
$$f(w - \mu) = f(w) - f(\mu)$$
,

2-
$$f(w \wr h) = f(w) \wr' f(h)$$
,

We specify $(ker f)(w) = \{w \in X : f(w) = \beth'\}$.

<u>Theorem</u> 4.2. Let $f: (X; \neg, \lambda, \beth) \to (Y; \neg', \lambda', \beth')$ be a homomorphsm of ψ -algebras, then:

$$(A_1)$$
 $f(\exists) = \exists'$.

$$(A_2)$$
 f is injective \leftrightarrow if ker $f = \{ \exists \}$.

$$(A_3)$$
 If $x \le y \rightarrow f(x) \le f(y)$.

Proof:

Vol. 7 Issue 4, April - 2023, Pages: 8-11

$$(A_1)$$
 $f(\Delta) = f(\Delta \neg \Delta) = f(\Delta) \neg 'f(\Delta) = \Delta' \neg '\Delta' = \Delta'$ and

$$f(\exists) = f(\exists \land \exists) = f(\exists) \land 'f(\exists) = \exists' \land '\exists' = \exists'$$
, hence $(\exists) = \exists'$.

 (A_2) Suppose that f is injective and $x \in \ker f$. It follows that

$$\rho(w) = \beth'$$
. Since $f(\beth) = \beth'$, so $f(w) = f(\beth)$. By assumption, $x = \beth$. Thus $(kerf) = \{ \beth \}$.

Conversely, suppose that $(kerf) = \{ \exists \}$. Let w, $[u \in X]$ be such that f(w) = f([u]). We get that $f(w \land [u]) = f(w) \land f([u]) = \exists f([u]) \land$

Hence f is injective.

 (A_3) Let $x \le y$. It follows that $x \nmid y = 2$. So, from (A_1) implies

$$f(w) \wr' f(| u) = f(w \wr | u) = f(\beth) = \beth'$$
. Hence $f(w) \leq f(| \mu) \cdot \Box$

Theorem 4.3. Let $f: (X; \neg, \lambda, \beth) \to (Y; \neg', \lambda', \beth')$ be a homomorphism of ψ -algebras, then

- (\mathbf{F}_1) If S is a ψ -subalgebra of X, then f(S) is a ψ -subalgebra of Y.
- $(\mathbf{F_2})$ If K is a ψ -subalgebra of Y, then $f^{\wr 1}(K)$ is a ψ -subalgebra of X.

Since $f: (X; \neg, \lambda, \beth) \to (Y; \neg', \lambda', \beth')$ is a homomorphism of ψ - algebras,

(F₁) Let *S* be a ψ -subalgebra of *X* and a, $b \in S$, since *S* is a ψ -subalgebra we have $a \neg b \in S$ and $a \wr b \in S$. Then there exist $x, y \in f(S)$ such that w = f(a) and u = f(b).

Hence
$$f(a \neg b) = f(a) \neg' f(b) = w \neg' \text{ [$\mu \in f(S)$ and}$$

 $f(a \wr b) = f(a) \wr' f(b) = w \wr' \text{ [$\mu \in f(S)$.}$

Thusf (S) is a ψ -subalgebra of X.

(**F**₂) Let *K* be a ψ -subalgebra of *Y* and w, $h \in f^{1}(K)$.

Let
$$f^{\wr 1}(a) = w$$
 and $f^{\wr 1}(b) = h$, for some $a, b \in K$, thus

$$f(w \neg \mu) = f(w) \neg' f(\mu) = a \neg' b \in K$$
, and

 $f(w \wr h) = f(w) \wr' f(h) = a \wr' b \in K$, as K is a ψ -subalgebra. Thus $w - h \in f^{\wr 1}(K)$ and $w \wr h \in f^{\wr 1}(K)$.

Hence $f^{i1}(K)$ is a ψ -subalgebra of X.

References

- [1] Hameed A.T. and Hadi B.H., (2018), Cubic Fuzzy AT-subalgebras and Fuzzy AT-Ideals on AT-algebra, World Wide Journal of Multidisciplinary Research and Development, 4, 43, p.4-44.
- [2] Hameed A.T. and Hadi B.H., (2018), Intuitionistic Fuzzy AT-Ideals on AT-algebras, Journal of Adv Research in Dynamical & Control Systems, 10, 10-Special Issue, 2018.
- [3] Hameed A.T. and Kadhim E.K., (2020), Interval-valued IFAT-ideals of AT-algebra, Journal of Physics: Conference Series (IOP Publishing), 2020, p.1-5.
- [4] Hameed A.T. and Malik N.H., (2021), (β, α)-Fuzzy Magnified Translations of AT-algebra, Journal of Physics: Conference Series (IOP Publishing), 2021, pp:1-13.
- [5] Hameed A.T., Abed A.H. and Ghazi I.H., (2020), Fuzzy β-magnified AB-ideals of AB-algebras, International Journal of Engineering and Information Systems (IJEAIS), 4, 6, p.8-13.
- [6] Hameed A.T., (2018), AT-ideals and Fuzzy AT-ideals of AT-algebras, Journal of Iraqi AL-Khwarizmi Society, 1, 2, p.1-9.
- [7] Hameed A.T., Kareem F. F. and Ali S.H., (2021), Hyper Fuzzy AT-ideals of AT-algebra, Journal of Physics: Conference Series (IOP Publishing), 2021, p.1-15.
- [8] Hameed A.T., Fuzzy ideals of some algebras, PH. Sc. Thesis, Ain Shams University, Faculty of Sciences, Egypt, 2015.
- [9] Hameed A.T., Faleh H.A. and Abed A.H., (2021), Fuzzy Ideals of KK-A, Journal of Physics: Conference Series (IOP Publishing), 2021, p.1-7.
- [10] Hameed A.T., Ghazi I.H. and Abed A.H., (2019), Big Generalized fuzzy AB-I of AB-algebras, Jour of Adv Research in Dynamical & Control Systems, 11,11, p.240-249.
- [11] Hameed A.T., Ghazi I.H. and Abed A.H., (2020), Fuzzy α-translation AB-I of AB-algebras, Journal of Physics: Conference Series (IOP Publishing), 2020, p.1-19.
- [12] Hameed A.T., Ali S.H. and , Flayyih R.A., The Bipolar-valued of Fuzzy Ideals on AT-algebra, Journal of Physics: Conference Series (IOP Publishing), 2021, pp:1-9.
- [13] Hameed A.T., Zabiba M.S.M. and Malik N.H., (2021), Magnified translation of intuitionistic fuzzy AT-ideals on ATalgebra, Journal of Discrete Mathematical Sciences and Cryptography, DOI: 10.1080/09720529.2020.1861780.
- [14] Is 'eki K. , On BCI-algebras, Math. Sem. Notes Kobe Univ. , 8 (1980) no. 1 , 125-130.
- [15] Is 'eki K. and Tanaka S., An introduction to theory of BCK -algebras, Math. Japon. 23(1978), no. 1, 1–26.
- [16] Mostafa S.M., Abdel Naby M.A., Abdel-Halim F. and Hameed A.T., (2013), Interval-valued fuzzy KUS-I, IOSR Journal of Mathematics (IOSR-JM), 5, 4, p.61-66.