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Abstract: In this work, the structure of the Levinson center will be described on a random case. In particular, the random Levinson 

center coincides with the positive prolongation of the Omega-limit set. Further, we create the relationship between compact 
dissipative and point dissipative random dynamical systems. Also, it has been demonstrated by an example that compactly dissipative 
does not imply the point dissipatively. 
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1.Introduction: Dissipative theory provides a powerful theoretical structure for control design and analysis of  dynamic systems . 
In particular, Many physical dynamic systems have some inputs, outputs, and state haracteristics associated to preservation, 
dissipation, and transfer of  energy  and mass , and this gives importance to the dissipative theory [8]. Willems [12] , [13] 

presented the foundation for developing theory of  dissipativity for deterministic nonlinear smooth flows.  Also, one can see 
Cheban [1]. The concept of dissipative for RDSs was introduced by many authors, see for example, Igor [7], Crauel and Flandoli 
F. [3], Wang Y., Liu Y. and  Wang Z. [11], Gu A. [6] and others, and some types of dissipativity for RDSs were established by 
Yasir and kadhim [16]. Many concepts of dissipativity in random case have been studied in  [10], [14],  and [15]. 
The aim of this paper is studying  the scale for Compact dissipativity and the notion of  Levinson center for RDSs.  

 

2. Preliminaries for RDSs:  

Some essential  notions associated with RDS are stated here, which are important in our work. Throughout, (𝑋, 𝑑) any matric space and 
We call a subset 𝐾 of 𝑋 is pre compact if every sequence in 𝐾 admits  a subsequence converges to a point of 𝑋, and is call relatively 

compact if and only if every sequence of points in A has a cluster point in 𝑋, for more details see, [2]. 
 
Definition 2.1[5]: Consider the probability space (Ω,ℱ, ℙ). Let the measurable function θ: 𝕋 × Ω ⟶ Ω satisfy the following  

ϑ0 =  idΩ, ϑt ∘ ϑs = ϑt+s∀ t, s ∈ 𝕋 ;  and  ϑtℙ = ℙ ∀ t ∈ 𝕋. 

if  θtA = A,  for every t ∈ 𝕋 , then a set A ∈ ℱ is called ϑ −invariant. If for any ϑ −invariant set A ∈ ℱ either ℙ(A) = 0 or ℙ(A) = 1, 
then   ϑ  is called ergodic under ℙ. 

 

Definition 2.2[7]: Consider topological space 𝑋  and a locally compact group 𝕋. The random dynamical system ( RDS) is a pair (ϑ, 𝜓) 
involving a cocycle 𝜓 of continuous functions on  X  over  an MDS ϑ, i.e. a mapping 𝜓 ∶ 𝕋 × Ω × 𝑋 ⟶ 𝑋,  (𝑡,𝜔, 𝑥) ⟼ 𝜓(𝑡, 𝜔, 𝑥) is 

measurable and satisfy the following  for every t ∈ 𝕋 and ω ∈ Ω: 

 (i) the function  𝑥 ⟼ 𝜓(𝑡, 𝜔, 𝑥) ≡  𝜓(𝑡, 𝜔)𝑥 is continuous , and  

(ii) the function 𝜓(𝑡, 𝜔): = 𝜓(𝑡, 𝜔,·) fulfill: 

𝜓(0, 𝜔) = id𝑋, 𝜓(𝑡 + 𝑠, 𝜔) = 𝜓(𝑡, ϑs𝜔) ∘ 𝜓(𝑠, 𝜔). 

The property (ii) called cocycle property of 𝜑.  
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Remark: In general the function (𝑡, 𝑥) ⟼ 𝜓(𝑡, ϑ−𝑡𝜔)𝑥 is not continuous (see [7]). However, in this work, we will assume  that  

𝜓(𝑡, ϑ−𝑡𝜔): 𝑋 → 𝑋 is continuous unless otherwise stated.  

Definition 2.3 [7]: Consider a metric space  (X,d) . The set-valued function 𝐷: Ω ⟶ 2𝑋  is called  a     random set if  D(ω) ≠ ∅  and for 

every 𝑥 ∈ X the function  ω ⟼  distX(x,D(ω)) measurable. A random set  𝐷 is  called a random closed (compact) set when for each 
ω ∈ Ω , the set D(ω) is closed( resp. compact). A random set D is said to be bounded if D(ω) contained  in some random ball  for all ω ∈
Ω.  

For more convenient the random set 𝐷: Ω ⟶ 2𝑋 will denoted by D or {D(ω)}. 

Definition 2.4 [7]: Consider a random set 𝐷: Ω ⟶ 2𝑋. We say that  the set- valued function  𝛾𝐷
𝑡  (𝜔): Ω ⟶ 2𝑋   defined by  

𝛾𝐷
𝑡  (𝜔) ∶= ⋃ 𝜓(𝜏, 𝜃−𝜏𝜔)𝐷(𝜗−𝜏𝜔)𝜏≥𝑡   

the pull back trajectories starting from 𝐷. If 𝐷(𝜔)  =  {𝑣(𝜔)} is a single valued function, then ω ⟼ 𝛾𝑣(ω) ≡ 𝛾𝐷
0 (𝜔) is said to be the (pull 

back) trajectory  starting from 𝑣. 

Definition 2.5 [7]: Consider the RDS (𝜗, 𝜓). 

i. A random set A:Ω ⟶ 2𝑋 is called invariant if 𝜑(𝑡, 𝜔)𝐴(𝜔) = 𝐴(𝜃𝑡𝜔) for all 𝑡 ∈ ℝ, 𝜔 ∈ Ω. 

ii. A random pull back attractor of the RDS (𝜗, 𝜓) in the universe 𝒰 is a proper invariant random closed set 𝐴 ∈ 𝒰  which is attracting 
in 𝒰, i.e., for all 𝑈 ∈ 𝒰 we have  

lim
𝑡→∞

𝑑(𝜓(𝑡, 𝜗−𝑡𝜔)𝑈(𝜗−𝜏𝜔) , 𝐴(𝜔)) = 0 

Definition 2.6 [7]: Consider the RDS (𝜗, 𝜓), and let  t 𝑀: Ω ⟶ 2𝑋  be a random set. 

i. The set-valued function  

ω ⟼ Γ𝑀
+(𝜔) ≔ ⋂ 𝛾𝑀

𝑡 (𝜔)̅̅ ̅̅ ̅̅ ̅̅ = ⋂  ⋃ 𝜓(𝜏, 𝜃−𝜏𝜔)𝑀(𝜗−𝜏𝜔)𝜏≥𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑡>0   

is called the omega-limit set of the trajectories starting from 𝑀 

ii. The set-valued function   

ω ⟼ Γ𝑀
−(𝜔) ≔ ⋂ 𝛾𝑀

𝑡 (𝜔)̅̅ ̅̅ ̅̅ ̅̅ = ⋂  ⋃ 𝜓(𝜏, 𝜃−𝜏𝜔)𝑀(𝜗−𝜏𝜔)𝜏≤𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑡<0   

is called the alpha-limit set. 

Definition 2.7[17]: The RDS (ϑ, 𝜓) is called  

i.  compact dissipative if for every compact random set 𝐴 in X there is random set K in X so that  

lim
𝑡⟶+∞

sup{𝑑(𝜓(𝑡,𝜗−𝑡𝜔)𝑥, 𝐾(𝜔)):𝑥 ∈ 𝐴(𝜗−𝑡𝜔)} = 0 

ii. point dissipative if for every 𝑥 ∈ 𝑋Ω, there is random set K in X so that, 

lim
𝑡⟶+∞

𝑑(𝜓(𝑡,𝜃−𝑡𝜔)𝑥(𝜗−𝑡𝜔), 𝐾(𝜔)) = 0 

Definition 2.8 [17]: Consider RDS (𝜗, 𝜓). A random set 𝑀 is said to be orbitally stable whenever  for any tempered random variable  휀 

and any non-negative number 𝑡 we have  

           𝑑(𝑥, 𝑀(𝜔)) < 𝛿(𝜔) implies  𝑑(𝜓(𝑡,𝜃−𝑡𝜔)𝑥, 𝑀(𝜔)) < 휀(𝜔)  

for some  tempered random variable 𝛿. 

Definition 2.9 [17]: we will call the set 𝐿𝑋(𝜔) defined by following equality:  
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𝐿𝑋(𝜔) ∶= Γ𝐾(𝜔) =∩ {𝜓(𝑡,𝜃−𝑡𝜔)𝐾(𝜗−𝑡𝜔)|𝑡 ∈ 𝑇, 𝜔 ∈ Ω}          

the random Levinson center  of the compact dissipative RDS (𝜗, 𝜓). 

3. Characterization of Compact Dissipativity on RDS:  

Assume Γ𝑋(𝜔) ∶=∪ {Γ𝑥(𝜔)|𝑥 ∈  𝑋}̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  , 𝜔 ∈ Ω. Let (𝜗, 𝜓) be a compact dissipative RDS and 𝐿𝑋(𝜔) its random Levinson center ( 
see, for more details [15]). It is clear that the set  Γ𝑋(𝜔) ⊆ 𝐿𝑋(𝜔), and  Γ𝑋(𝜔) is a main property of a dissipative RDS. We see, 

from Theorem 3.5 [16] in a local compact space 𝑋, the set Γ𝑋(𝜔)  characterize  point dissipativity  when it is not empty and 
compact.  Based on the foregoing, We will examine the relationship between Γ𝑋(𝜔) and 𝐿𝑋(𝜔). 
 

 Let {휀𝑠:𝛺 → ℝ, 𝑠 ∈ ℝ+} be a family of tempered random variables (t.r.v), and define the forward prolongation and the forward limit 
prolongation of the random set 𝑀 respectively as follows : Define two operators 𝐷+ , 𝐽+:𝑋 ⟶ 2𝑋  as follows: for every random set 

𝑀: Ω ⟶ 𝑋   

          𝐷+(𝑀(𝜔)) ≔ ⋂  ∪ {𝜓(𝑡, 𝜃−𝑡𝜔)𝐵(𝑀, 휀𝑠)|𝑡 ≥ 0, 𝜔 ∈ Ω}̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑠>0  , 

          𝐽+(𝑀(𝜔)) ≔ ⋂ ⋂ ∪ {𝜓(τ, 𝜃−τ𝜔)𝐵(𝑀, 휀𝑠)|𝜔 ∈ Ω, τ ≥  t}̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑡≥0𝑠>0  

Sometimes we will write 𝐷+(𝑀(𝜔)) = 𝐷𝑀
+ (𝜔) and 𝐽+(𝑀(𝜔)) = 𝐽𝑀

+ (𝜔). 

In particular, if = {𝑥} , then we set 

𝐷𝑥
+(𝜔): = 𝐷+({𝑥}),   and    𝐽𝑥

+(𝜔): = 𝐽+({𝑥}). 

The set  𝐷𝑀
+ (𝜔) is called the first forward  prolongation of a random set 𝑀 and  𝐽𝑀

+ (𝜔) is called first forward prolongational limit 

set of  a random set 𝑀. It clear that 𝐷𝑀
+(𝜔) and 𝐽𝑀

+ (𝜔) are random sets for every random set. In fact  𝐷𝑀
+ (𝜔) and 𝐽𝑀

+ (𝜔) are closed 
invariant sets as will be seen in Proposition 3.2  below.  

Note that, [9] define the prolongation and prolongational of a random set in terms of sequences but here we define these concepts as in 
above and will give a characterization in terms of sequences in Theorem 3.2. However, our definition is different from that one given in 
[9].  

Notation: We will introduce the following two sets in order to give the characterization of the first forward prolongation and first forward 
prolongational limit set of a random set M in terms of the sequence. 

�̃�𝑀
+ (𝜔) ≔ {𝑦 ∈ 𝑋: there exist {𝑥𝑛} and {𝑡𝑛} such 𝑑(𝑥𝑛,𝑀(𝜗−𝑡𝑛

𝜔)) → 0 and  𝜓( 𝑡𝑛, 𝜗− 𝑡𝑛
𝜔)𝑥𝑛 → 𝑦  } and  

�̃�𝑀
+(𝜔) ≔ {𝑦 ∈ 𝑋: there exist {𝑥𝑛} and {𝑡𝑛},𝑡𝑛 ⟶ +∞ such 𝑑(𝑥𝑛 ,𝑀(𝜗−𝑡𝑛

𝜔)) ⟶ 0 and  𝜓( 𝑡𝑛, 𝜗− 𝑡𝑛
𝜔)𝑥𝑛 ⟶ 𝑦  }  

Theorem 3.1: If  (𝜗, 𝜓) is an RDS, then for every random set 𝑀, the following hold: 

i.  𝐷𝑀
+ (𝜔) = �̃�𝑀

+ (𝜔) , 

ii.  𝐽𝑀
+(𝜔) = �̃�𝑀

+(𝜔) . 

Proof: i.  Let 𝑝 ∈ 𝐷𝑀
+ (𝜔), then there exist sequence {𝑝𝑛} ⊂∪ {𝜓(𝑡,𝜗−𝑡𝜔)𝐵(𝑀(𝜗−𝑡𝜔), 휀𝑠)|𝑡 ≥ 0, 𝜔 ∈ Ω}, 𝑝𝑛 → 𝑝, 

So, 𝑝𝑛 ∈∪ {𝜓(𝑡, 𝜃−𝑡𝜔)𝐵(𝑀(𝜗−𝑡𝜔), ε𝑠)|𝑡 ≥ 0, 𝜔 ∈ Ω}, ∀ 𝑠 > 0 such that 𝑝𝑛 = 𝜓(𝑡𝑛 ,𝜗−𝑡𝑛
𝜔)𝑥𝑛. But  𝑝𝑛 → 𝑝  so   𝜓(𝑡𝑛 ,𝜗−𝑡𝑛

𝜔)𝑥𝑛 → 𝑝. 

Since for every 𝑠 > 0 we have {𝑥𝑛} ∈ 𝐵(𝑀(𝜗−𝑡𝑛
𝜔),ε𝑠)  then 

𝑑(𝑥𝑛 ,𝐵 (𝑀(𝜗−𝑡𝑛
𝜔)) < ε𝑠 , for all 𝑠 > 0 . 

Thus there exist {𝑥𝑛} and {𝑡𝑛} such that 

𝑑(𝑥𝑛 ,𝑀(𝜃−𝑡𝑛
𝜔)) → 0 and 𝜑( 𝑡𝑛, 𝜃− 𝑡𝑛

𝜔)𝑥𝑛 → 𝑝. 
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 Then  𝑝 ∈ �̃�𝑀
+ (𝜔). By reversing the above argument we get the reverse inclusion and then the result follows. 

ii.  Let 𝑦 ∈ 𝐽𝑀
+ (𝜔). Suppose that 𝑡 ≥ 0 and {𝑈𝑚:𝑚 = 1,2, … } is a collection of all neighborhoods of 𝑦.  

𝑦 ∈ ⋂ ⋂ ⋃ 𝜓(𝜏, 𝜃−𝜏𝜔)ℬ(𝑀, 휀𝑠)𝜏≥𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑡≥0𝑠>0   

Then 

𝑦 ∈ ⋃ 𝜓(𝜏, 𝜃−𝜏𝜔)ℬ(𝑀, 휀𝑠)𝜏≥𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ̅ for every 𝑡 ≥ 0,   𝑠 > 0. 

Thus, there is  sequence  {𝑦𝑚} in ⋃ 𝜓(𝜏, 𝜗−𝜏𝜔)ℬ(𝑀, 휀𝑠)𝜏≥𝑡  such that  𝑦𝑚 ⟶ 𝑦.   

Since   𝑦𝑚 ∈ ⋃ 𝜓(𝜏, 𝜃−𝜏𝜔)ℬ(𝑀, 휀𝑠)𝜏≥𝑡  for every 𝑚. Then there is 𝜏𝑚 ≥ 0 and 𝑥𝑚 ∈ 𝐵(𝑀, 휀𝑠) such that 

𝑦𝑚 = 𝜓(𝜏𝑚, 𝜗−𝜏𝑚
𝜔)𝑥𝑚 . 

Then, 

𝜓(𝜏𝑚, 𝜗−𝜏𝑚
𝜔)𝑥𝑚 ⟶ 𝑀(𝜗−𝑡𝑛

𝜔) and 𝜏𝑚 ⟶ ∞. 

This means that 𝑦 ∈ 𝛤𝑀
+(𝜔). 

Conversely, let 𝑦 ∈ 𝛤𝑀
+(𝜔). Then  𝜓(𝑡𝑛 ,𝜗−𝑡𝑛

𝜔)𝑥𝑛 ⟶ 𝑦 for some sequence  {𝑡𝑛} in ℝ+ and   𝑑(𝑥𝑛 ,𝑀(𝜗−𝑡𝑛
𝜔)) ⟶ 0 with  𝑡𝑛 ⟶

∞.  Thus, for any neighborhood 𝑈 of 𝑦 and any 𝑡 ≥ 0, there exist 𝑛0 and 𝑛1 such that 𝑡𝑛 ≥ 𝑡  for every 𝑛 > 𝑛0 and 
𝜓(𝑡𝑛 ,𝜗−𝑡𝑛

𝜔)𝑥𝑛 ∈ 𝑈 for every 𝑛 > 𝑛1. Also, we have 𝑡𝑛2
≥ 𝑡 and 𝜓(𝑡𝑛2

, 𝜗−𝑡𝑛2
𝜔)𝑥𝑛 ∈ 𝑈  for every                          𝑛2 =

max{𝑛0 ,𝑛1}. Therefore,  

𝑈 ∩ (⋃ 𝜓(𝜏, 𝜃−𝜏𝜔)𝐵(𝑀(𝜗−𝜏𝜔)𝜏≥𝑡 , 휀𝑠)) ≠ ∅ . 

It follows that, 

𝑦 ∈ ⋃ 𝜓(𝜏, 𝜃−𝜏𝜔)𝐵(𝑀(𝜗−𝜏𝜔), 휀𝑠),𝜏≥𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  , for every 𝑡 ≥ 0  and 𝑠 ≥ 0 

Thus,  

𝑦 ∈ ⋂ ⋂ ⋃ 𝜓(𝜏, 𝜃−𝜏𝜔)𝐵(𝑀, 휀𝑠)𝜏≥𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑡≥0𝑠>0 = 𝛤𝑀
+(𝜔) .                                    ∎ 

Preposition 3.2: The set 𝐷𝑀
+ (respectively, 𝐽𝑀

+) is closed and forward invariant. 

Proof: By definition,  𝐷𝑀
+ is closed. For forward invariance, suppose that   𝑥 ∈ 𝐷𝑀

+ (𝜔)  and  𝑡 > 0. Then there exist two sequences {𝑥𝑛} 
in 𝑋 and  {𝑡𝑛} in ℝ+ such that 𝑑(𝑥𝑛 ,𝑀(𝜗−𝑡𝑛

𝜔)) ⟶ 0 and  𝜓( 𝑡𝑛, 𝜗− 𝑡𝑛
𝜔)𝑥𝑛 ⟶ 𝑥.  

Since 𝜑(𝑡, 𝜔): 𝑋 ⟶ 𝑋 is continuous, then  𝜓(𝑡, 𝜔) ∘ 𝜓( 𝑡𝑛 ,𝜗− 𝑡𝑛
𝜔)𝑥𝑛 ⟶ 𝜓(𝑡, 𝜔)𝑦. So 

𝜓(𝑡 + 𝑡𝑛 ,𝜗−(𝑡+ 𝑡𝑛)𝜗𝑡𝜔)𝑥𝑛 ⟶ 𝜓(𝑡, 𝜔)𝑥.  

Also since 𝑑(𝑥𝑛 , 𝑀(𝜗−𝑡𝑛
𝜔)) ⟶ 0, then 𝑑(𝑥𝑛 ,𝑀(𝜗−(𝑡+ 𝑡𝑛)𝜔) ⟶ 0. Hence  𝜓(𝑡, 𝜔)𝑥 ∈ 𝐷𝑀

+ (𝜗𝑡𝜔). Consequently  𝐷𝑀
+ (𝜔) ⊂ 𝐷𝑀

+ (𝜗𝑡𝜔) for 

all 𝑡 > 0.  

   Let 𝑥 ∈ 𝐷𝑀
+ (𝜗𝑡𝜔)  and let 𝑡 > 0. Then there exist two sequences {𝑥𝑛} in 𝑋 and  {𝑡𝑛} in ℝ+ such that 𝑑(𝑥𝑛 , 𝑀(𝜗− 𝑡𝑛

𝜗𝑡𝜔) ⟶ 0 and 

( 𝑡𝑛 ,𝜗− 𝑡𝑛
𝜗𝑡𝜔)𝑥𝑛 ⟶ 𝑥 . So  

𝑑(𝑥𝑛 ,𝑀(𝜗− 𝑡𝑛+𝑡𝜔) ⟶ 0 and 𝜑(𝑡, 𝜔)𝑧𝑛 ⟶ 𝑥                          (3.1) 

where  𝑧𝑛 = 𝜑(𝑡𝑛 − 𝑡, 𝜗− 𝑡𝑛+𝑡𝜔)𝑥𝑛 .Moreover, by Theorem 3.1 (i) , 𝑏 ∈ 𝐷𝑀
+. By (3.1)  𝑥 = 𝜓(𝑡, 𝜔)𝑏. So, 

𝐷𝑀
+ (𝜗𝑡𝜔) ⊂ 𝜓(𝑡, 𝜔)𝐷𝑀

+(𝜔) for every  𝑡 > 0 and 𝜔 ∈ Ω. 
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Thus  𝐷𝑀
+(𝜔) is an invariant. 

Similarly, We can show that 𝐽𝑀
+  is closed and invariant.  

Lemma 3.3: Let (𝜗, 𝜓) be an RDS, 𝜓(𝑡, 𝜗−𝑡𝜔): 𝑋 → 𝑋 is  continuous for every 𝑡 > 0   and  𝑦 ∈ Γ𝑥(𝜔) . Then                                                             
           𝐽𝑥

+(𝜔) ⊆ 𝐽𝑦
+(𝜔). 

Proof:  Let 𝑦 ∈ Γ𝑥(𝜔) and p ∈ 𝐽𝑥
+(𝜔). Then there exist sequences {𝜏𝑛

ـ
} → +∞, 𝜑 ( 𝜏𝑛

ـ
,𝜃

− 𝜏𝑛
ـ 𝜔) 𝑥 → 𝑦, {𝑡𝑛

ـ
} and {𝑥𝑛} such that 𝑥𝑛 → x, 

𝑡𝑛 → +∞, and 𝜑 ( 𝑡𝑛
ـ

,𝜃
− 𝑡𝑛

ـ 𝜔) 𝑥𝑛 → 𝑝. According to Theorem 3.1 we can consider that 𝑡𝑛
ـ

− 𝜏𝑛
ـ

> 𝑛 for all 𝑛 ∈ 𝑁. ∀ 𝑘 ∈ 𝑁 consider the 

sequence {𝜑 ( 𝜏𝑘
ـ
, 𝜃

− 𝜏𝑘
ـ 𝜔) 𝑥𝑛}. By hypothesis ,  

𝜑 ( 𝜏
𝑛𝑘
ـ

,𝜃
− 𝑡𝑛𝑘

ـ 𝜔) 𝑥𝑛 → 𝜑 ( 𝜏
𝑛𝑘
ـ

, 𝜃
− 𝑡𝑛𝑘

ـ 𝜔) 𝑥  𝑎𝑠 𝑛 → +∞,   ∀ 𝑘 ∈ 𝑁,  

and consequently, ∀ 𝑘 ∈ 𝑁 there exists 𝑛𝑘 ≥ 𝑘 such that 

𝑑(𝜑 ( 𝜏
𝑘

ـ
,𝜃

− 𝑡𝑛𝑘
ـ 𝜔) 𝑥𝑛  ,𝜑 ( 𝜏

𝑘

ـ
,𝜃

− 𝑡𝑛𝑘
ـ 𝜔) 𝑥 ) ≤ 𝑘−1 for all 𝑛 ≥ 𝑛𝑘. 

As 𝜑 ( 𝜏𝑛
ـ

,𝜃
− 𝜏𝑛

ـ 𝜔)𝑥 → 𝑦,  we have  

𝑑 (𝑦, 𝜑 ( 𝜏𝑛𝑘

ـ
,𝜃

− 𝑡𝑛𝑘
ـ 𝜔) 𝑥𝑛𝑘 ) ≤  𝑑 (𝑦, 𝜑 ( 𝜏𝑘

ـ
, 𝜃

− 𝜏𝑘
ـ 𝜔) 𝑥 ) +  𝑑 (𝜑 ( 𝜏𝑘

ـ
,𝜃

− 𝜏𝑘
ـ 𝜔) 𝑥  , 𝜑 ( 𝜏𝑛𝑘

ـ
,𝜃

− 𝑡𝑛𝑘
ـ 𝜔) 𝑥𝑛𝑘 )   

≤  𝑑 (𝑦, 𝜑 ( 𝜏𝑘

ـ
, 𝜃

− 𝜏𝑘
ـ 𝜔) 𝑥 ) +  𝑑 (𝜑 ( 𝜏𝑘

ـ
, 𝜃

− 𝜏𝑘
ـ 𝜔) 𝑥  ,𝜑 ( 𝜏𝑘

ـ
,𝜃

− 𝑡𝑛𝑘
ـ 𝜔) 𝑥 )   

                                              +𝑑 (𝜑 ( 𝜏𝑘

ـ
, 𝜃

− 𝑡𝑛𝑘
ـ 𝜔) 𝑥   ,𝜑 ( 𝜏𝑛𝑘

ـ
, 𝜃

− 𝑡𝑛𝑘
ـ 𝜔) 𝑥𝑛𝑘 ) 

Take the limit as ⟶ ∞ , then all terms on the  right hand side of the above inequality approach zero, and so we have 

𝑑 (𝑦, 𝜑 ( 𝜏𝑛𝑘
ـ

,𝜃
− 𝑡𝑛𝑘

ـ 𝜔) 𝑥𝑛𝑘 ) ⟶ 0. Note that, 

 𝜑 ( 𝑡𝑛𝑘
ـ

, 𝜗
− 𝑡𝑛𝑘

ـ 𝜔) 𝑥𝑛𝑘 = 𝜑 (𝑡𝑛𝑘
ـ

− 𝜏𝑛𝑘
ـ

+ 𝜏𝑛𝑘
ـ

,𝜗
− 𝑡𝑛𝑘

ـ 𝜔) 𝑥𝑛𝑘, 

                                    = 𝜑 (𝑡𝑛𝑘
ـ

− 𝜏𝑛𝑘
ـ

,𝜗
−( 𝑡𝑛𝑘

ـ −𝜏𝑛𝑘
ـ )

𝜔) ∘ 𝜑 (𝜏𝑛𝑘
ـ

,𝜗
− 𝑡𝑛𝑘

ـ 𝜔) 𝑥𝑛𝑘 

  𝜑 (𝜏𝑛𝑘
ـ

, 𝜗
− 𝑡𝑛𝑘

ـ 𝜔) 𝑥𝑛𝑘 ⟶  𝑦, and 𝑡𝑛𝑘
ـ

− 𝜏𝑛𝑘
ـ

> 𝑛𝑘  ≥  𝑘.     From this it follows that  𝑝 ∈ 𝐽𝑦
+(𝜔), 𝑖. 𝑒., 𝐽𝑥

+(𝜔) ⊆ 𝐽𝑦
+(𝜔).  ■ 

Corollary 3.4: If  𝑦 ∈ Γ𝑥
+(𝜔), then   𝐽𝑦

+(𝜔) = 𝐷𝑦
+(𝜔). 

Proof:  Since 𝐽𝑦
+(𝜔) ⊆ 𝐷𝑦

+(𝜔), it is sufficient to show that  𝐷𝑦
+(𝜔) ⊆ 𝐽𝑦

+(𝜔).  

Note that  𝐷𝑦
+(𝜔) = 𝛾𝑦

+(𝜔) ∪ 𝐽𝑦
+(𝜔). Since  𝑦 ∈ Γ𝑥(𝜔), we have 

𝛾𝑦
+(𝜔) ⊆ Γ𝑥

+(𝜔) ⊆ 𝐽𝑥
+(𝜔) ⊆ 𝐽𝑦

+(𝜔). 

Hence 

𝐷𝑦
+(𝜔) = 𝛾𝑦

+(𝜔) ∪ 𝐽𝑦
+(𝜔) ⊆ 𝐽𝑦

+(𝜔) ∪ 𝐽𝑦
+(𝜔) = 𝐽𝑦

+(𝜔). 
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Lemma 3.5: Consider the RDS (𝜗, 𝜓) . If  𝑥𝑛 → 𝑥, 𝑦𝑛 → 𝑦 𝑎𝑠  𝑛 → +∞ and   𝑥𝑛 ∈  𝐷𝑦𝑛

+ (𝜔) (respectively, 𝑥𝑛 ∈ 𝐽𝑦𝑛

+ (𝜔)), then 𝑥 ∈

𝐷𝑦
+(𝜔) (respectively 𝑥 ∈ 𝐽𝑦

+(𝜔)). 

Proof:  Let  > 0 and 𝛿 > 0. Since  𝑥𝑛 ∈ 𝐷𝑦
+(𝜔) (𝑥𝑛 ∈ 𝐽𝑦

+(𝜔)) for all 𝑛 there is   𝑧𝑛 ∈ 𝐵(𝑦𝑛, 𝛿/2) and a 𝑡𝑛 ≥ 0 (resp.,  𝑡𝑛 ≥ 𝑛) with 

d(𝑥𝑛 ,𝜓(  𝑡𝑛 ,𝜗−  𝑡𝑛
𝜔)𝑧𝑛) <

2
                                                                (3.2) 

From 𝑥𝑛 → 𝑥 and 𝑦𝑛 → 𝑦 It follows that there is an integer 𝑛0 such that ∀ 𝑛 > 𝑛0, the inequalities 

                              𝑑(𝑦,𝑦𝑛) < 𝛿/2   and   𝑑(𝑥𝑛 ,𝑥) < 𝛿/2                                                    (3.3) 
hold simultaneously. From 𝑧𝑛 ∈ 𝐵(𝑦𝑛 ,𝛿/2) and (3.3) we obtain 𝑑(𝑦, 𝑧𝑛) < 𝛿, and from (3.2) and (3.3) follows the inequality 

𝑑(𝑥, 𝜓(  𝑡𝑛 ,𝜗−  𝑡𝑛
𝜔)𝑧𝑛) < 휀, 𝑖. 𝑒. , 𝑥 ∈ 𝐷𝑦

+(𝜔) (respectively, 𝑥 ∈ 𝐽𝑦
+(𝜔)).                            ■ 

Lemma 3.6: If an RDS (𝜃, 𝜑) and  𝑀 ⊆ 𝑋 is a random compact set, then 

𝐷𝑀
+ (𝜔) = ⋃{𝐷𝑥

+(𝜔) | 𝑥 ∈ 𝑀}  and     𝐽𝑀
+(𝜔) = ⋃{ 𝐽𝑥

+(𝜔)| 𝑥 ∈  𝑀}. 

Proof: Since ⋃{𝐷𝑥
+(𝜔) | 𝑥 ∈ 𝑀} ⊆ 𝐷𝑀

+ (𝜔), it is sufficient to show that  𝐷𝑀
+(𝜔)  ⊆ ⋃{𝐷𝑥

+(𝜔) | 𝑥 ∈ 𝑀}. Let 𝑦 ∈ 𝐷𝑀
+ (𝜔). Then there exist 

{𝑥𝑛} and 𝑡𝑛 ≥ 0 such that 𝑑(𝑥𝑛 , 𝑀(𝜃−  𝑡𝑛
𝜔)) → 0 and 𝑦 = lim

𝑛→+∞
𝜑(  𝑡𝑛, 𝜃−  𝑡𝑛

𝜔)𝑥𝑛.  

Since 𝑀 is compact, then  lim
𝑛→+∞

𝑥𝑛 ≔ 𝑥 ∈ 𝑀 .  So, 𝑥𝑛 →  𝑥, 𝑦 ∈  𝐷𝑥
+(𝜔), and 𝑦𝑛 → 𝑦 (𝑦𝑛 ∶= 𝜑( 𝑡𝑛 ,𝜃−  𝑡𝑛

𝜔)𝑥𝑛). According to Lemma 

3.5, 𝑦 ∈ 𝐷𝑥
+(𝜔)  ⊆ ⋃{𝐷𝑥

+(𝜔)| 𝑥 ∈ 𝑀}. In the same way, can be established the second statement. ■                            

Theorem 3.7:[5] If (𝑡, 𝑥) ⟼ 𝜓(𝑡, 𝜃−𝑡𝜔)𝑥 is continuous ∀ 𝑡 ∈ ℝ and 𝜔 ∈ 𝛺, then      

𝛾𝑀
+(𝜔)̅̅ ̅̅ ̅̅ ̅̅ = 𝛾𝑀

+(𝜔) ∪ Γ𝑀
+(𝜔).                                                                                                                                                   Proof: 

First, note that 𝛾𝑀
+(𝜔) ⊂ 𝛾𝑀

+(𝜔)̅̅ ̅̅ ̅̅ ̅̅  .Also we have Γ𝑀
+(𝜔) ⊂ 𝛾𝑀

+(𝜔)̅̅ ̅̅ ̅̅ ̅̅  (by Definition(2.3.1). Therefore 𝛾𝑀
+(𝜔)̅̅ ̅̅ ̅̅ ̅̅ ⊃ 𝛾𝑀

+(𝜔) ∪ Γ𝑀
+(𝜔).  

 Now,  let 𝑦 ∈ 𝛾𝑀
+(𝜔)̅̅ ̅̅ ̅̅ ̅̅ . So there is  {𝑦𝑛} in  𝛾𝑀

+(𝜔) with  𝑦𝑛 ⟶ 𝑦. Now,  𝑦𝑛 ∈ ⋃ 𝜓(𝜏, 𝜗−𝜏𝜔)𝑀(𝜗−𝜏𝜔)𝜏∈ℝ−𝐾 , there exists a sequence  

{𝜏𝑛} with 𝜏𝑛 ∈ ℝ for every 𝑛 and {𝑥𝑛} in 𝑀(𝜗−𝜏𝑛
𝜔 ) such that  𝑦𝑛 = 𝜓(𝜏𝑛,𝜗−𝜏𝑛

𝜔)𝑥𝑛. We have two cases: 

Case I: The net {𝜏𝑛} has the property that 𝜏𝑛 ⟶ ∞, in which case 𝑦 ∈ Γ𝑀
+(𝜔). 

Case II: There is a subnet  {𝜏𝑛𝑘
} in ℝ such that 

𝜏𝑛𝑘
⟶ 𝜏 ∈ ℝ+̅̅ ̅̅ = ℝ+  (as ℝ+ is closed). 

But then 𝜓 (𝜏𝑛𝑘
, 𝜗−𝜏𝑛𝑘

𝜔) 𝑥 ⟶ 𝜓(𝜏, 𝜃−𝜏𝜔)𝑥 ∈ 𝛾𝑀
+(𝜔) (since (𝑡, 𝑥) ⟼ 𝜓(𝑡, 𝜗−𝑡𝜔)𝑥 is continuous).                       Since  

𝜓 (𝜏𝑛𝑘
, 𝜗−𝜏𝑛𝑘

𝜔) 𝑥 ⟶ 𝑦 , then from the uniqueness of the limit we have 𝜓(𝜏, 𝜗−𝜏𝜔)𝑥 = 𝑦 ∈ 𝛾𝑀
+(𝜔).  

From Case I and Case II, we have  𝑦 ∈ 𝛾𝑀
+(𝜔) ∪ Γ𝑀

+(𝜔). Hence 

𝛾𝑀
+(𝜔)̅̅ ̅̅ ̅̅ ̅̅ ⊂ 𝛾𝑀

+(𝜔) ∪ Γ𝑀
+(𝜔). 

Therefore,     𝛾𝑀
+(𝜔)̅̅ ̅̅ ̅̅ ̅̅ = 𝛾𝑀

+(𝜔) ∪ Γ𝑀
+(𝜔)                                                                     ∎ 

From above theorem and Proposition (1.6.2)[7], we get the following Corollary. 

Corollary 3.8: for all 𝑥 ∈ 𝑋 and 𝑦 ∈ Γ𝑥
+(𝜃−𝑡𝜔) then Γ𝑦

+(𝜔) ∪ Γ𝑦
+(𝜔) ⊆ 𝛾𝑦

𝑡(𝜔)̅̅ ̅̅ ̅̅ ̅̅ ⊆ Γ𝑥
+(𝜔), 𝜔 ∈ 𝛺.   

 Proof:  𝛾𝑦
+(𝜔) ∪ Γ𝑦

+(𝜔) = 𝛾𝑦
+(𝜔)̅̅ ̅̅ ̅̅ ̅̅  ⊆ 𝛾𝑦

ℝ(𝜔)̅̅ ̅̅ ̅̅ ̅̅  

Since 𝑦 ∈ Γ𝑥
+(𝜃−𝑡𝜔), then ∀𝑡 ∈ ℝ: 𝜑(𝑡, 𝜃−𝑡𝜔)y ∈ 𝜑(𝑡, 𝜃−𝑡𝜔)Γ𝑥

+(𝜃−𝑡𝜔) = Γ𝑥
+(𝜔)  

Then                         𝛾𝑦
ℝ(𝜔)̅̅ ̅̅ ̅̅ ̅̅ ⊆ Γ𝑥

+(𝜔). 
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So,                            𝛾𝑦
+(𝜔) ∪ Γ𝑦

+(𝜔) ⊆ 𝛾𝑦
ℝ(𝜔)̅̅ ̅̅ ̅̅ ̅̅ ⊆ Γ𝑥

+(𝜔) 

Then                         Γ𝑦
+(𝜔) ⊆ 𝛾𝑦

ℝ(𝜔)̅̅ ̅̅ ̅̅ ̅̅ ⊆ Γ𝑥
+(𝜔) 

Similarly 
Γ𝑦

−(𝜔) ⊆ 𝛾𝑦
ℝ(𝜔)̅̅ ̅̅ ̅̅ ̅̅ ⊆ Γ𝑥

+(𝜔) 

Then                        Γ𝑦
+(𝜔) ∪ Γ𝑦

−(𝜔) ⊆ 𝛾𝑦
ℝ(𝜔)̅̅ ̅̅ ̅̅ ̅̅ ⊆ Γ𝑥

+(𝜔).                                            ■ 

Theorem 3.9: If 𝑀 is a nonempty negatively invariant compact random set, then 𝑀 ⊆ 𝐽Γ𝑋
+

+ (𝜔).  

Proof: Let 𝑥 ∈ 𝑀(𝜔). Then by Definition 2.5 (i), there is a trajectory 𝜓(∙,∙, 𝑥): ℝ × Ω ⟶ 𝑋 with 𝜓(0, 𝜔)𝑥 = 𝑥 and  for every 𝑡 ≥
 0,𝜓𝑡, 𝜔)𝑥 ∈ 𝑀(𝜗−  𝑡𝜔). Put 𝑧 ≔ 𝜓(𝑡, 𝜗−  𝑡𝜔)𝑥 .Since Γ𝑧

−(𝜔) ≠ ∅, it is closed and Γ𝑧
−(𝜔) ⊆ 𝑀(𝜗−  𝑡𝜔). It is thus compact. Let 𝑦 ∈

Γ𝑧
−(𝜃−  𝑡𝜔), then Γ𝑦

+(𝜔) ⊆ Γ𝑧
−(𝜔).  

If  𝑝 ∈ Γ𝑦
+(𝜔) ⊆ Γ𝑋

+(𝜔), then there exist  𝑡𝑛 ⟶ +∞ such that 

𝑥𝑘 = 𝜑(−𝑡𝑘,𝜃−  𝑡𝑘
𝜔)𝑦 ⟶ 𝑝, 𝑥 = 𝜑(  𝑡𝑘,𝜃−  𝑡𝑘

𝜔)𝜙(−𝑡𝑘), 

and consequently, 𝑥 ∈ 𝐽𝑝
+(𝜔)  ⊆ 𝐽

Γ𝑋
+

+ (𝜔).                                                                                 ■             

Corollary 3.10: If  (𝜗, 𝜓) is a point dissipative RDS, then n  the set Γ𝑋
+(𝜔) is compact, and  Γ𝑋

+(𝜔) ⊆ 𝐽Γ𝑋
+

+ (𝜔),  for all ω ∈ Ω.  

Proof: since Γ𝑥
+(𝜔) is invariant  ∀ 𝑥 ∈ 𝑋 and  Γ𝑋

+(𝜔): =∪ {Γ𝑥
+(𝜔)| 𝑥 ∈ 𝑋}̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , it follows  Γ𝑋

+(𝜔) also invariant, and according to Theorem 

3.9,    Γ𝑋
+(𝜔) ⊆ 𝐽

Γ𝑋
+

+ (𝜔).                                                                           ■ 

Lemma 3.11: If 𝐷Γ𝑋
+

+ (𝜔) (respectively, 𝐽Γ𝑋
+

+ (𝜔)) is compact  in point dissipative RDS (𝜃, 𝜑), then                     𝐷+(Γ𝑋
+(𝜔)) =

𝐷+(𝐷+(Γ𝑋
+(𝜔))) (respectively, 𝐽+(Γ𝑋

+(𝜔)) = 𝐽+(𝐽+(Γ𝑋
+(𝜔))). 

Proof:  Since Γ𝑥
+(𝜔) ⊆ 𝐷

Γ𝑋
+

+ (𝜔), we have 𝐷
Γ𝑋

+
+ (𝜔) ⊆ 𝐷

Γ𝑋
+

+ (𝐷
Γ𝑋

+
+ (𝜔)), and consequently to show that “𝐷Γ𝑋

+ (𝐷Γ𝑋

+ (𝜔)) ⊆ 𝐷Γ𝑋

+ (𝜔)”. Let 𝑥 ∈

𝐷Γ𝑋

+ (𝜔). Then Γ𝑥(𝜔) ⊆ 𝐷Γ𝑋

+ (𝜔), and if  𝑦 ∈ Γ𝑥
+(𝜔) ⊆ Γ𝑋

+(𝜔),  then according to Lemma 3.3 and Corollary 3.4,  𝐽𝑥
+(𝜔) ⊆ 𝐽𝑦

+(𝜔) =
𝐷𝑦

+(𝜔) ⊆ 𝐷Γ𝑋

+ (𝜔). Since 

𝐷𝑥
+(𝜔) = 𝛾𝑥

+(𝜔) ⋃ 𝐽𝑥
+(𝜔) ⊂ 𝐷Γ𝑋

+ (𝜔) ⋃ 𝐷Γ𝑋

+ (𝜔) = 𝐷Γ𝑋

+ (𝜔) for all 𝑥 ∈ 𝐷Γ𝑋

+ (𝜔) 

and 𝐷Γ𝑋

+ (𝜔) is compact, it follows from Theorem 3.9 that “ 𝐷Γ𝑋

+ (𝐷Γ𝑋

+ (𝜔)) = ⋃{𝐷𝑥
+(𝜔)|𝑥 ∈ 𝐷Γ𝑋

+ (𝜔)} ⊆ 𝐷Γ𝑋

+ (𝜔)”. The second equation 

is proved similarly,  taking into consideration Γ𝑋
+(𝜔) ⊆ 𝐽Γ𝑋

+ (𝜔).                                        ■ 

 
Definition 3.12: Consider an RDS (𝜗, 𝜓). A random set 𝑀 is called  orbitally stable whenever for any (t.r.v) 휀 and any non-negative 

number 𝑡, there exists (t.r.v) 𝛿 such that  

𝑑(𝑥, 𝑀(𝜔)) < 𝛿(𝜔) implies  𝑑(𝜓(𝑡, 𝜗−𝑡𝜔)𝑥, 𝑀(𝜔)) < 휀(𝜔). 

Lemma 3.13: If the RDS (𝜗, 𝜓) is compact dissipative, then 

𝐷Γ𝑋

+ (𝐷Γ𝑋

+ (𝜔)) = 𝐷Γ𝑋

+ (𝜔)  (respectively, 𝐽Γ𝑋

+ ( 𝐽Γ𝑋

+ (𝜔)) = 𝐽Γ𝑋

+ (𝜔)).  

Proof: Let 𝐿𝑋(𝜔) be an RLS for the compact dissipative RDS  (𝜗, 𝜓) . Hence Γ𝑥
+(𝜔) ⊆ 𝐿𝑋(𝜔). By the orbitally stable of 𝐿𝑋(𝜔), we 

have  𝐷𝐿𝑋

+ (𝜔) = 𝐿𝑋(𝜔) (respectively,  𝐽𝐿𝑋

+ (𝐽𝑋(𝜔)) ⊆  𝐿𝑋(𝜔)), and consequently,      𝐷𝐿𝑋

+ (𝜔) = 𝐿𝑋(𝜔) (respectively, 𝐽𝐿𝑋

+ (𝜔) = 𝐿𝑋(𝜔).  

By Lemma 3.11 and  closedness  of  𝐷𝐿𝑋

+ (𝜔) (respectively, 𝐽Γ𝑋

+ (𝜔) and compactness of  𝐿𝑋(𝜔),  we get the compactness of 

𝐷𝐿𝑋

+ (𝜔) (respectively, 𝐽Γ𝑋

+ (𝜔) .                                        ■ 
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Lemma 3.14: Consider a random compact dissipative RDS (𝜗, 𝜓). The forward invariant compact random set 𝑀  is orbitally stable if and 

only if  𝐷𝑀
+ (𝜔) = 𝑀. 

 
Proof: Suppose that 𝐷𝑀

+ (𝜔) = 𝑀 . Assume contrary that 𝑀 is not orbitally stable. Then  there exist tempered random variable  휀0(𝜔) >
0, 𝑥𝑛 →  𝑥 ∈  𝑀, and 𝑡𝑛  ≥ 0 such that 

𝑑(𝜑(  𝑡𝑛, 𝜃−  𝑡𝑛
𝜔)𝑥𝑛 ,𝑀) ≥  휀0(𝜔)                                            (3.4) 

Since an RDS (𝜃, 𝜑)  is compact dissipative, the set 𝛾𝐾
+(𝜔) is precompact, where 𝐾 ∶= {𝑥𝑛}, and consequently, the sequence 

{𝜑(𝑡𝑛, 𝜃−  𝑡𝑛
𝜔)𝑥𝑛} can be considered convergent. Assume 

𝑦 ∶=  lim
𝑛→+∞

𝜑(  𝑡𝑛, 𝜃−  𝑡𝑛
𝜔)𝑥𝑛 

 Then on the one hand, 𝑦 ∈ 𝐷𝑀
+ (𝜔) = 𝑀. Now (3.4) implies  that 

𝑑(𝑦, 𝑀(𝜃−  𝑡𝑛
𝜔)) ≥ 휀0(𝜔) > 0. 

This contradiction.   The converse is follow immediately                                            ■ 

 

Theorem 3.15: If (𝜃, 𝜑) is compact dissipative RDS, then 𝐿𝑋(𝜔) = 𝐽Γ𝑋

+ (𝜔). 

Proof: Since Γ𝑥(𝜔) ⊆ 𝐿𝑋(𝜔) and 𝐽𝑋(𝜔) is asymptotically stable, then  𝐽Γ𝑋

+ (𝜔) ⊆ 𝐿𝑋(𝜔).  Because 𝐷Γ𝑋

+ (𝐽Γ𝑋

+ (𝜔))  = 𝐽Γ𝑋

+ (𝜔), the orbitally 

stability of   the set  𝐽Γ𝑋

+ (𝜔) follows  from Lemmas 2.13 and 2.14 . Let 𝑥 ∈ 𝐿𝑋(𝜔) \ 𝐽Γ𝑋

+ (𝜔) and  𝑑𝑋 ∶=  𝑑(𝑥, 𝐽Γ𝑋

+ (𝜔)) ≥  0. If  𝑑𝑋 = 0 

for all 𝑥 ∈ 𝐿𝑋(𝜔) \ 𝐽Γ𝑋

+ (𝜔).                            ■    

Conversely, assume that for some 𝑥0 ∈ 𝐿𝑋(𝜔)\ 𝐽Γ𝑋

+ (𝜔) we have 𝑑𝑥0
> 0.  By orbital stability  of  𝐽Γ𝑋

+ (𝜔), for a ( t.r.v)  0 < 휀(𝜔) <  1

2
 𝑑𝑥0

, 

choose 𝛿(휀, 𝜔) > 0 . By Theorem 2.7[15] we can find a continuous function 𝜙 ∶ 𝑆 → 𝐿𝑋(𝜔) with the property that  

𝜓(𝑡, 𝜗−𝑡𝜔)𝜙(𝑠) =  𝜙(𝑡 +  𝑠) for all 𝑡 ∈ 𝑇, 𝜔 ∈ 𝛺,  𝑠 ∈ 𝑆, and 𝜙(0) = 𝑥0. 

Since 𝐿𝑋(𝜔) is compact, then  Γ𝜙𝑥0

− (𝜔) is not a void and compact, and  Γ𝑋
+(𝜔) ∩ Γ𝜙𝑥0

− (𝜔)  ≠ ∅, and consequently, there exists 𝑡𝑛 → −∞ 

such that 𝑑(𝜓(𝑡𝑛 ,𝜗−𝑡𝑛
𝜔)𝑥0 ,Γ𝑥(𝜔)) → 0. Choose 𝑛0 such that 

𝑑(𝜓(𝑡 + 𝑡𝑛 ,𝜗−(𝑡+𝑡𝑛)𝜔)𝑥0,Γ𝑥(𝜔)) < 𝛿 (𝑛 ≥ 𝑛0). 

Then we have 𝑑(𝜓(𝑡𝑛,𝜗−𝑡𝑛
𝜔)𝑥0, 𝐽Γ𝑋

+ (𝜔)) < 𝛿(𝜔), and consequently, 

𝑑(𝜓(𝑡 + 𝑡𝑛 ,𝜗−(𝑡+𝑡𝑛)𝜔)𝑥0, 𝐽Γ𝑋

+ (𝜔) < 휀(𝜔) for all 𝑡 ≥ 0  and 𝑛 ≥ 𝑛0 . 

In particular, when 𝑡 = −𝑡𝑛  we have 

 𝑑𝑥0
= 𝑑(𝑥0 𝐽Γ𝑋

+ (𝜔)) < 휀(𝜔) < 1

2
 𝑑𝑥0

.           This contradiction.                                       ■ 

 

Corollary 3.16: If an RDS (𝜃, 𝜑) is compact dissipative, then  𝐿𝑋(𝜔) = 𝐷Γ𝑋

+ (𝜔). 
Proof. The proof  follows from Theorem 3.15, taken into consideration   

𝐿𝑋(𝜔) ⊆ 𝐽Γ𝑋

+ (𝜔) ⊆ 𝐷Γ𝑋

+ (𝜔) ⊆ 𝐿𝑋(𝜔). 

Corollary 3.17: If (𝜗, 𝜓) is compact dissipative RDS, then the orbitally stability of   the set Γ𝑥
+(𝜔) is equivalent to the condition   

𝐿𝑋(𝜔) = Γ𝑥
+(𝜔)  .  

Proof.  The proof  follows from Theorem 3.15 and  Lemma 3.14 . 
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Definition 3.18: The set  WM
s (ω) defined by  

𝑊𝑀
𝑠 (𝜔) ≔ {𝑥 ∈ 𝑋: lim

𝑡⟶+∞
𝑑(𝜓(𝑡, 𝜗−𝑡𝜔)𝑥, 𝑀(𝜔)) = 0} 

“is the stable manifold” of the random set M. 

 
Definition 3.19: Consider the RDS (𝜗, 𝜓) .A closed random set 𝑀 in  locally compact space 𝑋 is called globally asymptotically stable  
if 𝑀 asymptotically stable and 𝑊𝑀

𝑠 (𝜔) = 𝑋. 
Theorem 3.20: An RDS (𝜃, 𝜑) is compact dissipative, if and only if  there is a nonvoid compact random set 𝐾 with the property that 

   ∀ (t.r.v)  ε > 0  and 𝑥 ∈ 𝑋, ∃𝛿(휀, 𝑥) > 0 ,  𝑙(휀, 𝑥) > 0  so that 

𝜓(𝑡, 𝜗−𝑡𝜔)𝐵(𝑥, 𝛿(휀, 𝑥)) ⊆ 𝐵(𝐾(𝜗−𝑡𝜔), 휀)                                           (3.5)   

for all  𝑡 ≥ 𝑙(휀, 𝑥), 𝜔 ∈ 𝛺.  

 
Proof: Let 𝐿𝑋(𝜔) be an RLC for the compact dissipative  (𝜗, 𝜓). Let 휀(𝜔) > 0, and 𝑥 ∈ 𝑋. In view of Theorem 2.7 [17],  𝐿𝑋(𝜔) is 

orbitally stable. Thus we can define a number (휀, 𝜔) > 0 . Since  𝐿𝑋(𝜔) is globally asymptotically stable, so  for 𝜌(휀) > 0  and 𝑥 ∈ 𝑋 
there is 𝑙(휀, 𝑥) for which  𝜑(𝑡, 𝜃−𝑡𝜔)𝑥 ∈  𝐵(𝐿𝑋(𝜔),𝜌) for all 𝑡 ≥ 𝑙(휀, 𝑥). Since 𝐵(𝐿𝑋(𝜔), 𝜌) is open, there is  𝛼 = 𝛼(휀, 𝑥) > 0 such that 

𝐵((𝜓(𝑙(휀, 𝑥), 𝜗−𝑙( ,𝑥)𝜔)𝑥, 𝛼) ⊆ 𝐵(𝐿𝑋(𝜔),𝜌). By the assumption, the mapping 

𝜓(𝑙, 𝜗−𝑙𝜔) ∶ 𝑋 → 𝑋  is continuous and so for every  𝑥 ∈ 𝑋, 𝛼 > 0, there is  𝛿 = 𝛿(휀, 𝑥) > 0 with  

𝜓((𝑙, 𝜗−𝑙𝜔), 𝐵(𝑥, 𝛿)) ⊆  𝐵(𝜓(𝑙, 𝜗−𝑙𝜔)𝑥, 𝛼)                                          (3.6) 

From the inclusion (3.6) and by the choice of 𝜌, we have 𝜑(𝑡, , 𝜃−𝑡𝜔)𝐵(𝑥, 𝛿) ⊆  𝐵(𝐿𝑋(𝜔), 휀) for all 𝑡 ≥  𝑙(휀, 𝑥).               Suppose that  
𝐾 ⊆ 𝑋 be a nonvoid compact random subset adequate (3.5). If  M is a nonvoid compact random subset of X and 휀 > 0, then for every 𝑥 ∈
𝑀 there is  𝛿(휀, 𝑥) > 0 and 𝑙(휀, 𝑥) >  0 so that (3.5) satisfies . The collection  {𝐵(𝑥, 𝛿(휀(𝜔), 𝑥)) | 𝑥 ∈ 𝑀} form an open covering of the 

set M.  Since 𝑀 is compact and  𝑋 is complete , this covering admits  finite subcovering {𝐵(𝑥𝑖,𝛿(휀(𝜔), 𝑥𝑖))| 𝑖 =  1, … , 𝑛}.      Assume 

𝐿(휀(𝜔), 𝑀): = 𝑚𝑎𝑥{𝑙(휀(𝜔), 𝑥𝑖)| 𝑖 = 1, … , 𝑛}. From (3.5) it follows that 

𝜓(𝑡, 𝜗−𝑡𝜔)𝑀 ⊆ 𝐵(𝐾, 휀(𝜔)) for all 𝑡 ≥ 𝐿(휀(𝜔), 𝑀).                                               ■ 

Theorem 3.21:  A point dissipative RDS (𝜗, 𝜓) is  compact dissipative, if and only if  there exist a nonviod compact random set 𝑀 
satisfying :  

i. ΓX(ω) ⊆ M. 
ii. 𝑀 is an orbitally stable . 
 

Proof: It is plentiful to prove the sufficiency of  (i) and (ii). As in Theorem 3.20, we create that  ∀ (t.r.v) 휀(𝜔) > 0 and 𝑥 ∈ 𝑋 there is 

 𝛿(휀(𝜔), 𝑥) > 0 and 𝑙(휀(𝜔), 𝑥) > 0 filling (3.5). Here, we should take as 𝐾 the set 𝑀 from Theorem 3.21. From Theorem 3.20 the 

compact dissipativity of   (𝜗, 𝜓)  follows. To  show that 𝐿𝑋(𝜔) ⊆ 𝑀. From the orbitally stability of 𝑀 and the fact that   Γ𝑋(𝜔) ⊆ 𝑀,  we 
get 

𝐷+(Γ𝑋(𝜔)) ⊆  𝐷𝑀
+(𝜔) = 𝑀. 

Now, refer to Corollary 3.17 to end the proof.  

 

Theorem 3.22: A point dissipative RDS (𝜗, 𝜓) is  compact dissipative, if and only if the set  𝐷Γ𝑋

+ (𝜔) (respectively,  𝐽Γ𝑋

+ (𝜔)) be compact 

and orbitally stable. Here , 𝐿𝑋(𝜔) =  𝐷Γ𝑋

+ (𝜔)  (respectively, 𝐿𝑋(𝜔) = 𝐽Γ𝑋

+ (𝜔)). 
Proof. The proof follows from Theorems 3.15, 3.20, 3.21 and Corollary  3.16. 
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Theorem 3.23:  A point dissipative RDS (𝜗, 𝜓) is  compact dissipative, if and only if  the trajectory 𝛾𝐾
+(𝜔) of  every compact random  

𝐾: Ω ⟶ 2𝑋  is  precompact. 

Proof: By Theorem 3.10 [17] we have the necessity. To prove  the sufficiency. Under the conditions of the theorem,  𝐽Γ𝑋

+ (𝜔) is nonempty 

and compact. By Corollary 3.10, Γ𝑋(𝜔)  ⊆  𝐽Γ𝑋

+ (𝜔), and consequently,  𝐽Γ𝑋

+ (𝜔) ≠ ∅. We get  𝐽Γ𝑋

+ (𝜔) is compact. Let {𝑦𝑘} ⊆  𝐽Γ𝑋

+ (𝜔) and 

휀𝑘(𝜔) ↓  0. Then there exist 𝑝𝑘 ∈ Γ𝑋(𝜔), 𝑦𝑘 ∈  𝐽𝑝𝑘

+ (𝜔), �̅�𝑘 ∈ 𝐵(𝑝𝑘, 휀𝑘(𝜔)), and  𝑡𝑘 >  0  such that 

𝑑(𝑦𝑘, 𝜑(𝑡𝑘, 𝜃−𝑡𝑘
𝜔)�̅�𝑘 ) <  휀𝑘(𝜔)                                                                    (3.7) 

 
Since {𝑝𝑘} in a compact set Γ𝑋(𝜔) and  휀𝑘(𝜔)  ↓  0, then  {𝑝𝑘} is relatively compact, and so, by assumptions  , the sequence 

{𝜑(𝑡𝑘,𝜃−𝑡𝑘
𝜔)�̅�𝑘} is precompact. Hence by  (3.7) we have  {𝑦𝑘} is precompact, hence the compactness of    𝐽Γ𝑋

+ (𝜔) follows. To see that 

the set   𝐽Γ𝑋

+ (𝜔) attracts every  random compact set in  𝑋. Let 𝐾 be a nonvoid random compact set in  𝑋. By assumptions ,  𝛾𝐾
+(𝜔) is 

precompact. If follows from Theorem 3.10 [17], the set Γ𝑋(𝜔) is nonvoid with  

lim
t→+∞

𝑑(𝜑(𝑡, 𝜃−𝑡𝜔)𝐾, Γ𝑋(𝜔) ) =  0                                                                        (3.8) 

According to Theorem 3.5 [17],  Γ𝐾(𝜔) is an invariant, and by Lemma 3.7, Γ𝐾(𝜔) ⊆  𝐽Γ𝑋

+ (𝜔),                                                 and 

consequently, from (3.8) it follows that  𝐽Γ𝑋

+ (𝜔) attracts 𝐾.                                                        ■ 

In the end, we give an example of an  RDS to show that the compact dissipativity  does not implied  by   a point dissipativity .  

Example 3.24 : Consider the RDS generated by  ( Markov Chain) [7]. Let 𝑋 = ℝ and Γ0 = {0, 1}. Suppose that the continuous functions 
𝑓0 and 𝑓1  satisfy the inequality  

|𝑓𝑖  (𝑥)| ≤  𝑎|𝑥| +  𝑏  for  some 0 ≤  𝑎 <  1, 𝑏 ≥  0 . 

Here,  Γ is the set of two-sided sequences  𝜔 =  {𝜔𝑖 | 𝑖 ∈  ℤ} involving of 0's and 1's and 
𝜓(𝑛, 𝜔)  =  𝑓𝜔𝑛−1

 ∘   𝑓𝜔𝑛−2
∘ . . .∘   𝑓𝜔1

 ∘   𝑓𝜔0
, 𝜔 = {𝜔𝑖 | i ∈ ℤ}, n ∈ ℕ . 

By the cocycle property we get   

|𝜓(𝑛 + 1, 𝜔)𝑥|  ≤ 𝑎 · |𝜓(𝑛, 𝜔)𝑥| +  𝑏, 𝑛 ∈  ℤ+                                                           (3.9) 

By  n iterations yield   

 
                                 |𝜓(𝑛, 𝜔)𝑥|  ≤  𝑎𝑛 · |𝑥| + 𝑏 · (1 −  𝑎)−1,𝑛 ∈  ℤ+                               (3.10) 

Let 𝒟 be the collection  of all tempered (with respect to 𝜗) random closed sets in ℝ. Let 𝐷 ∈ 𝒟 and 𝐷(𝜔) ⊂ {𝑥 ∶  |𝑥| ≤ 𝑟(𝜔)}, where 

𝑟(𝜔) is a t.r.v. Then by (3.9) we have  

|𝜓(𝑛,  𝜃−𝑛𝜔)𝑥( 𝜗−𝑛𝜔)| ≤  𝑎𝑛𝑟( 𝜗−𝑛𝜔) + 𝑏 · (1 −  𝑎)−1, ∀ 𝑥(𝜔) ∈ 𝐷(𝜔) . 

Because  0 ≤  𝑎 <  1, it yield  from (tempered random variable property) that 𝑎𝑛𝑟( 𝜗−𝑛𝜔) →  0 as 𝑛 → +∞. 

Therefore, ∀ 𝜔 ∈ Ω there exists 𝑛0(𝜔) such that  𝑎𝑛𝑟( 𝜗−𝑛𝜔) ≤  1 for 𝑛 ≥ 𝑛0(𝜔). Consequently,  

𝜓(𝑛,  𝜃−𝑛𝜔)𝐷( 𝜗−𝑛𝜔) ⊂  𝐵 ∶=  [−1 −
𝑏

(1 −  𝑎)
, 1 +  

𝑏

(1 −  𝑎)
] 

 
for 𝑛 ≥ 𝑛0(𝜔). So the  RDS is dissipative in 𝒟 the universe of all tempered random closed sets from ℝ. By (3.9) when 𝑛 = 0 we  see 
that 𝐵 is a forward invariant random set in 𝒟. 

Let 𝑥 ∈ 𝑋𝛺 and (𝜔) ∈ {𝑦:|𝑦| ≤ 𝑟(𝜔)} , with  𝑟(𝜔) satisfy  

 

sup{𝑒−𝛾|𝑡||𝑟(𝜗𝑡𝜔)|: 𝑡 ∈ ℝ } <  ∞,  ∀ 𝜔 ∈ Ω 𝑎𝑛𝑑 𝛾 > 0                                  (3.11) 

𝑟(𝜔) is a (t.r.v.) with respect to 𝜃, then for all 𝑥 , (3.11) implies that  
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|𝜓(𝑛, 𝜗−𝑛𝜔)𝑥(𝜗−𝑛𝜔)| ≤ 𝑎𝑛  𝑟(𝜗−𝑛𝜔) +
𝑏

(1 − 𝑎)
 . 

Because  0 ≤ 𝑎 < 1 from (3.11) yield that  𝑎𝑛  𝑟(𝜗−𝑛𝜔) → 0 when  𝑛 →  ∞.  

So, ∀ 𝜔 ∈ 𝛺 there exists 𝑛0(𝜔) such that 𝑎𝑛  𝑟(𝜗−𝑛𝜔) ≤ 1, for 𝑛 ≥ 𝑛0(𝜔).  Consequently, we have 

𝜓(𝑛, 𝜗−𝑛𝜔)𝑥(𝜗−𝑛𝜔) ∈ 𝐵 = [−1 −
𝑏

1−𝑎
, 1 +

𝑏

1 − 𝑎
] , 𝑛 ≥ 𝑛0(𝜔) 

Thus, the RDS is point dissipative.                                                                                                                                                Let 𝐷 =

[−𝑟(𝜔), 𝑟(𝜔)]  is compact random set and  𝑘(𝜔) = (2 +
𝑏

1−𝑎
, 3 +

𝑏

1−𝑎
)  

 𝜓(𝑛, 𝜗−𝑛𝜔)𝐷(𝜗−𝑛𝜔) ⊂ 𝐵 

𝑑(𝜓(𝑛, 𝜗−𝑛𝜔)𝐷(𝜗−𝑛𝜔),𝑘(𝜔)} > 0 

Hence, (𝜗, 𝜓) is not compact dissipative.                                                          ■ 
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