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Abstract: In this work, the structure of the Levinson center will be described on a random case. In particular, the random Levinson
center coincides with the positive prolongation of the Omega-limit set. Further, we create the relationship between compact
dissipative and point dissipative randomdynamical systems. Also, it has been demonstrated by an example that compactly dissipative
does not imply the point dissipatively.

Keywords: Random dynamical system (RDS), Point dissipative, Compact dissipative, Random attracter, random Levinson center (RLS).

1.Introduction: Dissipative theory provides a powerful theoretical structure for control design and analysis of dynamic systems .
In particular, Many physical dynamic systems have some inputs, outputs, and state haracteristics associated to preservation,
dissipation, and transfer of energy and mass, and this gives importance to the dissipative theory [8]. Willems [12], [13]
presented the foundation for developing theory of dissipativity for deterministic nonlinear smooth flows. Also, one can see
Cheban [1]. The concept of dissipative for RDSs was introduced by many authors, see for example, Igor [7], Crauel and Flandoli
F. [3],Wang Y., LiuY. and Wang Z. [11], Gu A [6] and others, and some types of dissipativity for RDSs were established by
Yasir and kadhim [16]. Many concepts of dissipativity in random case have been studiedin [10], [14], and [15].

The aim of this paper is studying the scale for Compact dissipativity and the notion of Levinson center for RDSs.

2. Preliminaries for RDSs:

Some essential notions associated with RDS are stated here, which are important in our work. Throughout, (X, d) any matric space and
We call a subset K of X is pre compact if every sequence in K admits a subsequence converges to a point of X, and is call relatively
compact if and only if every sequence of points in A has a cluster pointin X, for more details see, [2].

Definition 2.1[5]: Consider the probability space (Q,F, IP). Let the measurable function 6: T x Q — Q satisfy the following
99 = idg, 909 =9, Vts€T; and ;P =PVteT.

if 6.A=A, foreveryte T,thenasetA € F iscalledd —invariant. If forany 9 —invariant set A € F either P(A) = 0 or P(A) = 1,
then 9 iscalledergodic under P.

Definition 2.2[7]: Consider topological space X and a locally compact group T. The random dynamical system ( RDS) is a pair (9, ¢)
involving a cocycle ¥ of continuous functionson X over an MDS 9, i.e.amapping Y : TXQ XX — X, (t,w,x) — P(t,w,x) is
measurable and satisfy the following forevery t € Tand w € :

(i) the function x — Y(t, w,x) = Y(t, w)x iscontinuous, and
(ii) the function Y (¢t, w): = Y (¢, w,") fulfill:

Y(0,w) = idy, P(t + 5, w) = P(t,9;w) o P (s, w).
The property (ii) called cocycle property of ¢.
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Remark: In general the function (¢, x) +— (¢, 9_,w)x is not continuous (see [7]). However, in this work, we will assume that
Y(t,9_,w): X = X is continuous unless otherwise stated.

Definition 2.3 [7]: Consider ametric space (X,d) . The set-valued function D: Q@ — 2% iscalled a random setif D(w) # @ and for
every x € X the function w +— disty(x,D(w)) measurable. A random set D is calleda random closed (compact) set when for each

w € Q, the set D(w) is closed( resp. compact). A random set D is said to be bounded if D(w) contained in some random ball forall w €
Q.

For more convenient the random set D: Q — 2% will denoted by D or {D(w)}.
Definition 2.4 [7]: Consider arandom set D: ) — 2X. We say that the set- valued function y} (w): Q — 2% defined by
yg ((1)) = U'L'zt ll’(T, 9_.[(1))D(l9_.[a})

the pull back trajectories starting from D. If D(w) = {v(w)}isa single valued function, then w — ¥, (w) =¥y (w) is said to be the (pull
back) trajectory starting fromv.

Definition 2.5 [7]: Consider the RDS (9, ).
i. Arandom set A:Q — 2% is called invariant if ¢ (t, w)A(w) = A(6,w) forall t € R, w € Q.

ii. Arandom pull back attractor of the RDS (9, 1) in the universe U is a proper invariant random closedset A € U which is attracting
inU,i.e.,forall U€ U we have

lim d((t,9_,)U(_,0), A@)) = 0

Definition 2.6 [7]: Consider the RDS (9, %), and let t M: Q — 2% be arandom set.

i. The set-valued function

o — I () = Ny (W) = Nz U YT, 6 0)MO_, 0)
is called the omega-limit set of the trajectories starting from M

ii. The set-valued function

w— FI\; (w) = VI\EI (w) = nt<0 U‘rstlp(‘[' B—Tw)M(ﬁ—Tw)
is called the alpha-limit set.
Definition 2.7[17]: The RDS (9,v) is called
i compact dissipative if for every compact random set A inX there is random set K in X so that
tl—l>Too sup{d(y(t,9_,w)x, K(w)):x € A(¥_,w)} =0
ii. point dissipative if for every x € X, there is random set K in X so that,
thrgw d(l/}(t, 0_w)x(I_,w), K(w)) =0

Definition 2.8 [17]: Consider RDS (9, ). A random set M is said to be orbitally stable whenever for any tempered random variable ¢
and any non-negative number t we have

d(x,M(w)) < &(w) implies d(Y(t,0_,w)x, M(w)) < &(w)
for some tempered random variable §.

Definition 2.9 [17]: we will call the set L, (w) defined by following equality:
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Ly(w) :=Tx(w) =n{y(t,0_,0)KO_w)|teT,w € Q}

the random Levinson center of the compact dissipative RDS (9, ).

3. Characterization of Compact Dissipativity on RDS:

Assume Iy (w) :=U{l(w)|x € X}, w € Q. Let (Y, Y) be acompact dissipative RDS and L , (w) its random Levinson center (
see, for more details [15]). It is clear that the set I'y(w) € Ly(w), and T'y(w) is a main property of a dissipative RDS. We see,
from Theorem 3.5 [16] in a local compact space X, the set I'y(w) characterize point dissipativity when it is not empty and
compact. Based on the foregoing, We will examine the relationship between Iy (w) and L y (w).

Let {&,:2 > R, s € R*} be a family of tempered random variables (t.r.v), and define the forward prolongation and the forward limit
prolongation of the random set M respectively as follows : Define two operators D*,J*: X — 2% as follows: for every random set
M:Q— X

Dt (M(w)) = Ngsp Y {Y(t,0_,w)B(M,e-)|t =0, w € O},

JTM(w)) = N> NezoV (W (1,0_1w)B(M, e)|lw € QT = t}
Sometimes we will write D* (M(w)) = Df;(w) and J*(M(w)) = J;(w).
In particular, if = {x}, then we set
D} ():=D*((x}), and J; (w):=J* ((x}).
The set D3 (w) is called the first forward prolongationofa randomset M and J;;(w) is calledfirst forward prolongational limit
set of arandom set M. It clear that D};(w) and J;; (w) are random sets for every random set. In fact D3 (w) and 3 (w) are closed

invariant sets as will be seeninProposition 3.2 below.

Note that, [9] define the prolongation and prolongational of a random set in terms of sequences but here we define these concepts as in
above and will give a characterization interms of sequencesin Theorem 3.2. However, our definition is different from that one given in

[9].

Notation: We will introduce the following two sets in order to give the characterization of the first forward prolongation and first forward
prolongational limit set of a random set M in terms of the sequence.

Df;(w) := {y € X:there exist {x,,} and {¢,,} such d(x, M(¥_,,w)) > 0and Y( t,9_ tnw)xn -y }and

Ji (w) = {y € X:there exist {x,.} and {t,,},t, — +0 such d(xp,M@_ w)) — 0and Y( t,9_ tnw)xn -y}
Theorem 3.1: If (9,) isan RDS, then for every random set M, the following hold:

i. Dji (@) = D (),

ii. Ji(w) =Ji(w) .

Proof:i. Let p € Dj;(w), then there exist sequence {p,,} cU {Y(t,9_,w)B(M(I_,w),&,)It = 0,w € O}, p,, = P,

S0, p, €U {Y(t,6_w)B(M(I_ ), &5)|t = 0,w € O}, V 5 > 0 such that p,, = Y(t,,9_, w)x,. But p, »p s0 PY(t,,9_, w)x, = p.
Since for every s > 0 we have {x,} € B(M(9_, ®),&,) then

d(x,,B (M(ﬂ_tnw)) <ggforalls >0.

Thus there exist {x,,} and {t,,} such that

d(xp,M(6_, w)) - 0and ot 6_ tna))xn -p.
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Then p € Dj;(w). By reversing the above argument we get the reverse inclusion and then the result follows.

ii. Lety € J#(w). Suppose that t = 0 and {U,,,:m = 1,2, ... } is a collection of all neighborhoods of y.

Y € N0 Nizo Ups Y(7,0_0)BM, &)

Then

Y € Ups  ¥(1,0_,0)B(M, g,) foreveryt =0, s> 0.

Thus, there is sequence {y,,}in U, ¥ (t,9_,w)B(M, &) such that y,, — y.
Since ¥, € U ¥(t,0_,w)B(M, ¢,) for every m. Then thereis t,,, = 0 and x,,, € B(M, ) such that

Ym =P (T, V-, @)Xy, -
Then,

Y (T Vs, @)X, = M(I_,, ) and T, — 0.

This means that y € I} (w).
Conwersely, let y € I} (w). Then P(ty, 9, w)x, — y forsome sequence {t,}inR* and d(x,,M(_, w)) — 0 with t, —

oo. Thus, for any neighborhood U of y and any ¢t = 0, there exist ny and n, such that t,, > t forevery n > n, and
Y(tn, -, w)x, € U foreveryn > n,. Also, we have t,, >t and w(tnz,ﬁ_tnza))xn € U forewery n, =

max{ngy,n,}. Therefore,
U N Upz%(7,6_,0)B(M(I_,w), &) # D

It follows that,

Y € Upst ¥(17,0_,w)B(M(I_,w), &), , forevery t >0 ands > 0

Thus,

Y € Nss0Nezo Ut Y(T, 0_w)B(M, £5) = Ly (w) . u
Preposition 3.2: The set Dj; (respectively, /) is closed and forward invariant.

Proof: By definition, D}, isclosed. For forward invariance, suppose that x € Dj;(w) and t > 0. Then there exist two sequences {x,,}
inXand {t,}inR* suchthat d (x,,M (9, w)) — Oand (9 tna))xn — x.

Since ¢ (t, w): X — X is continuous, then ¥ (t, ) o Y( t,,9_ , w)x, — ¥(t, w)y. So
Y(t+ O e+ tn)ﬁtw)xn — P(t, w)x.

Also since d(x,, M(I_, w)) — 0, then d(xp, M(I_ (¢4 ,yw) — 0. Hence (¢, w)x € Dy (9, w). Consequently Dy (w) < Dy (9, w) for
allt> 0.

Let x € Df;(¥,w) and lett > 0. Then there exist two sequences {x, }inX and {t,}in R* such that d(x,, M(¥_ 9,w) — 0and
( t9_ tnﬁtw)xn —x.S0

d(, M@_ ¢, 4w) — 0and ¢(t, w)z, — x (3.1)
where z, = @(t, — t,9_ ,;@)x, Moreover, by Theorem 3.1 (i), b € Dj. By (3.1) x = (¢, w)b. So,

Di (B,w) c Y(t,w)Djy(w) forevery t > 0and w € Q.
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Thus Dj;(w) isan invariant.

Similarly, We can show that J; is closed and invariant.

Lemma 3.3: Let (9,y) be an RDS, ¥(t,9_,w): X — X is continuous foreveryt >0 and y € I[,(w) . Then
Ji (w) €J5 ().
Proof: Lety € I,(w) and p € /5 (w). Then there exist sequences {7,,} — 400, ¢ ( T,,0 w) x -y, {t,}and {x,}such that x,, — X,
-7,
t, — +oo, and ¢ ( thf_, a)) x, — p. According to Theorem 3.1 we can consider thatt,, — ,, > nforalln € N.V k € N consider the

n

sequence {¢ ( T w) x, }. By hypothesis,
-7,

go(r' 6 ; w)xn—up(r'nk,G_t_ w)x asn —» +o, VkKEN,
nk nk

nk’” _
and consequently, V k € N there exists n, > k such that

d(go(‘c'k,e_t_ a))xn,qJ(fk,H_t_ a))x) <k lforalln >n,.
nk nk

As <p(‘r;l,9_f a))x -y, we have

d (y,(p( T'nk,H_ t_nka)) Xnk ) < d(y,qo ( Ty 6_ T_ka))x ) +d ((p( ‘L';C,G_ . a))x ,(p(r'nk,B_ t_nkw) Xnk )

k

< d(y,(p(r;(,ﬁ_r_kw)x)+ d((p(r;c,ﬁ_fkw)x ,go(r'k,B_t_nka))x)

+d ((p ( 70 t_nka)) x ,Q ( Tyt t_nkw> Xnk )
Take the limit as — oo, then all terms on the right hand side of the above inequality approach zero, and so we have

d <y, <P( T 00 ; a)) Xnk ) — 0. Note that,
~ 'nk
¢ ( b ¥ £ w) Xnk = ¢ (tnk Tt TV ‘ ‘U) Xnks
nk nk

= (tnk - rnk,ﬂ_( %k—f}m)w) °@ (rnk,ﬁ_ t_nkw> Xnk

@ (‘L’;lk,ﬁ_ t_nka)) Xpp — y,andt,, — 7, >n, = k. Fromthisitfollowsthat p € J5 (w), i.e, J¥(w) €/ (w). m

Corollary3.4:If y € I (w), then JJ(w) = Dj (w).
Proof: Since /5 (w) € Dy (w), it issufficientto showthat DJ (w) S J; (w).

Note that D} (w) = ¥,/ (w) U J5 (w). Since y € I (w), we have
¥y (@) ST (@) € Ji (@) € J5 (w).
Hence

Dy (w) =y, (W) U]y (w) €5 (w) U]y (w) =] (w).
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Lemma 3.5: Consider the RDS (9,¥) . If x,, > x, y, >y as n > +oand x, € Dy (w) (respectively, x, € J5 (w)),thenx €
Dy (w) (respectively x € /5 (w)).

Proof: Let >0 and § > 0. Since x, € D; (w) (x, € J; (w)) forall nthereis z, € B(y, 6/2)andat, =0 (resp., t, =n)with
A (w9 0)2,) <3 (3.2)

From x,, = x and y,, = y It follows that thereis an integer n,, such that ¥ n > n,, the inequalities

d,y,) <s/2 and d(x,,x) < /2 (33)
hold simultaneously. From z,, € B(y,,,6/2) and (3.3) we obtain d(y, z,)) < &, and from (3.2) and (3.3) follows the inequality
d(xy( ty9-  w)z,) <&, i.e.,x € Dy (w) (respectively, x € J5 (w)). =

Lemma 3.6: If an RDS (0, ¢) and M < X isa random compact set, then
Dy (w) = U{Dg (w) | x € M} and [ (w) = U{J; (w)| x € M}.

Proof: Since U{D;} (w) | x € M} € D}; (w), itis sufficient to showthat D};(w) € U{DJ(w) | x € M}. Lety € D} (w). Then there exist
{x,}and t,, = 0 suchthat d(x,,,M(6_ ; w))—>0andy = lirgl (p( t,0_ w)xn.
n n—+oo n

Since M is compact, then lirgl X, =x€E€M. So, x, > x, ¥y € Df (w), and y, > y (¥, := ¢( t,,0_ . w)x,). According to Lemma
n—-+o0o n
3.5,y € D} (w) € U{D; (w)| x € M}. In the same way, can be established the second statement. m

Theorem 3.7:[5] If (t,x) — (¢, 6_,w)x iscontinuous V ¢t € R and w € (2, then

Vi (@) = ypf () U Tt (). Proof:
First, note that y;+ (w) < y; (w) .Also we have T} (w) € v, (w) (by Definition(2.3.1). Therefore y;; (w) D y; (w) U T} (w).

Now, lety € y;f (w). So thereis {y,}in vy (w)with y, — y.Now, y,, € U cr_x ¥ (t,9_,w)M(I_,w), there exists asequence
{Ta}with 7, € R forevery n and {x, }in M(9_, ) suchthat y, = (7, 9_, w)x,. Wehave two cases:

Case I: The net {t,,} has the property that 7,, — oo, in which case y € T3} (w).
Case II: There isa subnet {7, }in R such that
Tp, — T € RT = R* (as R* is closed).

But theny (T ( e O kcu) x — (1, 0_,w)x € y5f (w) (since (t,x) — P (t,9_,w)x is continuous). Since
P (Tnk' ﬁ—rnk“’) x — y , then from the uniqueness of the limit we have (7,9_,w)x =y € y;f (w).

From Case | and Case Il, we have y € y;i(w) U I (w). Hence
Vit (@) < ¥ (0) U T (o).
Therefore, v (w) = ¥, (w) U T} (w) n
From above theorem and Proposition (1.6.2)[7], we get the following Corollary.
Corollary3.8: forall x € X and y € I}/ (6_,w) then I} (w) U I}/ (w) € ¥ yt(w) I w), wen.
Proof: y,f (w) UT) (w) = m c M
Since y € I} (6_,w), thenVt € R: ¢ (t,0_,w)y € ¢(t,0_w)Tf(6_,w) =] (w)

Then r(w) € T (w).
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So, ¥y (@) UL (0) € yR(w) € T (0)
Then I (w) € R (w) € T (w)
Similarly

Iy () € (o) €T (w)
Then Iy (w) UTy (w) €y} (w) € T (w). m
Theorem 3.9: If M is a nonempty negatively invariant compact random set, then M < ];}(w).

Proof: Let x € M(w). Then by Definition 2.5 (i), there is atrajectory (-, x): R X Q@ — X with(0, w)x = xand forewery t >
0,¥t, w)x € M(I_ w).Put z :=(t,9_ ,w)x .Since T, (w) # @, itisclosedand I, (w) € M(I_ ,w). It isthus compact. Lety €
I, (6- (w), then T (w) E T, (w).
If p € I}/ () ST (w), then there exist t,, — +oo such that

X =9(—t0_ pw)y —p,  x=0¢( t,0_ ,0)Pp(—t),

and consequently, x € J (w) S jlf}(m). n

Corollary 3.10: If (9,v) isa pointdissipative RDS, then n the set Iy (w) is compact,and Ty (w) Q];}(w), forall w € Q.

Proof: since I} (w) isinvariant V x € X and T (w): =V {T;} (w)| x € X}, itfollows I (w) also invariant, and according to Theorem
39, I¥(w) E]lf}(cu). n

Lemma3.11: If D;}(w) (respectively,]lf}(w)) is compact in point dissipative RDS (8, ¢), then DY (I (w)) =
D*(D* (T (w))) (respectively, J* (I () = J* (* (I (@))).

Proof: Since I} (w) DF}(w),we have D;;(w) c DF}(D;}(w)), and consequently to showthat Dt (Df, (w)) € Df, (w) . Letx €

D¢, (w). Then T (w) < Dft, (w), and if y € T, (w) S I (w), thenaccordingto Lemma 3.3 and Corollary 3.4, J§ (w) € J5 (w) =
Dy (w) € lex(w). Since

D (w) =¥ (w) UJ5 (w) c Df, (w) U D, (w) = D, (w) for all x € D, (w)

and DFX((U) is compact, it follows from Theorem 3.9 that DFX (DFX(CO)) = U{DJ(w)|x € D;X(w)} c DFX((D) . The second equation
is proved similarly, taking into consideration Iy (w) < J{, (w). [

Definition 3.12: Consider an RDS (9,1). A random set M is called orbitally stable whenewver for any (t.r.v) € and any non-negative
number t, there exists (t.r.v) 6 such that
d(x,M(w)) < 8(w) implies d(¥(t,9_,w)x, M(w)) < (w).
Lemma 3.13: If the RDS (9, ) is compact dissipative, then
Dt (Dt () = Dt (w) (respectively, /i, (J#,(@)) = i, (w)).
Proof: Let Ly (w) be an RLS for the compact dissipative RDS (9, ¢) . Hence If (w) € Ly (w). By the orbitally stable of L (w), we
have Df (w) = Ly(w) (respectively, Jf, (Jx(w)) & Ly(w)),and consequently, D (w) = Ly(w) (respectively, J; (w) = Ly(w).

By Lemma3.11and closedness of D} (w) (respectively, i, (w) and compactness of Ly(w), we get the compactness of
D[X(w) (respectively, ]FX(w) . n
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Lemma 3.14: Consider arandom compact dissipative RDS (9, ). The forward invariant compact randomset M is orbitally stable if and
only if D (w) =M.

Proof: Suppose that D; (w) = M . Assume contrary that M is not orbitally stable. Then there exist tempered random variable &,(w) >
0, x, » x € M,and t,, = 0 such that
d(go( t,0_ tna))xn,M) > go(w) (34)
Since an RDS (6, ¢) is compact dissipative, the set y; (w) is precompact, where K := {x,}, and consequently, the sequence
{o(t, 60—  w)x,} can be considered convergent. Assume

y = nl_i)r}]wga( t,0_ tna))xn
Then onthe one hand, y € D}; (w) = M. Now (3.4) implies that
d(y,M(6_ ; w)) = g5(w) > 0.

This contradiction. The converse is followimmediately [

Theorem 3.15: If (6, ¢) is compact dissipative RDS, then Ly (w) = Jit, ().

Proof: Since I, (w) S Ly(w) and Jy(w) is asymptotically stable, then J, (w) € Ly(w). Because Df, (Ji, (w)) =Ji, (w), the orbitally
stability of the set /i, (w) follows from Lemmas2.13and 2.14 . Let x € Ly(w) \Jf, (w)and dy := d(x,Jf, (w)) = 0.1f dy =0
forall x € Ly(w) \ J, (). [

Conversely, assume that for some x, € Ly (w)\ Ji, (w) we have d, > 0. By orbital stability of J{, (w), fora(trv) 0 <e(w) < ;dy,
choose (g, w) > 0 .By Theorem 2.7[15] we can find a continuous function ¢ : S — Ly (w) with the property that

Y, I_,w)p(s) = ¢t + s)forallteT,we N, s €S, and $(0) = x,,.

Since Ly (w) is compact, then T, (w) is nota woid and compact,and TI{ (w) N T, (w) # @, and consequently, there exists t,, » —oo
such that d(lp(tn,ﬁ_tnw)xo,f‘x (w)) = 0. Choose n, such that

d(t+ ty,0_(pre )y ©)Xo (@) < 8 (n 2 np).
Then we have d(i(t,,9_, w)xo, Ji, (@) < &(w), and consequently,
d(t+ tn,ﬁ_(t+tn)a))x0, Ji, () <e(w) forallt =0 andn = n,,.

In particular, when t = —t,, we have

dy, = d(xgJi, (W) < e(w) <3dy,. This contradiction. [

Corollary 3.16: If an RDS (6, ¢) is compact dissipative, then Ly(w) = Df, (w).
Proof. The proof follows from Theorem 3.15, taken into consideration

Ly(@) € J}, (@) € Df, (@) € Ly(w).

Corollary 3.17: If (9,v) is compact dissipative RDS, then the orbitally stability of the set I} (w) is equivalent to the condition
Ly(w) =T (w) .

Proof. The proof follows from Theorem 3.15and Lemma 3.14 .
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Definition 3.18: The set Wy (w) defined by
W (w) = {x € X: tlir{ngd(tp(t, I_w)x, M(w)) = O}
is the stable manifold of the random set M.

Definition 3.19: Consider the RDS (9,¢) .A closedrandom set M in locally compact space X is called globally asymptotically stable
if M asymptotically stable and W (w) = X.
Theorem 3.20: An RDS (6, ¢) is compact dissipative, if and only if there isa nonvoid compact random set K with the property that

V(trv) e>0 and x € X, 36(e,x) >0, l(g,x) > 0 sothat
U(t, 19_ta))B(x, 6(s, x)) C B(K(9_,w),€) (3.5)

forall £t >1(g,x), w € 0.

Proof: Let Ly (w) be an RLC for the compact dissipative (9,). Lete(w) > 0, and x € X. In view of Theorem 2.7 [17], Ly(w) is
orbitally stable. Thus we can define a number (&, w) > 0. Since L (w) is globally asymptotically stable,so forp(e) >0 and x € X
there is I(g, x) forwhich ¢(t,0_,w)x € B(Ly(w),p) forall t = I(¢, x). Since B (Ly(w), p) isopen, there is a = a(e,x) > 0 suchthat
B((W(U(&, %), 9_ygyw)x, @) S B(Lx(w),p). By the assumption, the mapping

Y(,9_w) : X = X iscontinuous and so forewvery x € X, a > 0, thereis § = &(¢, x) > Owith
Y((L9_w),B(x,8)) € By I_w)x, a) (3.6)

Fromthe inclusion (3.6) and by the choice of p, we have ¢(t,, 0_,w)B(x,8) S B(Ly(w),¢) forallt > I(g, x). Suppose that

K < X be a nonvoid compact random subset adequate (3.5). If M isa nonvoid compact random subset of X and € > 0, then forevery x €
M thereis 8(e, x) > 0and I(g,x) > 0sothat (3.5) satisfies . The collection {B(x, 5(e(w),x)) | x € M} forman open covering of the
setM. Since M is compactand X is complete , this coveringadmits finite subcovering {B(x;, 6 (e(w), x))|i= 1,..,n}.  Assume

L(e(w), M): = max{l(¢(w),x;)| i = 1, ...,n}. From (3.5) it follows that
Y(t,9_,w)M S B(K,e(w)) forall t = L(e(w), M). [

Theorem 3.21: Apoint dissipative RDS (19,) is compact dissipative, if and only if there existanonviod compact random set M
satisfying :

i. Ix(w) € M.
ii. M is an orbitally stable .

Proof: Itis plentiful to prove the sufficiency of (i) and (ii). As in Theorem 3.20, we create that V (t.r.v) e(w) > 0 and x € X there is
6(e(w),x) > 0and I(e(w), x) > 0 filling (3.5). Here, we should take as K the set M from Theorem 3.21. From Theorem 3.20 the
compact dissipativity of (9,y) follows. To showthat L ,(w) S M. Fromthe orbitally stability of M and the factthat Ty(w) S M, we
get

D*(Ty()) € Dji(w) = M.

Now, refer to Corollary 3.17 to end the proof.

Theorem 3.22: Apoint dissipative RDS (9,) is compact dissipative, if and only if the set Df, (w) (respectively, /i, (w)) be compact
and orbitally stable. Here , Ly(w) = Df, (w) (respectively, Ly(w) = J{, ().
Proof. The proof follows from Theorems 3.15, 3.20, 3.21 and Corollary 3.16.
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Theorem 3.23: A point dissipative RDS (9,v) is compact dissipative, if and only if the trajectory y{ (w) of every compact random
K:Q — 2% is precompact.

Proof: By Theorem 3.10 [17] we have the necessity. To prove the sufficiency. Under the conditions of the theorem, J{ (w) is nonempty
and compact. By Corollary 3.10, Ty (w) < J{, (w),and consequently, J{ (w) # @.We get Jf, (w) is compact. Let {y,} € J{, (w) and
gr(w) L 0. Then there existp, € Ty(w), y, € J5, (w), Pk € B(py, ex(w)), and t, > 0 such that

AV @ (t 0-6, )Pk ) < &r(w) (3.7)

Since {p,} ina compact set I'y(w) and &, (w) 1 0, then {p,} isrelatively compact, and so, by assumptions , the sequence
{(p(tk,e_tk w)ﬁk} is precompact. Hence by (3.7) we have {y,} is precompact, hence the compactness of /£ (w) follows. To see that

the set J{, (w) attracts every random compactsetin X. Let K be a nonvoid random compact setin X. By assumptions, y (w) is
precompact. If follows from Theorem 3.10 [17], the set I'y (w) is nonvoid with

tlirﬂo d(p(t,0_w)K,Txy(w))= 0 (3.8)
Accordingto Theorem 3.5 [17], Ty (w) isan invariant, and by Lemma 3.7, Iy (w) < J{, (w), and
consequently, from (3.8) it follows that J{, (w) attracts K. [

In the end, we give an example of an RDS to show that the compact dissipativity does notimplied by a point dissipativity .

Example 3.24 : Consider the RDS generated by ( Markov Chain) [7]. Let X = Rand I, = {0, 1}. Suppose that the continuous functions
fo and f; satisfy the inequality

Ifi @) < alx|+ b for some0 < a< 1,b = 0.
Here, T isthe set of two-sided sequences w = {w; | i € Z}involving of 0'sand 1's and
YMw) = fo, ., ° fo,,°° Jo, © fop@={w;|1 €Z}, n€EN.
By the cocycle property we get
[Yn+1lLw)x| <a-|Ypn w)x| + b, n € Z, (39

By niterations yield

Y, w)x| < a™- |x|+b-(1 —a)tn € Z, (3.10)

Let D be the collection of all tempered (with respect to ¥) random closedsetsinR. Let D € D and D(w) < {x: |x| < r(w)}, where
r(w) isat.r.v. Then by (3.9) we have

Y, 6_,w)x(9_,w)| < a™r(9_,0)+b - (1 — a)~1, ¥ x(w) € D(w).

Because 0 < a < 1,ityield from (temperedrandom variable property) that a™r(9_,w) = 0asn — +oo.
Therefore, V w € Q there exists ny(w) suchthat a™r(J_,w) < 1forn = n,(w). Consequently,

b b

Y 0 n@)D(90) © Bi= [-1-g—sl+ g

forn = ny(w). So the RDS is dissipative in D the universe of all tempered random closed sets from R. By (3.9) whenn = 0 we see
that B is a forward invariant random setin D.

Letx € X? and (w) € {y:|ly| < r(w)}, with r(w) satisfy

sup{e " r(9w)l:t ER}< oo, VwEQandy >0 (3.11)

r(w) isa (t.r.v.) with respectto 8, then for all x, (3.11) implies that
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b
Q-

[p(n,9_,w)x(I_,w)| < a™ r(9_,w) +

Because 0 < a < 1 from(3.11) yieldthat a™ r(9_,w) » 0 when n - co.

S0, V w € (2 there exists ny(w) suchthat a™ r(9_,,w) < 1,for n = n,(w). Consequently, we have

W(n, 9, w)x(d_,w) € B = [—1 — 21— 2 (@)

1-—

Thus, the RDS is point dissipative. LetD =

[—r(w),r(w)] is compact random setand k(w) = (2+ %1, 3+ i)

1-a
Yy(n,I_,w)DO_,w) C B
dp(n,I9_,,0w)D@O_,w), k(w)} >0
Hence, (9,v) is not compactdissipative. n
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