A Study on Certain Classes of Harmonic Univalent function, BiUnivalent on which the convolution operator

Audy Hatim Saheb ${ }^{\mathbf{1}}$, Ahmed Hadi Hussain ${ }^{2}$, Amina Kassim Hussain ${ }^{\mathbf{3}}$
1Department of Mathematics, University of Babylon, Babil, Iraq pure.aday.saheb@uobabylon.edu.iq
2Department of Automobile Engineering / College of Engineering Al-Musayab/ University of Babylon, Babil, Iraq met.ahmed.hadi@uobabylon.edu.iq
3Department of Material Engineering, College of Engineering, Mustansiriyah University, Baghdad, Iraq. Amina.kass@uomustansiriyah.edu.iq

Abstract

In this work. We use the convolution operator associated with generalized distributionseries, inclusionrelations between various subclasses $k_{H}^{0}, S_{H}^{*, 0}$ of Harmonic univalentfunctions are established. Precisely, such inclusions with Harmonic structure and harmonic convex mappings.

Keywords- Univalent, normalized conditions, BI-univalent, Convolution, harmonic convex function, locally univalent.

1. Introduction and Primilinaries:

Let \mathbb{C} be the complex plane and ϑ be a domain in \mathbb{C}. Let f be an analytic function in ϑ, if f does not map onto the same value for different points in ϑ then we call f as univalent. If ϑ not the whole, complex plane is a simply connected region and let a function f under which ϑ is set onto the open unit disc $\mathcal{U}=\{s: s \in \mathbb{C}$ and $|s|<1\}$. Thus, it is sufficient to consider analytic univalent functions in Ω which satisfies the normalization conditions $f(0)=f^{\prime}(0)-1=0$. Geometrically $f(0)=0$ translates the image of the domain whereas by the condition $f^{\prime}(0)=1$.
The class \mathcal{A} formed by the analytic functions in \mathcal{U} that satisfy normalization conditions. These functions in \mathcal{A} are represented as

$$
\begin{equation*}
f(s)=s+\sum_{k=2}^{\infty} a_{k} s^{k} \quad(s \in \mathcal{U}) \tag{1.1}
\end{equation*}
$$

The class δ is formed by the functions that are analytic and univalent which satisfy the normalized conditions for example $k(s)=$ $\frac{s}{(1-s)^{2}}$
Is a member in δ. This function k maps \mathcal{U} onto the complex plane except on the points from $-\infty$ to $-1 / 4$.
It is obvious f^{-1}, the inverse function of f in δ exists and is written as

$$
f^{-1}(f(s))=s \quad(s \in \mathcal{U})
$$

If both f and f^{-1} are univalent in \mathcal{U}, f is known as bi-univalent in \mathcal{U}. Such functions form a class denoted as φ Let a domain \mathcal{D} be simply connected and $f=u+v i$ is in \mathcal{D} which continuous complex is valued. For the real harmonic u and v, f is called harmonic in \mathcal{D}.

$$
\begin{equation*}
h(s)=s+\sum_{k \geq 2} A_{k} s^{k}, \quad g(s)=\sum_{k \geq 1} B_{k} s^{k}, \quad\left|B_{1}\right|<1 \tag{1.2}
\end{equation*}
$$

Let H denotes the collection of harmonic functions such that $f=h+\bar{g}$. A subclass S_{H} of H was established [1]. Using univalent and sense preserving functions in \mathcal{U} that are complex valued and harmonic and their properties were studied. A function f in S_{H} is represented as $f=h+g^{-}$such that

$$
\begin{equation*}
h(s)=s+\sum_{k \geq 2} h_{k} s^{k} \quad g(s)=\sum_{k \geq 1} g_{k} s^{k} \quad\left|g_{1}\right|<1 \tag{1.3}
\end{equation*}
$$

That is prerequisite and satisfactory for $f=h+\bar{g} \in S_{H}$ to be locally univalent and sense preserving in \mathcal{U} and is given by $\left|f(s)^{\prime}\right|>\left|g(s)^{\prime}\right| \mid$, for all $s \in \mathcal{U}$. [2]. proved several basic results on this class S_{H} in their works. When $g(s)$ given as in (1.3) satisfies the condition that $g(s) \equiv 0$, for every δ in \mathcal{U}, then S_{H} is same that of δ with analytic functions.
[3]. introduced and studied the classes S_{H} and $S_{H}^{0} . f(s)$ in S_{H} expressed as in (1.3) is named harmonic starlike of order α for $0 \leq$ $\alpha<1$ is givenly

$$
\frac{\partial}{\partial \theta}(\arg f(s))>\alpha, \quad s \in \mathcal{U}
$$

The functions that satisfy the above condition form a class, which is represented as $S_{H}^{*}(\alpha)$. The function f is called harmonic convex function of order α for $0 \leq \alpha<1$ is givenly

$$
\frac{\partial}{\partial \theta}\left(\arg \left(\frac{\partial}{\partial \theta} f(s)\right)\right)>\alpha, \quad s \in U
$$

$k_{H}(\alpha)$ is the class, which is formed by functions that satisfy the above condition. [4]. Pioneered the study on the classes of $S_{H}^{*}(\alpha)$. In addition $k_{H}(\alpha)$. [5]. in their study, they showed that, the classes $S_{H}^{*}(\alpha)$ and $k_{H}(\alpha)$ become S_{H}^{*} and k_{H} respectively, when α takes the value $\alpha=0$. Further they also proved that $\alpha=B_{1}=0$, the above said classes become $S_{H}^{*, 0} \mathrm{H}$ and k_{H}^{0}.
The subclasses of harmonic function class S_{H}^{0} in \mathcal{U}, namely convex subclass, starlike subclass and close-to-convex subclass are denoted as $k_{H}^{0}, S_{H}^{*, 0}$ and C_{H}^{0} respectively.These subclasses are studied extensively see [1]. And [2].
The generalized distribution was launched recently see [6]. With interesting applications on functions that are univalent. $I\left(\theta_{1}, \theta_{2}\right): H \rightarrow H$ is Called integral operator given by

$$
\begin{equation*}
I\left(\theta_{1}, \theta_{2}\right) \theta(s)=h(s)+\overline{g(s)} \tag{1.4}
\end{equation*}
$$

Where
$h(s)=h(s) * K_{\theta_{1}}(s)$ and $g(s)=g(s) * K_{\theta_{2}}(s)$
Or in other word

$$
\begin{array}{r}
h(s)=s+\sum_{k \geq 2} \frac{A_{k} t_{k-1}}{s_{1}} s^{k} \text { and } g(s)=s+\sum_{k \geq 2} \frac{B_{k} r_{k-1}}{s_{2}} s^{k} \tag{1.4}\\
\theta_{1}(s)=\sum_{k \geq 0} t_{k} s^{k} \quad \text { and } \quad \theta_{2}(s)=\sum_{k \geq 0} r_{k} s^{k}
\end{array}
$$

And

$$
s_{1}=\theta_{1}(1) \text { and } s_{2}=\theta_{2}(1)
$$

Recently there are relations between several subclasses of univalent functions that are analytic and harmonic, which are acce ssible, using the convolution operator $I\left(\theta_{1}, \theta_{2}\right)$.
We establish the relations amongst the classes $k_{H}^{0}, S_{H}^{*, 0}$ and C_{H}^{0}

2. Set of Lemma

Lemma 2.1. [2]. If h and g are represented as in (5.1) and $f \in k_{H}^{0}$, expressed as $f=h+\bar{g}$ and $B_{1}=0$ we have

$$
\left|A_{k}\right| \leq \frac{k+1}{2} \quad\left|B_{k}\right| \leq \frac{k-1}{2}
$$

Lemma 2.2. [4]. If h and g are described as in (5.1) and f is written as $f=h+\bar{g}$. If for any α where
$0 \leq \alpha<1$ and if

$$
\begin{equation*}
\sum_{k \geq 2}(k-\alpha)\left|A_{k}\right|+\sum_{k \geq 1}(k+\alpha)\left|B_{k}\right| \leq 1-\alpha \tag{2.1}
\end{equation*}
$$

Then f in \mathcal{U} fulfills the criteria for the function to be harmonic which is sense preserving and univalent also $f \in S_{H}^{*}(\alpha)$
Now suppose

$$
h(s)=s-\sum_{k \geq 2}\left|A_{k}\right| s^{k} \quad \text { and } \quad g(s)=\sum_{k \geq 2}\left|B_{k}\right| s^{k} \quad\left(\left|B_{1}\right|<1\right)
$$

Such that $f=h+\bar{g}$ it is necessary that the condition (2.1) be satisfied. Furthermore for f in $T S_{H}^{*}(\alpha)$

$$
\left|A_{k}\right|<\frac{1-\alpha}{k-\alpha} \geq 2 \quad \text { and } \quad\left|B_{k}\right|<\frac{1-\alpha}{k+\alpha} \geq 1
$$

Lemma 2.3. [4]. Let h and g be expressed as in (1.2) and $f=h+\bar{g}$. For a given α where $0 \leq \alpha<1$ we have,

$$
\begin{equation*}
\sum_{k \geq 2} k(k-\alpha)\left|A_{k}\right|+\sum_{k \geq 1} k(k+\alpha)\left|B_{k}\right| \leq 1-\alpha \tag{2.3}
\end{equation*}
$$

This implies $f \in k_{H}(\alpha)$ is in \mathcal{U} which is harmonic and sense-preserving univalent function
Lemma 2.4. [2]. Let h and g be described as in (1.2) and $f \in S_{H}^{*, 0}$, or C_{H}^{0} is expressed as $f=h+\bar{g}$ then $B_{1}=0$, we get

$$
\left|A_{k}\right| \leq \frac{2 k^{2}+3 k+1}{6} \text { and }\left|B_{k}\right| \leq \frac{2 k^{2}-3 k-1}{6}
$$

The next theorem gives the condition which is sufficient for the operator $I\left(\theta_{1}, \theta_{2}\right)$ to be harmonic starlike in \mathcal{U}
Theorem 2.1. If $f=h+\bar{g} \in H$ is expressed as in (1.2) with $B_{1}=0$ and the inequality

$$
\frac{1}{S_{1}}\left(\left(\theta_{1}^{\prime \prime}\right)(1)+(4-\alpha)\left(\theta_{1}^{\prime}\right)(1)\right)+\frac{1}{S_{2}}\left(\left(\theta_{2}^{\prime \prime}\right)(1)+(2+\alpha)\left(\theta_{2}^{\prime}\right)(1)\right) \leq \frac{2(1-\alpha)}{S_{1}} \theta_{1}(0)
$$

Is satisfied then $I\left(\theta_{1}, \theta_{2}\right) k_{H}^{0} \subseteq S_{H}^{*, 0}(\alpha)$

Vol. 7 Issue 4, April - 2023, Pages: 47-53

Proof. Let $f \in k_{H}^{0}$ be represented as $f=h+\bar{g}$ and is defined as in (1.2) with $B_{1}=0$. for h and g analytic in \mathcal{U} as described in (1.5) we establish that $I\left(\theta_{1}, \theta_{2}\right)(f)=h+\bar{g} \in S_{H}^{*, 0}(\alpha)$.

From Lemma 2.2, it sufficies the condition given below is true

$$
\begin{equation*}
\sum_{k \geq 2}(k-\alpha) \frac{\left|A_{k}\right| t_{k-1}}{s_{1}}+\sum_{k \geq 2}(k+\alpha) \frac{\left|B_{k}\right| r_{k-1}}{s_{2}} \leq 1-\alpha \tag{2.4}
\end{equation*}
$$

Using Lemma 2.1, we arrive

$$
\begin{gathered}
\sum_{k \geq 2}(k-\alpha) \frac{\left|A_{k}\right| t_{k-1}}{s_{1}}+\sum_{k \geq 2}(k+\alpha) \frac{\left|B_{k}\right| r_{k-1}}{s_{2}} \\
=\sum_{k \geq 2}(k-\alpha) \frac{(k+1) t_{k-1}}{2 s_{1}}+\sum_{k \geq 2}(k+\alpha) \frac{(k+1) r_{k-1}}{2 s_{2}} \\
\sum_{k \geq 2}(k-\alpha) \frac{(k+1)}{2} \frac{t_{k-1}}{s_{1}}+\sum_{k \geq 2}(k+\alpha) \frac{(k+1)}{2} \frac{r_{k-1}}{s_{2}} \\
=\frac{1}{2}\left[\frac{1}{s_{1}} \sum_{k \geq 2}(k-\alpha)(k+1) t_{k-1}+\frac{1}{s_{2}} \sum_{k \geq 2}(k+1)(k-1) r_{k-1}\right] \\
=\frac{1}{2}\left[\frac{1}{s_{1}} \sum_{k \geq 2}\{(k-1)(k-2)+(4-\alpha)(k-1)+2(1-\alpha)\} t_{k-1}+\frac{1}{s_{2}} \sum_{k \geq 2}\{(k-1)(k-2)+(2+\alpha)(k-1)+2(1-\alpha)\} r_{k-1}\right] \\
=\frac{1}{2}\left[\frac{1}{s_{1}} \sum_{k \geq 1}\{k(k-1)+(4-\alpha) k+2(1-\alpha)\} t_{k}+\frac{1}{s_{2}} \sum_{k \geq 1}\{k(k-1)+(2+\alpha) k\} r_{k}\right] \\
=\frac{1}{2}\left[\frac { 1 } { s _ { 1 } } \left(\theta_{1}^{\prime \prime}(1)+(4-\alpha) \theta_{1}^{\prime}(1)+2(1-\alpha)\left(\theta_{1}^{\prime}(1)-\theta_{1}(0)\right)+\frac{1}{s_{2}}\left(\theta_{2}^{\prime \prime}(1)+(2+\alpha) \theta_{2}^{\prime}(1)\right] \leq 1-\alpha\right.\right.
\end{gathered}
$$

The prove of theorem is complete
Theorem 2.2. if $f \in H$ such that $f=h+\bar{g}$ as expressed in (1.2) with $B_{1}=0$ and if

$$
\frac{1}{s_{1}}\left(\theta_{1}^{\prime \prime \prime}(1)+(7-\alpha) \theta_{1}^{\prime \prime}(1)+2(5-2 \alpha) \theta_{1}^{\prime}(1)\right)+\frac{1}{s_{2}}\left(\theta_{2}^{\prime \prime \prime}(1)+(5+\alpha) \theta_{2}^{\prime \prime}(1)+(4+2 \alpha) \theta_{2}^{\prime}(1) \leq \frac{2(1-\alpha)}{s_{1}} \theta_{1}(0)\right.
$$

Is true, we have $I\left(\theta_{1}, \theta_{2}\right) k_{H}^{0} \subset K_{H}^{0}(\alpha)$
Proof. If h, g are defined as in (1.2) and let $\in K_{H}^{0}$, and is expressed as $f=h+\bar{g}$ such that $B_{1}=0$. It is required to derived $I\left(\theta_{1}, \theta_{2}\right) f \in K_{H}(\alpha)$, the function h, g are analytic in U are expressed as in (1.5) with $B_{1}=0$. Using lemma 2.3 We can show

$$
\begin{equation*}
\sum_{k \geq 2} k(k-\alpha) \frac{\left|A_{k}\right| t_{k-1}}{s_{1}}+\sum_{k \geq 2} k(k+\alpha) \frac{\left|B_{k}\right| r_{k-1}}{s_{2}} \leq 1-\alpha \tag{2.5}
\end{equation*}
$$

From lemma 2.1 we have

$$
\begin{gathered}
\sum_{k \geq 2} k(k-\alpha) \frac{\left|A_{k}\right| t_{k-1}}{s_{1}}+\sum_{k \geq 2} k(k+\alpha) \frac{\left|B_{k}\right| r_{k-1}}{s_{2}} \\
=\sum_{k \geq 2} k(k-\alpha) \frac{(k+1)}{2} \frac{t_{k-1}}{s_{1}}+\sum_{k \geq 2} k(k+\alpha) \frac{(k-1)}{2} \frac{r_{k-1}}{s_{2}} \\
=\frac{1}{2}\left[\frac{1}{s_{1}} \sum_{k \geq 2} k(k-\alpha)(k+1) t_{k-1}+\frac{1}{s_{2}} \sum_{k \geq 2} k(k+\alpha)(k-1) r_{k-1}\right] \\
=\frac{1}{2}\left[\frac{1}{s_{1}} \sum_{k \geq 2}\left[\left(k^{2}-3 k+2\right)(k-3)+(7-\alpha)\left(k^{2}-3 k+2\right)+2(5-2 \alpha)(k-1)+2(1-\alpha)\right] t_{k-1}+\frac{1}{s_{2}} \sum_{k \geq 2}\left[\left(k^{2}-3 k+2\right)(k-3)\right.\right. \\
\left.\left.+(5+\alpha)\left(k^{2}-3 k+2\right)+(4+2 \alpha)(k-1)\right] r_{k-1}\right] \\
=\frac{1}{2}\left[\frac{1}{s_{1}} \sum_{k \geq 1}\left[k\left(k^{2}-3 k+2\right)(7-\alpha) k(k-1)+2(5-2 \alpha) k+2(1-\alpha)\right] t_{k}+\frac{1}{s_{2}} \sum_{k \geq 1}\left[k\left(k^{2}-3 k+2\right)+(5+\alpha) k(k-1)\right.\right. \\
\left.+(4+2 \alpha) k] r_{n}\right]
\end{gathered}
$$

Vol. 7 Issue 4, April - 2023, Pages: 47-53

$=\frac{1}{2}\left[\frac{1}{s_{1}}\left(\theta_{1}^{\prime \prime \prime}(1)+(7-\alpha) \theta_{1}^{\prime \prime}(1)+2(5-2 \alpha) \theta_{1}^{\prime}(1)+2(1-\alpha)\left(\theta_{1}(1)-\theta_{1}(0)\right)+\frac{1}{s_{2}}\left(\theta_{2}^{\prime \prime \prime}(1)+(5+\alpha) \theta_{2}^{\prime \prime}(1)+(4+2 \alpha) \theta_{2}^{\prime}(1)\right]\right.\right.$ $\leq 1-\alpha$
the prove of theorem is complete.
Theorem 2.3 if h, g are stated as in (1.2) and if $f \in H$ is expressed as $f=h+\bar{g}$ with $B_{1}=0$, where the inequality

$$
\frac{1}{s_{1}}\left(2 \theta_{1}^{\prime \prime \prime}(1)+(15-2 \alpha) \theta_{1}^{\prime \prime}(1)+(24-9 \alpha) \theta_{1}^{\prime}(1)+\frac{1}{s_{2}}\left(2 \theta_{2}^{\prime \prime \prime}(1)+(9+2 \alpha) \theta_{2}^{\prime \prime}(1)+3(2+\alpha) \theta_{2}^{\prime}(1)\right) \leq \frac{6(1-\alpha)}{s_{1}} \theta_{1}^{\prime}(0)\right.
$$

Is satisfied then $I\left(\theta_{1}, \theta_{2}\right)\left(s_{H}^{*, 0}\right) \subset s_{H}^{*}(\alpha)$ and $I\left(\theta_{1}, \theta_{2}\right)\left(C_{H}^{0}\right) \subset s_{H}^{*}(\alpha)$
Proof. Let f be stated as in theorem. We want to show that

$$
\sum_{k \geq 2}(k-\alpha) \frac{\left|A_{k}\right| t_{k-1}}{s_{1}}+\sum_{k \geq 2}(k+\alpha) \frac{\left|B_{k}\right| r_{k-1}}{s_{2}} \leq 1-\alpha
$$

By using lemma 2.4, we have

$$
\begin{aligned}
& \quad \sum_{k \geq 2}(k-\alpha) \frac{\left|A_{k}\right| t_{k-1}}{s_{1}}+\sum_{k \geq 2}(k+\alpha) \frac{\left|B_{k}\right| r_{k-1}}{s_{2}} \\
& =\frac{1}{6}\left[\frac{1}{s_{1}} \sum_{k \geq 2}\left\{2\left(k^{2}-3 k+2\right)(k-3)+(15-2 \alpha)\left(k^{2}-3 k+2\right)+(24-9 \alpha)(k-1)+6(1-\alpha)\right\} t_{k-1}+\frac{1}{s_{2}} \sum_{k \geq 2}\left\{2 \left(k^{2}-3 k\right.\right.\right. \\
& \left.\left.+2)(k-3)+(9+2 \alpha)\left(k^{2}-3 k+2\right)+(6+3 \alpha)(k-1)\right\} r_{k-1}\right] \\
& =\frac{1}{6}\left[\frac{1}{s_{1}} \sum_{k \geq 1}\left\{2 k\left(k^{2}-3 k+2\right)+(15-2 \alpha) k(k-1)+(24-9 \alpha) k+6(1-\alpha)\right\} t_{k}\right. \\
& \\
& \left.\quad+\frac{1}{s_{2}} \sum_{k \geq 1}\left\{2 k\left(k^{2}-3 k+2\right)+(9+2 \alpha) k(k-1)+(6+3 \alpha) k\right\} r_{n}\right] \\
& =\frac{1}{6}\left[\frac { 1 } { s _ { 1 } } \left(2 \theta_{1}^{\prime \prime \prime}(1)+(15-2 \alpha) \theta_{1}^{\prime \prime}(1)+(24-9 \alpha) \theta_{1}^{\prime}(1)+6(1-\alpha)\left(\theta_{1}^{\prime}(1)-\theta_{1}(0)\right)+\frac{1}{s_{2}}\left(2 \theta_{2}^{\prime \prime \prime}(1)+(9+2 \alpha) \theta_{2}^{\prime \prime}(1)+3(2\right.\right.\right.
\end{aligned}
$$

By the given condition. The prove is complete.
Theorem 2.4 the function f in H such that $f=h+\bar{g}$ is mentioned as in (1.2) with $B_{1}=0$ for which

$$
\begin{aligned}
& \frac{1}{s_{1}}\left(2 \theta_{1}^{(i v)}(1)+(\right.\left.23-2 \alpha) \theta_{1}^{\prime \prime \prime}(1)+(69-15 \alpha) \theta_{1}^{\prime \prime}(1)+(54-2 \alpha) \theta_{1}^{\prime}\right)+\frac{1}{s_{2}}\left(2 \theta_{2}^{(i v)}(1)+(17+2 \alpha) \theta_{2}^{\prime \prime \prime}(1)+(33+9 \alpha) \theta_{2}^{\prime \prime}(1)\right. \\
&\left.+(12+6 \alpha) \theta_{2}^{\prime}(1)\right) \leq \frac{6(1-\alpha)}{s_{1}} \theta_{1}(0)
\end{aligned}
$$

Is satisfied, then $I\left(\theta_{1}, \theta_{2}\right)\left(S_{H}^{*, 0}\right) \subset k_{H}(\alpha)$ and $I\left(\theta_{1}, \theta_{2}\right)\left(C_{H}^{0}\right) \subset k_{H}(\alpha)$
Proof. Let f be stated as in theorem. It suffices to show that

$$
\sum_{k \geq 2} k(k-\alpha) \frac{\left|A_{k}\right| t_{k-1}}{s_{1}}+\sum_{k \geq 2} k(k+\alpha) \frac{\left|B_{k}\right| r_{r-1}}{s_{2}} \leq 1-\alpha
$$

From lemma 2.4

$$
\begin{gathered}
\sum_{k \geq 2} k(k-\alpha) \frac{\left|A_{k}\right| t_{k-1}}{s_{1}}+\sum_{k \geq 2} k(k+\alpha) \frac{\left|B_{k}\right| r_{k-1}}{s_{2}} \\
=\frac{1}{6}\left[\frac{1}{s_{1}} \sum_{k \geq 2}\left(k^{2}-k \alpha\right)(2 k+1)(k+1) t_{k-1}+\frac{1}{s_{2}} \sum_{k \geq 2} k(k+\alpha)(2 k-1)(k-1) r_{k-1}\right] \\
=\frac{1}{6}\left[\frac{1}{s_{1}} \sum_{k \geq 2}\left\{2 k\left(k^{2}-3 k+2\right)(k-3)+(23-2 \alpha) k\left(k^{2}-3 k+2\right)+(69-15 \alpha) k(k-1)+(54-24 \alpha) k+6(1-\alpha)\right\} t_{k}\right. \\
\left.+\frac{1}{s_{2}} \sum_{k \geq 2}\left\{2 k\left(k^{2}-3 k+2\right)(k-3)+(17+2 \alpha) k(k-1)(k-2)+(33+9 \alpha)\left(k^{2}-k\right)+(12+6 \alpha) k\right\} r_{k}\right]
\end{gathered}
$$

Vol. 7 Issue 4, April - 2023, Pages: 47-53

$$
\begin{gathered}
=\frac{1}{6}\left[\frac { 1 } { s _ { 1 } } \left(2 \theta_{1}^{(i v)}(1)+(23-2 \alpha) \theta_{1}^{\prime \prime \prime}(1)+(69-15 \alpha) \theta_{1}^{\prime \prime}(1)+(54-24 \alpha) \theta_{1}^{\prime}(1)+6(1-\alpha)\left(\theta_{1}(1)-\theta_{1}(0)\right)+\frac{1}{s_{2}}\left(2 \theta_{2}^{(i v)}(1)\right.\right.\right. \\
\left.\left.+(17+2 \alpha) \theta_{2}^{\prime \prime \prime}(1)+(33+9 \alpha) \theta_{2}^{\prime \prime}(1)+(12+6 \alpha) \theta_{2}^{\prime}(1)\right)\right] \leq 1-\alpha
\end{gathered}
$$

The prove is complete
Theorem 2.5. Let h and g be described as in (5.6) and $f=h+g \in H$ such that $B_{1}=0$. Then the prerequisite and satisfactory condition for $I\left(\theta_{1}, \theta_{2}\right)\left(J S_{H}^{*, 0}(\alpha)\right) \subset J S_{H}^{*, 0}(\alpha)$ is

$$
\frac{\theta_{1}(0)}{s_{1}}+\frac{\theta_{2}(0)}{s_{2}} \geq 1
$$

Proof. Consider $f=h+\bar{g} \in J S_{H}^{*, 0}(\alpha)$ which is expressed as mentioned in (2.3) to establish the desired result $\left(\theta_{1}, \theta_{2}\right) f \in J S_{H}^{*, 0}(\alpha)$, it is enough if we prove the following

$$
\sum_{k \geq 2}(k-\alpha) \frac{\left|A_{k}\right| t_{k-1}}{s_{1}}+\sum_{k \geq 2}(k+\alpha) \frac{\left|B_{k}\right| r_{k-1}}{s_{2}} \leq 1-\alpha
$$

By using remark.2.1, we have

$$
\begin{gathered}
\sum_{k \geq 2}(k-\alpha) \frac{\left|A_{k}\right| t_{k-1}}{s_{1}}+\sum_{k \geq 2}(k+\alpha) \frac{\left|B_{k}\right| r_{k-1}}{s_{2}}=(1-\alpha)\left[\sum_{k \geq 2} \frac{t_{k-1}}{s_{1}}+\sum_{k \geq 2} \frac{r_{k-1}}{s_{2}}\right] \\
=(1-\alpha)\left[\sum_{k \geq 2} \frac{t_{k}}{s_{1}}+\sum_{k \geq 2} \frac{r_{k}}{s_{2}}\right] \\
=(1-\alpha)\left[\frac{\theta_{1}(1)-\theta_{1}(0)}{s_{1}}+\frac{\theta_{2}(1)-\theta_{2}(0)}{s_{2}}\right] \leq 1-\alpha
\end{gathered}
$$

By prove is complete
Theorem 2.6. Consider $f=h+\bar{g} \in H$ is expressed as in (2.3) with $B_{1}=0$. Then the necessary and sufficient criterion for $I\left(\theta_{1}, \theta_{2}\right)\left(J S_{H}^{*, 0}(\alpha)\right) \subset J k_{H}^{0}(\alpha)$ is

$$
\frac{\theta_{1}^{\prime}(1)}{s_{1}}+\frac{\theta_{2}^{\prime}(1)}{s_{2}} \leq \frac{\theta_{1}(0)}{s_{1}}+\frac{\theta_{2}(0)}{s_{2}}-1
$$

Proof. Let h and g are defined as in (2.3) and let $f \in J S_{H}^{*, 0}(\alpha)$ and is expressed as $f=h+\bar{g}$ such that $B_{1}=0$. For $I\left(\theta_{1}, \theta_{2}\right) f$ to be contained in $J k_{H}^{0}(\alpha)$, we have to show

$$
\sum_{k \geq 2} k(k-\alpha) \frac{\left|A_{k}\right| t_{k-1}}{s_{1}}+\sum_{k \geq 2} k(k+\alpha) \frac{\left|B_{k}\right| r_{k-1}}{s_{2}} \leq 1-\alpha
$$

2. By using remark 2.1 , we obtain

$$
\begin{gathered}
\sum_{k \geq 2} k(k-\alpha) \frac{\left|A_{k}\right| t_{k-1}}{s_{1}}+\sum_{k \geq 2} k(k+\alpha) \frac{\left|B_{k}\right| r_{k-1}}{s_{2}} \\
=(1-\alpha)\left[\sum_{k \geq 2} \frac{k t_{k-1}}{s_{1}}+\sum_{k \geq 2} \frac{k r_{k-1}}{s_{2}}\right] \\
=(1-\alpha)\left[\sum_{k \geq 2} \frac{(k+1) t_{k}}{s_{1}}+\sum_{k \geq 2} \frac{(k+1) r_{k}}{s_{2}}\right] \\
=(1-\alpha)\left[\frac{\theta_{1}^{\prime}(1)-\theta_{1}(1)-\theta_{1}(0)}{s_{1}}+\frac{\theta_{2}^{\prime}(1)+\theta_{2}(1)-\theta_{2}(0)}{s_{2}}\right] \leq 1-\alpha
\end{gathered}
$$

The proof is complete.

ACKNOWLEDGEMENT.

The Researchers thank the critics for their valuable and sincere comments that enrich this research.

References

[1] J. Clunie and T. Sheil-Small, Hannonic univalent functions, Ann. Acad. Sci. Fen. Series AI Math., 9(3)(1984), 3-25.
[2] P.L. Duren, Univalent Functions, GrundJeherem der Mathematischen Wissenchaften 259, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, (1983).

International Journal of Engine ering and Information Systems (IJEAIS)
ISSN: 2643-640X
Vol. 7 Issue 4, April - 2023, Pages: 47-53
[3] O.P. Nmja, Connections between various subclasses of planar harmonic mappings involving hypergeometric functions, Appl. Math. Comput., 198(1) (2008), 305-316.
[4] J.M. Jahangiri, Harmonic functions starlike in the unit disc, J. Math. Anal. Appl., 235 (1999), 470-477.
[5] H. Silverman and E.M. Silvia, Subclasses of prestarlike functions, Math. Japon., 29 (1984), 929-939.
[6] S. Porwal and K.K. Dixit, An application of hypergeometric functions on harmoni c univalent functions, Bull. Math. Anal. Appl., 2(4), (2010), 97-105.

Authors
Author's Name, Audy Hatim Saheb

Author's Name, Ahmed Hadi Hussain

Author's Name, Amina Kassim Hussain

