A Study on Certain Classes of Harmonic Univalent function, Bi-Univalent on which the convolution operator

Audy Hatim Saheb¹, Ahmed Hadi Hussain², Amina Kassim Hussain³

1Department of Mathematics, University of Babylon, Babil, Iraq pure.aday.saheb@uobabylon.edu.iq 2Department of Automobile Engineering / College of Engineering Al-Musayab/ University of Babylon, Babil, Iraq met.ahmed.hadi@uobabylon.edu.iq 3Department of Material Engineering *Collaga of Engineering Mustansiriyah University Baahdad Irag*

3Department of Material Engineering, College of Engineering, Mustansiriyah University, Baghdad, Iraq. Amina.kass@uomustansiriyah.edu.iq

Abstract—In this work. We use the convolution operator associated with generalized distribution series, inclusion relations between various subclasses k_H^0 , $S_H^{*,0}$ of Harmonic univalent functions are established. Precisely, such inclusions with Harmonic structure and harmonic convex mappings.

Keywords- Univalent, normalized conditions, BI-univalent, Convolution, harmonic convex function, locally univalent.

1. INTRODUCTION AND PRIMILINARIES:

Let \mathbb{C} be the complex plane and ϑ be a domain in \mathbb{C} . Let f be an analytic function in ϑ , if f does not map onto the same value for different points in ϑ then we call f as univalent. If ϑ not the whole, complex plane is a simply connected region and let a function f under which ϑ is set onto the open unit disc $\mathcal{U} = \{s: s \in \mathbb{C} \text{ and } |s| < 1\}$. Thus, it is sufficient to consider analytic univalent functions in Ω which satisfies the normalization conditions f(0) = f'(0) - 1 = 0. Geometrically f(0) = 0 translates the image of the domain whereas by the condition f'(0) = 1.

The class \mathcal{A} formed by the analytic functions in \mathcal{U} that satisfy normalization conditions. These functions in \mathcal{A} are represented as

$$f(s) = s + \sum_{k=2}^{\infty} a_k s^k \quad (s \in \mathcal{U}).$$
 (1.1)

The class δ is formed by the functions that are analytic and univalent which satisfy the normalized conditions for example $k(s) = \frac{s}{(1-s)^2}$

Is a member in δ . This function k maps \mathcal{U} onto the complex plane except on the points from $-\infty$ to -1/4. It is obvious f^{-1} , the inverse function of f in δ exists and is written as

 $f^{-1}(f(s)) = s$ ($s \in U$). If both f and f^{-1} are univalent in U. f is known as bi-univalent in U. Such functions form a class denoted as φ

Let a domain \mathcal{D} be simply connected and f = u + vi is in \mathcal{D} which continuous complex is valued. For the real harmonic u and v, f is called harmonic in \mathcal{D} .

$$h(s) = s + \sum_{k \ge 2} A_k s^k, \qquad g(s) = \sum_{k \ge 1} B_k s^k, \qquad |B_1| < 1$$
 (1.2)

Let *H* denotes the collection of harmonic functions such that $f = h + \bar{g}$. A subclass S_H of *H* was established [1]. Using univalent and sense preserving functions in *U* that are complex valued and harmonic and their properties were studied. A function *f* in S_H is represented as $f = h + \bar{g}$ such that

$$h(s) = s + \sum_{k \ge 2} h_k s^k \qquad g(s) = \sum_{k \ge 1} g_k s^k \qquad |g_1| < 1 \qquad (1.3)$$

That is prerequisite and satisfactory for $f = h + \bar{g} \in S_H$ to be locally univalent and sense preserving in \mathcal{U} and is given by |f(s)'| > |g(s)'||, for all $s \in \mathcal{U}$. [2]. proved several basic results on this class S_H in their works. When g(s) given as in (1.3) satisfies the condition that $g(s) \equiv 0$, for every δ in \mathcal{U} , then S_H is same that of δ with analytic functions. [3]. introduced and studied the classes S_H and S_H^0 . f(s) in S_H expressed as in (1.3) is named harmonic starlike of order α for $0 \leq \beta$.

 $\alpha < 1$ is givenly

$$\frac{\partial}{\partial \theta} (argf(s)) > \alpha, \qquad s \in \mathcal{U}$$

The functions that satisfy the above condition form a class, which is represented as $S_H^*(\alpha)$. The function f is called harmonic convex function of order α for $0 \le \alpha < 1$ is givenly

$$\frac{\partial}{\partial \theta} \left(\arg \left(\frac{\partial}{\partial \theta} f(s) \right) \right) > \alpha, \qquad s \in \mathcal{U}$$

 $k_H(\alpha)$ is the class, which is formed by functions that satisfy the above condition. [4]. Pioneered the study on the classes of $S_H^*(\alpha)$. In addition $k_H(\alpha)$. [5]. in their study, they showed that, the classes $S_H^*(\alpha)$ and $k_H(\alpha)$ become S_H^* and k_H respectively, when α takes the value $\alpha = 0$. Further they also proved that $\alpha = B_1 = 0$, the above said classes become $S_H^{*,0}$ H and k_H^0 .

The subclasses of harmonic function class S_H^0 in \mathcal{U} , namely convex subclass, starlike subclass and close-to-convex subclass are denoted as k_H^0 , $S_H^{*,0}$ and C_H^0 respectively. These subclasses are studied extensively see [1]. And [2].

The generalized distribution was launched recently see [6]. With interesting applications on functions that are univalent. $I(\theta_1, \theta_2): H \to H$ is Called integral operator given by

$$I(\theta_1, \theta_2)\theta(s) = \hbar(s) + \overline{g(s)}$$
(1.4)

Where

 $\Re(s) = h(s) * K_{\theta_1}(s)$ and $g(s) = g(s) * K_{\theta_2}(s)$ Or in other word

$$\hbar(s) = s + \sum_{k \ge 2} \frac{A_k t_{k-1}}{s_1} s^k \text{ and } g(s) = s + \sum_{k \ge 2} \frac{B_k r_{k-1}}{s_2} s^k$$

$$\theta_1(s) = \sum_{k \ge 0} t_k s^k \text{ and } \theta_2(s) = \sum_{k \ge 0} r_k s^k$$
(1.4)

And

 $s_1 = \theta_1(1) \text{ and } s_2 = \theta_2(1)$

Recently there are relations between several subclasses of univalent functions that are analytic and harmonic, which are accessible, using the convolution operator $I(\theta_1, \theta_2)$.

We establish the relations amongst the classes $k_H^0, S_H^{*,0}$ and C_H^0

2. Set of Lemma

Lemma 2.1. [2]. If h and g are represented as in (5.1) and $f \in k_{H}^{0}$, expressed as $f = h + \bar{g}$ and $B_{1} = 0$ we have k + 1 ... k - 1

$$|A_k| \le \frac{k+1}{2} \qquad |B_k| \le \frac{k-1}{2}$$

Lemma 2.2. [4]. If h and g are described as in (5.1) and f is written as $f = h + \overline{g}$. If for any α where $0 \le \alpha < 1$ and if

$$\sum_{k \ge 2} (k - \alpha) |A_k| + \sum_{k \ge 1} (k + \alpha) |B_k| \le 1 - \alpha$$
(2.1)

Then f in \mathcal{U} fulfills the criteria for the function to be harmonic which is sense preserving and univalent also $f \in S_H^*(\alpha)$ Now suppose _____

$$h(s) = s - \sum_{k \ge 2} |A_k| s^k$$
 and $g(s) = \sum_{k \ge 2} |B_k| s^k$ $(|B_1| < 1)$

Such that $f = h + \bar{g}$ it is necessary that the condition (2.1) be satisfied. Furthermore for f in $TS_H^*(\alpha)$

$$|A_k| < \frac{1-\alpha}{k-\alpha} \ge 2 \quad and \quad |B_k| < \frac{1-\alpha}{k+\alpha} \ge 1$$

Lemma 2.3. [4]. Let h and g be expressed as in (1.2) and $f = h + \overline{g}$. For a given α where $0 \leq \alpha < 1$ we have,

$$\sum_{k \geq 2} k(k-\alpha)|A_k| + \sum_{k \geq 1} k(k+\alpha)|B_k| \le 1-\alpha$$
(2.3)

This implies $f \in k_H(\alpha)$ is in \mathcal{U} which is harmonic and sense-preserving univalent function **Lemma 2.4.** [2]. Let *h* and *g* be described as in (1.2) and $f \in S_H^{*,0}$, or C_H^0 is expressed as $f = h + \bar{g}$ then $B_1 = 0$, we get $|A_1| \leq 2k^2 + 3k + 1$

$$|A_k| \le \frac{2k + 3k + 1}{6} \text{ and } |B_k| \le \frac{2k - 3k + 1}{6}$$

The next theorem gives the condition which is sufficient for the operator $I(\theta_1, \theta_2)$ to be harmonic starlike in \mathcal{U} **Theorem 2.1.** If $f = h + \bar{g} \in H$ is expressed as in (1.2) with $B_1 = 0$ and the inequality

$$\frac{1}{S_1} \left((\theta_1'')(1) + (4 - \alpha)(\theta_1')(1) \right) + \frac{1}{S_2} \left((\theta_2'')(1) + (2 + \alpha)(\theta_2')(1) \right) \le \frac{2(1 - \alpha)}{S_1} \theta_1(0)$$

Is satisfied then $I(\theta_1, \theta_2) k_H^0 \subseteq S_H^{*,0}(\alpha)$

Vol. 7 Issue 4, April - 2023, Pages: 47-53

Proof. Let $f \in k_H^0$ be represented as $f = h + \overline{g}$ and is defined as in (1.2) with $B_1 = 0$. for h and g analytic in \mathcal{U} as described in (1.5) we establish that $I(\theta_1, \theta_2)(f) = h + \overline{g} \in S_H^{*,0}(\alpha)$. From Lemma 2.2, it sufficies the condition given below is true

$$\sum_{k\geq 2} (k-\alpha) \frac{|A_k| t_{k-1}}{s_1} + \sum_{k\geq 2} (k+\alpha) \frac{|B_k| r_{k-1}}{s_2} \le 1-\alpha$$
(2.4)

Using Lemma 2.1, we arrive

$$\begin{split} \sum_{k \ge 2} (k-\alpha) \frac{|A_k| t_{k-1}}{s_1} + \sum_{k \ge 2} (k+\alpha) \frac{|B_k| r_{k-1}}{s_2} \\ &= \sum_{k \ge 2} (k-\alpha) \frac{(k+1) t_{k-1}}{2s_1} + \sum_{k \ge 2} (k+\alpha) \frac{(k+1) r_{k-1}}{2s_2} \\ &= \sum_{k \ge 2} (k-\alpha) \frac{(k+1) t_{k-1}}{2} + \sum_{k \ge 2} (k+\alpha) \frac{(k+1) r_{k-1}}{2s_2} \\ &= \frac{1}{2} \left[\frac{1}{s_1} \sum_{k \ge 2} (k-\alpha) (k+1) t_{k-1} + \frac{1}{s_2} \sum_{k \ge 2} (k+1) (k-1) r_{k-1} \right] \\ &= \frac{1}{2} \left[\frac{1}{s_1} \sum_{k \ge 2} \{ (k-1) (k-2) + (4-\alpha) (k-1) + 2(1-\alpha) \} t_{k-1} + \frac{1}{s_2} \sum_{k \ge 2} \{ (k-1) (k-2) + (2+\alpha) (k-1) + 2(1-\alpha) \} r_{k-1} \right] \\ &= \frac{1}{2} \left[\frac{1}{s_1} \sum_{k \ge 1} \{ k(k-1) + (4-\alpha) k + 2(1-\alpha) \} t_k + \frac{1}{s_2} \sum_{k \ge 2} \{ k(k-1) + (2+\alpha) k \} r_k \right] \\ &= \frac{1}{2} \left[\frac{1}{s_1} (\theta_1''(1) + (4-\alpha) \theta_1'(1) + 2(1-\alpha) (\theta_1'(1) - \theta_1(0)) + \frac{1}{s_2} (\theta_2''(1) + (2+\alpha) \theta_2'(1) \right] \le 1 - \alpha \end{split}$$

The prove of theorem is complete **Theorem 2.2.** if $f \in H$ such that $f = h + \overline{g}$ as expressed in (1.2) with $B_1 = 0$ and if

$$\frac{1}{s_1} \left(\theta_1^{\prime\prime\prime}(1) + (7 - \alpha)\theta_1^{\prime\prime}(1) + 2(5 - 2\alpha)\theta_1^{\prime}(1) \right) + \frac{1}{s_2} \left(\theta_2^{\prime\prime\prime}(1) + (5 + \alpha)\theta_2^{\prime\prime}(1) + (4 + 2\alpha)\theta_2^{\prime}(1) \le \frac{2(1 - \alpha)}{s_1} \theta_1(0) \right)$$
The we have $I(\theta, \theta) k_2^0 \subset K_2^0(\alpha)$.

Is true, we have $I(\theta_1, \theta_2)k_H^0 \subset K_H^0(\alpha)$

Proof. If h, g are defined as in (1.2) and let $\in K_H^0$, and is expressed as $f = h + \bar{g}$ such that $B_1 = 0$. It is required to derived $I(\theta_1, \theta_2)f \in K_H(\alpha)$, the function \hbar , g are analytic in \mathcal{U} are expressed as in (1.5) with $B_1 = 0$. Using lemma 2.3 We can show

$$\sum_{k\geq 2} k(k-\alpha) \frac{|A_k| t_{k-1}}{s_1} + \sum_{k\geq 2} k(k+\alpha) \frac{|B_k| r_{k-1}}{s_2} \le 1-\alpha$$
(2.5)

From lemma 2.1 we have

$$\begin{split} \sum_{k\geq 2} k(k-\alpha) \frac{|A_k|t_{k-1}}{s_1} + \sum_{k\geq 2} k(k+\alpha) \frac{|B_k|\tilde{r}_{k-1}}{s_2} \\ &= \sum_{k\geq 2} k(k-\alpha) \frac{(k+1)}{2} \frac{t_{k-1}}{s_1} + \sum_{k\geq 2} k(k+\alpha) \frac{(k-1)}{2} \frac{r_{k-1}}{s_2} \\ &= \frac{1}{2} \bigg[\frac{1}{s_1} \sum_{k\geq 2} k(k-\alpha)(k+1)t_{k-1} + \frac{1}{s_2} \sum_{k\geq 2} k(k+\alpha)(k-1)r_{k-1} \bigg] \\ &= \frac{1}{2} \bigg[\frac{1}{s_1} \sum_{k\geq 2} [(k^2 - 3k + 2)(k-3) + (7-\alpha)(k^2 - 3k + 2) + 2(5 - 2\alpha)(k-1) + 2(1-\alpha)]t_{k-1} + \frac{1}{s_2} \sum_{k\geq 2} [(k^2 - 3k + 2)(k-3) \\ &+ (5+\alpha)(k^2 - 3k + 2) + (4+2\alpha)(k-1)]r_{k-1} \bigg] \\ &= \frac{1}{2} \bigg[\frac{1}{s_1} \sum_{k\geq 1} [k(k^2 - 3k + 2)(7-\alpha)k(k-1) + 2(5 - 2\alpha)k + 2(1-\alpha)]t_k + \frac{1}{s_2} \sum_{k\geq 1} [k(k^2 - 3k + 2) + (5+\alpha)k(k-1) \\ &+ (4+2\alpha)k]r_n \bigg] \end{split}$$

Vol. 7 Issue 4, April - 2023, Pages: 47-53

$$= \frac{1}{2} \left[\frac{1}{s_1} (\theta_1^{\prime\prime\prime}(1) + (7 - \alpha)\theta_1^{\prime\prime}(1) + 2(5 - 2\alpha)\theta_1^{\prime}(1) + 2(1 - \alpha)(\theta_1(1) - \theta_1(0)) + \frac{1}{s_2} (\theta_2^{\prime\prime\prime}(1) + (5 + \alpha)\theta_2^{\prime\prime}(1) + (4 + 2\alpha)\theta_2^{\prime}(1) + (4 + 2\alpha)\theta_2^{\prime\prime}(1) + (4 + 2\alpha)\theta_2^{\prime\prime}(1$$

the prove of theorem is complete.

Theorem 2.3 if h, g are stated as in (1.2) and if $f \in H$ is expressed as $f = h + \bar{g}$ with $B_1 = 0$, where the inequality

$$\frac{1}{s_1} (2\theta_1'''(1) + (15 - 2\alpha)\theta_1''(1) + (24 - 9\alpha)\theta_1'(1) + \frac{1}{s_2} (2\theta_2'''(1) + (9 + 2\alpha)\theta_2''(1) + 3(2 + \alpha)\theta_2'(1)) \le \frac{6(1 - \alpha)}{s_1}\theta_1'(0),$$

satisfied then $I(\theta_1, \theta_2)(s_H^{*,0}) \subset s_H^*(\alpha)$ and $I(\theta_1, \theta_2)(C_H^0) \subset s_H^*(\alpha)$

Is Proof. Let f be stated as in theorem. We want to show that

$$\sum_{k \ge 2} (k - \alpha) \frac{|A_k| t_{k-1}}{s_1} + \sum_{k \ge 2} (k + \alpha) \frac{|B_k| r_{k-1}}{s_2} \le 1 - \alpha$$

By using lemma 2.4, we have

$$\begin{split} \sum_{k\geq 2} (k-\alpha) \frac{|A_k| t_{k-1}}{s_1} + \sum_{k\geq 2} (k+\alpha) \frac{|B_k| r_{k-1}}{s_2} \\ &= \frac{1}{6} \bigg[\frac{1}{s_1} \sum_{k\geq 2} \{2(k^2 - 3k + 2)(k-3) + (15 - 2\alpha)(k^2 - 3k + 2) + (24 - 9\alpha)(k-1) + 6(1-\alpha)\} t_{k-1} + \frac{1}{s_2} \sum_{k\geq 2} \{2(k^2 - 3k + 2)(k-3) + (9 + 2\alpha)(k^2 - 3k + 2) + (6 + 3\alpha)(k-1)\} r_{k-1} \bigg] \\ &= \frac{1}{6} \bigg[\frac{1}{s_1} \sum_{k\geq 1} \{2k(k^2 - 3k + 2) + (15 - 2\alpha)k(k-1) + (24 - 9\alpha)k + 6(1-\alpha)\} t_k \\ &\quad + \frac{1}{s_2} \sum_{k\geq 1} \{2k(k^2 - 3k + 2) + (9 + 2\alpha)k(k-1) + (6 + 3\alpha)k\} r_n \bigg] \\ &= \frac{1}{6} \bigg[\frac{1}{s_1} (2\theta_1'''(1) + (15 - 2\alpha)\theta_1''(1) + (24 - 9\alpha)\theta_1'(1) + 6(1 - \alpha)(\theta_1'(1) - \theta_1(0)) + \frac{1}{s_2} (2\theta_2'''(1) + (9 + 2\alpha)\theta_2''(1) + 3(2 + \alpha)\theta_2'(1)) \bigg] \\ &= 1 - \alpha \end{split}$$

By the given condition. The prove is complete.

Theorem 2.4 the function f in H such that $f = h + \bar{g}$ is mentioned as in (1.2) with $B_1 = 0$ for which

$$\frac{1}{s_1} \left(2\theta_1^{(iv)}(1) + (23 - 2\alpha)\theta_1^{\prime\prime\prime}(1) + (69 - 15\alpha)\theta_1^{\prime\prime}(1) + (54 - 2\alpha)\theta_1^{\prime} \right) + \frac{1}{s_2} \left(2\theta_2^{(iv)}(1) + (17 + 2\alpha)\theta_2^{\prime\prime\prime}(1) + (33 + 9\alpha)\theta_2^{\prime\prime}(1) + (12 + 6\alpha)\theta_2^{\prime\prime}(1) \right) \le \frac{6(1 - \alpha)}{s_1} \theta_1(0)$$

Is satisfied, then $I(\theta_1, \theta_2)(S_H^{*,0}) \subset k_H(\alpha)$ and $I(\theta_1, \theta_2)(C_H^0) \subset k_H(\alpha)$ Proof. Let *f* be stated as in theorem. It suffices to show that

$$\sum_{k \ge 2} k(k-\alpha) \frac{|A_k| t_{k-1}}{s_1} + \sum_{k \ge 2} k(k+\alpha) \frac{|B_k| r_{r-1}}{s_2} \le 1 - \alpha$$

From lemma 2.4

$$\sum_{k\geq 2} k(k-\alpha) \frac{|A_k|t_{k-1}}{s_1} + \sum_{k\geq 2} k(k+\alpha) \frac{|B_k|r_{k-1}}{s_2}$$
$$= \frac{1}{6} \left[\frac{1}{s_1} \sum_{k\geq 2} (k^2 - k\alpha)(2k+1)(k+1)t_{k-1} + \frac{1}{s_2} \sum_{k\geq 2} k(k+\alpha)(2k-1)(k-1)r_{k-1} \right]$$

$$= \frac{1}{6} \left[\frac{1}{s_1} \sum_{k \ge 2} \{2k(k^2 - 3k + 2)(k - 3) + (23 - 2\alpha)k(k^2 - 3k + 2) + (69 - 15\alpha)k(k - 1) + (54 - 24\alpha)k + 6(1 - \alpha)\}t_k + \frac{1}{s_2} \sum_{k \ge 2} \{2k(k^2 - 3k + 2)(k - 3) + (17 + 2\alpha)k(k - 1)(k - 2) + (33 + 9\alpha)(k^2 - k) + (12 + 6\alpha)k\}r_k \right]$$

Vol. 7 Issue 4, April - 2023, Pages: 47-53

$$= \frac{1}{6} \left[\frac{1}{s_1} \left(2\theta_1^{(iv)}(1) + (23 - 2\alpha)\theta_1^{\prime\prime\prime}(1) + (69 - 15\alpha)\theta_1^{\prime\prime}(1) + (54 - 24\alpha)\theta_1^{\prime}(1) + 6(1 - \alpha)(\theta_1(1) - \theta_1(0)) \right) + \frac{1}{s_2} (2\theta_2^{(iv)}(1) + (17 + 2\alpha)\theta_2^{\prime\prime\prime}(1) + (33 + 9\alpha)\theta_2^{\prime\prime}(1) + (12 + 6\alpha)\theta_2^{\prime}(1)) \right] \le 1 - \alpha$$

The prove is complete

Theorem 2.5. Let *h* and *g* be described as in (5.6) and $f = h + g \in H$ such that $B_1 = 0$. Then the prerequisite and satisfactory condition for $I(\theta_1, \theta_2)(JS_H^{*,0}(\alpha)) \subset JS_H^{*,0}(\alpha)$ is

$$\frac{\theta_1(0)}{s_1} + \frac{\theta_2(0)}{s_2} \ge 1$$

Proof. Consider $f = h + \bar{g} \in JS_{H}^{*,0}(\alpha)$ which is expressed as mentioned in (2.3) to establish the desired result $(\theta_1, \theta_2) f \in JS_{H}^{*,0}(\alpha)$, it is enough if we prove the following

$$\sum_{k \ge 2} (k - \alpha) \frac{|A_k| t_{k-1}}{s_1} + \sum_{k \ge 2} (k + \alpha) \frac{|B_k| r_{k-1}}{s_2} \le 1 - \alpha$$

By using remark.2.1, we have

$$\sum_{k\geq 2} (k-\alpha) \frac{|A_k| t_{k-1}}{s_1} + \sum_{k\geq 2} (k+\alpha) \frac{|B_k| r_{k-1}}{s_2} = (1-\alpha) \left[\sum_{k\geq 2} \frac{t_{k-1}}{s_1} + \sum_{k\geq 2} \frac{r_{k-1}}{s_2} \right]$$
$$= (1-\alpha) \left[\sum_{k\geq 2} \frac{t_k}{s_1} + \sum_{k\geq 2} \frac{r_k}{s_2} \right]$$
$$= (1-\alpha) \left[\frac{\theta_1(1) - \theta_1(0)}{s_1} + \frac{\theta_2(1) - \theta_2(0)}{s_2} \right] \le 1-\alpha$$

By prove is complete

Theorem 2.6. Consider $f = h + \bar{g} \in H$ is expressed as in (2.3) with $B_1 = 0$. Then the necessary and sufficient criterion for $I(\theta_1, \theta_2)(JS_H^{*,0}(\alpha)) \subset Jk_H^0(\alpha)$ is

$$\frac{\theta_1'(1)}{s_1} + \frac{\theta_2'(1)}{s_2} \le \frac{\theta_1(0)}{s_1} + \frac{\theta_2(0)}{s_2} - 1$$

Proof. Let *h* and *g* are defined as in (2.3) and let $f \in JS_{H}^{*,0}(\alpha)$ and is expressed as $f = h + \bar{g}$ such that $B_1 = 0$. For $I(\theta_1, \theta_2)f$ to be contained in $Jk_{H}^{0}(\alpha)$, we have to show

$$\sum_{k \ge 2} k(k-\alpha) \frac{|A_k| t_{k-1}}{s_1} + \sum_{k \ge 2} k(k+\alpha) \frac{|B_k| r_{k-1}}{s_2} \le 1 - \alpha$$

2. By using remark 2.1, we obtain

$$\begin{split} \sum_{k\geq 2} k(k-\alpha) \frac{|A_k|t_{k-1}}{s_1} + \sum_{k\geq 2} k(k+\alpha) \frac{|B_k|t_{k-1}}{s_2} \\ &= (1-\alpha) \left[\sum_{k\geq 2} \frac{kt_{k-1}}{s_1} + \sum_{k\geq 2} \frac{kt_{k-1}}{s_2} \right] \\ &= (1-\alpha) \left[\sum_{k\geq 2} \frac{(k+1)t_k}{s_1} + \sum_{k\geq 2} \frac{(k+1)t_k}{s_2} \right] \\ &= (1-\alpha) \left[\frac{\theta_1'(1) - \theta_1(1) - \theta_1(0)}{s_1} + \frac{\theta_2'(1) + \theta_2(1) - \theta_2(0)}{s_2} \right] \le 1-\alpha \end{split}$$

The proof is complete.

ACKNOWLEDGEMENT.

The Researchers thank the critics for their valuable and sincere comments that enrich this research.

REFERENCES

[1] J. CLUNIE AND T. SHEIL-SMALL, HANNONIC UNIVALENT FUNCTIONS, ANN. ACAD. SCI. FEN. SERIES AI MATH., 9(3)(1984), 3-25.

[2] P.L. Duren, Univalent Functions, GrundJeherem der Mathematischen Wissenchaften 259, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, (1983).

Vol. 7 Issue 4, April - 2023, Pages: 47-53

[3] O.P. Nmja, Connections between various subclasses of planar harmonic mappings involving hypergeometric functions, Appl. Math. Comput., 198(1) (2008), 305-316.

[4] J.M. Jahangiri, Harmonic functions starlike in the unit disc, J. Math. Anal. Appl., 235 (1999), 470-477.

[5] H. Silverman and E.M. Silvia, Subclasses of prestarlike functions, Math. Japon., 29 (1984), 929-939.

[6] S. Porwal and K.K. Dixit, An application of hypergeometric functions on harmoni c univalent functions, Bull. Math. Anal. Appl., 2(4), (2010), 97-105.

Authors

Author's Name, Audy Hatim Saheb

Author's Name, Ahmed Hadi Hussain

Author's Name, Amina Kassim Hussain