
International Journal of Engineering and Information Systems (IJEAIS) 

ISSN: 2643-640X 

Vol. 7 Issue 5, May - 2023, Pages: 16-21 

www.ijeais.org/ijeais 

16 

In Search of a faster Consensus Algorithm (HSEB) 
Salah M. Ahmed, Emad Abu Alsaid, Bahaa Shtewi, Prof. Hatem Hamad 

 

Salah M. Ahmed  

Computer Engineering Dep. 

Islamic Univeristy of Gaza  

Gaza, Palestine 

Salah@ait.ps 

Emad Abu Alsaid  

Computer Engineering Dep. 

Islamic Univeristy of Gaza  

Gaza, Palestine 

eharbid@gmail.com 

Bahaa Shtewi  

Computer Engineering Dep. 

Islamic Univeristy of Gaza  

Gaza, Palestine 

bahaaeshteiwy@gmail.com 

Prof. Hatem Hamad  

Computer Engineering Dep. 

Islamic Univeristy of Gaza  

Gaza, Palestine 

hhamad@iugaza.edu.ps 

    

 

Abstract— As our lives increasingly move into the digital space and the internet becomes more ubiquitous, the need for reliable and 

scalable distributed systems becomes more pressing. In such systems, achieving consensus among multiple servers in the event of a 

system failure is a critical issue. Two popular algorithms, Paxos and Raft, have been developed to address this problem. While both 

algorithms have similar performance, Raft is considered simpler than Paxos. However, Raft can encounter difficulties with multiple 

rounds of leader elections when network delays occur, and the use of a random timeout machine cannot control the participation of 

candidate nodes in the election process simultaneously. To solve this issue, a novel algorithm is presented in this paper that 

eliminates the leader election process and selects the leader based on its NodeID number, generated using a timestamp and the 

MAC address of the node. This approach is expected to improve performance and reduce the time needed for leader appointments. 
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I. INTRODUCTION 

Ensuring consistency and reliability in distributed systems, 

especially in the incidence of faulty processes, is a essential 

problem [1]. To reach consensus, this requires processes 

coordination or an agreement between nodes on the needed data 

value during the computation to act as single entity [2]. 

Consensus is necessary in various scenarios, such as ensuring 

ordered updates through reliable multicast, detecting potential 

failures through failure detection, and enabling exclusive access 

to a resource (mutual exclusion, leader election process [3]. 

Consensus applications include various examples such as state 

atomic broadcasts and machine replication. Consensus is also 

crucial in practical applications such as cloud computing, smart 

power grids, and state estimation. Nonetheless, the prevailing 

consensus algorithms are Paxos [4]. 

According to Howard and Mortier (2020) research, Although 

both Paxos and Raft employ a similar approach to achieve 

distributed consensus, they differ in their leader election 

mechanism. Paxos is preferred in this regard as unexpected 

leader elections in Raft may adversely affect performance, 

especially if the elected leader is located in an unfavorable 

position. [5]. Nevertheless, Howard and Mortier claims Raft's 

method is highly effective due to its simplicity, which avoids 

the need for log entries to be exchanged through leader election, 

unlike Paxos. However, the Raft algorithm still faces a 

challenge with multiple rounds of leader elections, especially 

when network delays occur or when a candidate node is offline 

[4]. The random timeout mechanism is inadequate for 

controlling the participation of candidate nodes in the election 

simultaneously in such cases. To address the issue of extended 

election times caused by various rounds of elections, this paper 

proposes a vote modification mechanism, resulting in a 

consensus algorithm called HSEB. The design of HSEB includes 

specific techniques such as log replication and safety to enhance 

leader selection. 

II. CONSENSUS IN DISTRIBUTED SYSTEMS 

Achieving consensus is a critical concern in distributed systems. 

It is particularly challenging when the algorithm employed 

necessitates a shared state or action, in a setting where there is a 

likelihood of process failures. In such cases, multiple processes 

(or agents) must agree on a proposed value despite the possibility 

of partial failures [6]. Nonetheless, a possible solution for 

achieving consensus is by having all processes (or agents) agree 

on a majority value, implying that the majority needs at least one 

more than half of the total available votes (with every process 

assigned a vote). However, if one or more faulty processes are 

present, the resulting outcome may be missed or lead to an 

incorrect consensus. Hence, consensus protocols are developed 

to handle a limited number of faulty processes. This allows each 

process (or agent) in the consensus position to provide or decide 

on a value, while ensuring the following characteristics of 

consensus [6]: 

 Validity: The decision is made from the proposed values. 

 Termination: Ultimately, every functional process/server 

will agree on a value.  

 Integrity: If all functional processes/servers have 

proposed the same value, then every functional 

process/server must decide on that value. 

 Agreement: It is essential for all functional 

processes/servers to agree unanimously on a single value. 

These characteristics ensure that simple algorithms cannot 

function as consensus algorithms, even without time constraints. 

Additionally, each node must consider the issue of partial 
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synchrony time assumptions, which allows an algorithm to meet 

the requirements for consensus. 

III. REPLICATED STATE MACHINES 

 The concept of a replicated state machine is employed to 

address various fault tolerance challenges in distributed systems. 

Consensus algorithms are commonly utilized in the context of 

replicated state machines [7].  

A group of servers can create identical replicas of the same state 

using state machines. Thus, if some of the servers are non-

operational, the cluster can continue functioning. 

The use of replicated state machines involves the utilization of a 

replicated log, as depicted in Figure 1.  

 

 

 

 

 

 

Figure 
1:Replicated state machine architecture. Source [5] 

 

To guarantee fault-tolerance in a distributed system, replicated 

state machines are utilized. Each server within the system 

maintains a log of executed commands in a specific order. The 

logs of all servers have the same set of commands in the same 

order, ensuring deterministic behavior. The consensus algorithm 

is in charge for maintaining the replicated log and facilitating 

communication between the consensus modules of each server, 

guaranteeing that all logs contain the same commands in the 

similar order, despite if some servers malfunction. Once the 

commands are appropriately replicated, each server's state 

machine executes them in log order, and the results are returned 

to clients. Consequently, the system appears to function with a 

single, highly consistent state machine. Consensus algorithms 

employed in practical systems have several critical features. 

Firstly, they ensure safety, meaning that they never return an 

incorrect result below any non-Byzantine conditions, including 

network delays, partitions, packet loss, duplication, and 

reordering.  

Secondly, they remain fully functional and available as long as a 

majority of the servers are operational and can communicate with 

each other and with clients. In a typical cluster of five servers, 

for example, the system can tolerate the failure of any two 

servers. Failed servers are assumed to stop, but they may later 

recover from a stable storage state and rejoin the cluster.  

Lastly, these consensus algorithms do not depend on timing to 

guarantee the consistency of the logs. Faulty clocks and extreme 

message delays may cause availability problems at worst, but 

they do not affect the system's consistency. In most cases, a 

command can be completed as soon as a majority of the cluster 

has responded to a single round of remote procedure calls. Slow 

servers in the minority need not influence the general system 

performance. 

IV. APPROACH OF PAXOS & RAFT 

According to [8], several consensus algorithms, including 

Paxos and Raft, employ a leader-based approach to manage 

distributed consensus. At a high level, the algorithm operates as 

follows: out of n servers/processes, one is elected as the leader 

and the rest function as followers. The leader receives all 

operations from the state machine and adds them to its 

log/sequence, requesting that the followers do the same. The 

leader waits for acknowledgement from the followers before 

applying its operation to its state machine. This process 

continues until the leader fails, at which point another follower 

server takes over as the leader. However, electing a leader from 

the different following servers requires the involvement of most 

of the other following servers, with the condition that the 

candidate leader has the latest log/sequence. To sum up, any 

server/process in the system can have one of the following 

statuses:  

 Follower: A state which it is role only for replying to RPCs.  

 Candidate: A state where it role is trying to be a leader by 

using the RequestVotes RPC.  

 Leader: An active state where it is role for adding operations 

to the replicated log/ sequence using the Append Entries 

RPC. 

V. COMPARISON BETWEEN PAXOS & RAFT 

Both Paxos and Raft utilize a leader-based approach to achieve 

consensus, but they use different terminology. Paxos uses the 

term "processes" while Raft uses "servers". Similarly, Paxos has 

"sequences" while Raft has "logs". However, differences in 

terminology are not the only distinctions between the two 

algorithms. In fact, there are several other differences between 

them. To elaborate, Dubinin et al.  mentioned that the Raft 

implementation has better performance efficiency compared to 

the single-value Paxos, which is essentially incremental. [9]. In 

support with this finding, HARALD study results revealed that 

Leader-based Sequence Paxos and Raft have similar 

performance in geographically distributed placements[5]. 

Though, the random leader election in Raft may disturb the 

performance based on leader location.  Whereas,  Howard and 

Mortier mentioned in their study that the two algorithms have a 

lot of similarity and complication level. However, the Raft 

algorithm was presented clearly in papers than the Paxos [4].  

VI.  LEADER ELECTION PHASE PROBLEMS  

As previously noted, the Raft consensus algorithm faces 

challenges in leader election. To initiate the process, a follower 

server will add its own term number and change to a candidate 

state. The candidate server will then send a request vote RPC to 

the surrounding follower servers in order to obtain their votes. 
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The candidate will remain in this state until one of three 

conditions is met:  

 

1. The candidate becomes the leader if it receives votes 

from more than half of the follower servers. 

2. Another candidate becomes the leader, causing the 

current candidate to become a follower. 

 

3.  No candidate node is able to secure more than half of 

the votes. 

 

Sometimes, multiple candidate servers may compete to become 

the leader concurrently, resulting in none of them receiving more 

than half of the votes from other servers. As a consequence, 

multiple rounds of leader elections may be necessary. While the 

Raft algorithm employs a random timeout mechanism to prevent 

multiple candidate servers from participating in the election 

simultaneously, it is still vulnerable to election conflicts in 

situations where the network is delayed or the candidate server 

is unavailable. To address this issue, we propose a new 

consensus algorithm called the "HSEB" algorithm in this paper.  

 

VII. THE HSEB CONSENSUS ALGORITHM 

 

The HSEB algorithm is designed to handle a replicated log, as 

depicted in Figure 2. The algorithm can be summarized in a 

condensed form, as shown in the figure, for easy reference. The 

consensus is achieved by first appointing a suitable leader, who 

is then given complete responsibility for managing and 

organizing the replicated log. The leader receives client entries 

and distributes them to other servers, ensuring smooth data flow. 

In case of leader failure or separation from the rest of the servers, 

a new leader is appointed. By using a leader-based approach, 

HSEB breaks down the consensus problem into three relatively 

independent sub-problems, which are discussed in detail in the 

following subsections. 

 

Leader election: a different leader must be picked when a 

current leader fails. 

Log replication: the leader must admit log entries from 

clients and duplicate them through the cluster, imposing the other 

logs to approve its log. 

The Safety Property of State Machine is the primary safety 

feature of HSEB, as depicted in Figure 3. It ensures that if a node 

has submitted a particular log entry to its state machine, none of 

the other nodes will apply different commands for the same log 

index.  

 

The HSEB consensus algorithm is summarized in a 

condensed form in the following sections, excluding 

membership variations and log compaction. The attitude of the 

node in the upper-left box is defined as a set of independently 

and frequently triggered rules. A more specific description is 

necessary to define the algorithm accurately.  

VIII. Working MECHANISM of HSEB algorithm  

A. Leader’s Appointment  

At the system's initial state, all nodes are in the Follower role. As 

the system runs, each server generates a random and unique 

number. Any method that ensures no overlap and unevenness 

between numbers can be used. The UUID method, which 

generates a universally unique identifier using a timestamp and 

the MAC address of the node, is used in this case. Each server 

considers this number as its ID number and broadcasts it to the 

rest of the nodes. When a node receives IDs from other nodes, it 

creates an array and reorders the ID numbers based on their 

values. The highest value is considered as the leader. This 

process occurs during the first run of the system or when the 

leader fails, as the servers do not receive Heartbeat messages 

from the leader. 

 

B. Log replication 

After receiving instructions from the client, the Leader adds them 

to its local registry as an Uncommitted state. Simultaneously, the 

Leader copies the command to other nodes and waits for them to 

finish writing the command. If any node fails, the Leader resends 

the command and then returns the result to the Client node. Once 

the command is successfully executed, the Leader sends 

messages to the servers containing the highest index of the 

record, and the contents of the Leader node's log overwrite the 

log of each Follower node. [10].  

 

C. Safety 

The previous section discussed how the algorithm handles 

leadership appointments and log replication, but it does not 

guarantee that all state machines execute the same commands in 

the similar order. For instance, if a Follower node fails after the 

Leader submits several log entries, a new Leader may be 

appointed and overwrite the original entries with new ones, 

resulting in different command sequences being executed on 

different state machines. To address this issue, our algorithm 

adds a restriction: after a new Leader is appointed, it sends a log 

copy request to all nodes in its majority group to obtain the index 

of their last log record. The Leader then overwrites its log with 

the highest index received, and updates the log content of 

Follower nodes accordingly. This ensures that all state machines 

execute the same commands in the similar order 
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State 

Persistent state on all servers: 

(Updated securely on permanent storage prior to responding 

to RPCs) 

NodeID On first, boot each node will randomly 

generate a unique identifier by using a 

timestamp and the MAC address of the of 

node 

Log[] A log entry includes a command for the 

state machine and a NodeID indicating 

when the leader received the entry. The 

first index is 1. 

Volatile state on all servers: 

CommitIndex The index indicating the highest committed 

log entry is initialized to 0 and then 

increases monotonically over time. 

lastApplied The highest log entry index that has been 

applied to the state machine is initially set 

to 0 and increases monotonically as new 

entries are applied. 

NodesOrder[] Array used to order the nodes according to 

the highest NodeID value  

Volatile state on leaders: 

nextIndex[] The index of the next log entry to be sent to 

each server is initialized to the last log 

index of the leader plus one. 

matchIndex[] The index of the highest log entry that is 

known to be replicated on each server is 

initialized to 0 and increases monotonically 

over time. 

 

AppendEntries RPC 

Initiated by leader to duplicate log entries; also utilized as 

heartbeat  

Arguments: 

HighIndex Leader Index 

leaderId Follower can forward clients 

prevLogInd

ex 

The index of the log entry immediately 

preceding the new log entries. 

prevLogID ID of prevLogIndex entry 

entries[] log entries to store (empty for heartbeat; may 

send more than one for efficiency) 

leaderCom

mit 

leader’s commitIndex 

Results: 

HighIndex 

 

Current Leader Index for leader to update 

itself 

Success leader confirms the consistency and 

synchronization of its own log with a 

follower's log when it receives an entry 

matching the prevLogIndex 

Receiver implementation: 

1. If there is no log entry at prevLogIndex, respond with 

false. If there is a conflict between an existing entry and 

a new entry, remove the existing entry and all the 

subsequent entries. 

2. Attach any new entries that are not already present in 

the log.  

3. If leaderCommit is greater than commitIndex, set 

commitIndex to the minimum value between 

leaderCommit and the index of the last new entry. 

IDbrodcast RPC 

Broadcast by each node to pick the leader 

NodeID NodeID generate by timestamp and the MAC 

address of the of node 

NodesOrde

r[] 

Array that  used to order the nodes according 

to the highest NodeID value  

Results: 

NodesOrde

r[] 

Array that contains the IDs of nodes 

according to the highest ID value 

HighIDvalu

e 

Means that the node will be picked as leader 

for the first boot 

NodesOrder

[] 

Array used to order the nodes according to the 

highest NodeID value  

Receiver implementation: 

1. Each node will append the NodeID to the NodeOrder 

array according to its value when received.  

2. If the NodeOrder array contains a majority of nodes, the 

node with the highest index in the array becomes the 

leader. 

3. The leader requests all nodes in the array to send their 

logs to compare with its own log. 
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4.  If the leader has the latest log, it will replicate it to other 

nodes. If not, it will update its log and replicate it to 

other nodes. 

 

Rules for Servers 

All Servers: 

If the commitIndex is greater than the lastApplied index, the 

system increments the lastApplied index, and applies the log 

entry at that index to the state machine. 

 

Followers: 

1. Broadcast NodeID 

2. Append NodeID to NodesOrder[] 

3. Respond to RPCs from the leader. 

4. If leader fail, send IDbrodcast RPC to the next 

highest NodeID until receive a response  

5. IF its ID the highest ID, it should receive 

IDbrodcast RPC from other nodes.  

6. If a candidate receives votes from the majority of 

servers, it becomes the new leader. 

Leader:  

1. Send initial AppendEntries Remote Procedure Call 

(RPC) to each node containing no entries (i.e., 

heartbeat), and repeat periodically during idle times 

to avoid connection timeouts.  

2. Upon receiving a command from a client, add the 

entry to the local log, respond after applying the 

entry to the state machine. 

3. If the follower's last log index is greater than or 

equal to nextIndex, send AppendEntries RPC with 

log entries starting from nextIndex. 

4. If successful, update nextIndex and matchIndex for 

the follower.  

5. If the AppendEntries RPC fails due to log 

inconsistencies, decrease nextIndex and repeat. 

Figure 2: A summarization of the HSEB algorithm 

 

IX. CASE STUDY 

At the start of the process, there is no leader, and the leader 

selection process begins with nodes exchanging messages that 

include their index number (ID). A table is then created with the 

names of the nodes and their corresponding ID numbers, and the 

leader is chosen based on the highest ID number. This process 

only takes place during the initial leader selection. Afterwards, 

the leader is chosen sequentially based on the highest ID number 

without nodes exchanging messages with each other. The first 

leader is chosen using the aforementioned process. Once a leader 

is chosen, the client sends instructions to the leader. The leader 

then sends the command to other nodes simultaneously and waits 

for their responses, which include their ID numbers and an 

acknowledgement that they are alive. The node with the fastest 

response becomes the first follower after the leader, and so on. 

A. Network Partition  

After network disconnection in subnet 2, master node A is unable 

to communicate with most nodes as depicted in figure 3. As a 

result, the other nodes fail to receive pulse messages from the 

leader, which contain the index number and last log number of 

each node. When the nodes do not receive a response from the 

leader, the nodes that were unable to contact the leader 

immediately send messages to the highest indexed node. If the 

node receiving the messages checks the leader status and does 

not receive a response, it declares itself as a new leader. In this 

case, C would become the new leader because it contains the 

highest index number or is the first among CDE. Therefore, C 

takes over as the new leader of the network. 

 

 
Figure 3. Network Partition 

 

B. Leadership election with network partition. 

After the partition isolation is resolved, the new leader C begins 

transfer heartbeat messages to entire nodes in the network, and 

waits for their responses. Once the previous leader node becomes 

available again, it will return as a new node with a new index 

number assigned to it, located at the end of the index table. 

However, node C still retains its position as the leader of the 

network. 

 

X. CONCLUSION 

Consensus protocols are designed to handle a limited number of 

faulty processes, enabling each process to provide or decide on a 

value. These algorithms prioritize integrity, validity, and 

termination characteristics, preventing trivial algorithms from 

qualifying as consensus algorithms without any time-bound 

restrictions. Additionally, each node must consider the 

discussion of partial synchrony time assumptions to satisfy the 

algorithm. In this paper, we explored the consensus problem in 

distributed systems and the effectiveness of well-known 

algorithms such as Paxos and Raft in addressing it. We 

introduced a new algorithm, HSEB, which offers higher 

efficiency and speed than Raft, especially during the leader 

election phase. The improved HSEB algorithm features a leader 
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appointment mechanism instead of an election phase, and utilizes 

Node ID values to select a leader for achieving consensus. It also 

implements the ID Broadcast mechanism during log replication 

to enhance leader node throughput and consensus efficiency. 
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