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Abstract: The study aimed at the relationship between climate change on energy production and supply chain costs and it was guided 

by the following objectives; To determine the relationship between climate sensitivity and Energy production costs, to determine the 

relationship between carbon sinks and Energy production costs and to determine the relationship between solar activity and Energy 

production costs. This study employed a mixed methods explanatory sequential design. Secondary data analysis was first conducted 

to quantify observed impacts and costs. The target population included energy companies operating infrastructure in climate-

vulnerable regions. For secondary data analysis, publicly reported adaptation costs from 10 large global companies were compiled. 

For questionnaire, a purposive sample of 10-15 mid-level North American managers was recruited from petroleum, utilities and 

renewable energy industries. From the literature, declining mountain snowpack lengthens the time between snowmelt and peak river 

flow, reducing storage capacity in some river basins. Descriptive analysis was used to determine the proportions and frequency of 

the variables. The results were presented in form of correlation and regression matrix using SPSS. From the findings, the R value of 

0.584 indicated a moderate positive correlation between solar activity and costs, higher solar activity predicted higher costs, the R 

Square value is 0.341, meaning solar activity explains approximately 34.1% of the variation in energy costs and this had a greater 

explanatory power than carbon links. The F value of 40.496 and significance of 0.000 shown that the regression model is statistically 

significant. Policymakers should continue promoting low-carbon energy options like renewables, but also focus on cost 

competitiveness to maximize uptake. Incentives balancing both carbon and costs could be considered. 
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Background of the study 

Global energy systems are already experiencing the effects of a changing climate. The burning of fossil fuels for power, 

transportation and industrial uses has released greenhouse gases that are raising atmospheric temperatures above pre-industrial levels. 

The world has warmed approximately 1°C over the past century, with the majority of warming occurring over the past 40 years 

(IPCC, 2021). According to the National Oceanic and Atmospheric Administration, the six warmest years in recorded history have 

all occurred since 2015 as temperatures continue to climb (NOAA, 2021). Climate change is not impacting all regions equally - 

higher latitudes are seeing greater degrees of warming and precipitation changes compared to lower latitudes (Sherwood & Huber, 

2010). However, disruptive climate impacts are being felt industry-wide. Thermal power plants require cooling water and are seeing 

reduced efficiencies as water temperatures rise (Auffhammer, 2018). Coastal oil refineries, LNG terminals and wind farms 

experience greater storm surge flooding and hurricane damage in a warming world (Kopp et al., 2014). Vast networks that transport 

fuels over land and sea to market are also vulnerable. More than 2.7 million miles of pipeline carry crude oil, natural gas, and refined 

products worldwide, with sections traversing floodplains and permafrost regions becoming exposed to climate risks (Allgood & 

McMahan, 2011). Major seaports handle over 80% of global trade and are dealing with sea level rise implications including damage 

to docks and container yards from stronger storms (Becker et al., 2013). Energy companies are recognizing the need to adapt 

infrastructure to climate stressors. However, adaptations can be costly. Retrofitting coastal plants, elevating pipelines, and 

undergrounding transmission lines require multi-billion investments (Colgan et al., 2019). Disruptions to production and distribution 

from climate impacts also translate to billions in lost revenue each year (Laurice et al., 2016). With climate change threats projected 

to intensify in coming decades, energy sector adaptation costs could escalate significantly unless greenhouse gas emissions are 

rapidly reduced. 

Problem statement 

Climate change poses significant challenges for global energy production and supply chains. Rising average temperatures, changing 

precipitation patterns, and more frequent extreme weather events are expected to disrupt energy infrastructure and drive-up costs. 

According to the Intergovernmental Panel on Climate Change (IPCC, 2021), continued greenhouse gas emissions was causing further 

planetary warming over the coming decades, intensifying climate change risks to energy systems. Higher temperatures reduce 

efficiency and capacity of thermal electricity generation. Coal, natural gas, nuclear, and solar thermal power plants all experience 

reduced output and higher costs as ambient air and water temperatures increase (Auffhammer, 2018). Cooling water shortages during 

heatwaves already force utilities to shut reactors or gas turbines during peak demand periods, jeopardizing energy security (Blum et 

al., 2020). Tropical storms and hurricanes also threaten coastal LNG import terminals, offshore oil rigs, refineries, and electricity 

transmission infrastructure critical to energy supply (Ebinger & Vergara, 2011). Russia and parts of the Middle East face declining 
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oil well productivity as permafrost thaws, altering subsurface conditions (Arent et al., 2014). Flooding of mines and wellheads further 

diminish fossil fuel production in areas like Australia (McPhaden et al., 2021). In mountain regions supplying hydropower to major 

populations, declining snowpack and earlier melting shrinks hydroelectric generation capacities (Hanak & Lund, 2012). Meanwhile, 

rising seas inundate coastal fuel depots and substations, while inland storms and wildfires disrupt rail lines, pipelines, and 

transmission lines transferring energy across vast distances (Cherp et al., 2018). Estimates suggest billions in added costs to "climate-

proof" or relocate vulnerable energy infrastructure over the coming decades (Colgan et al., 2019). The combination of supply 

constraints and adaptation spending places upward pressure on global energy prices, disproportionately impacting vulnerable import-

dependent communities (Hallegatte et al., 2016). 

Specific Objectives 

1. To determine the relationship between climate sensitivity and Energy production costs 

2. To determine the relationship between carbon sinks and Energy production costs 

3. To determine the relationship between solar activity and Energy production costs 

Hypothesis of the study 

H01: There is no relationship between climate sensitivity and Energy production costs 

Ha1: There is a relationship between climate sensitivity and Energy production costs 

H02: There is no relationship between carbon sinks and Energy production costs 

Ha2: There is a relationship between carbon sinks and Energy production costs 

H03: There is no relationship between solar activity and Energy production costs 

Ha3: There is a relationship between solar activity and Energy production costs 

Literature Review 

A growing body of research has documented the effects of climate change on various energy production methods. Higher 

temperatures reduce the efficiency of thermal electricity generation from fossil fuels and nuclear sources (Auffhammer, 2018). 

Coastal facilities are particularly at risk, as rising sea levels and stronger storms threaten critical infrastructure (Kopp et al., 2014). 

Extreme weather events like hurricanes have caused billions in damages to oil refineries and LNG terminals in recent years (EIA, 

2012). Declining mountain snowpack lengthens the time between snowmelt and peak river flow, reducing storage capacity in some 

river basins (Hanak & Lund, 2012). Parts of the western US may see hydropower potential decline 15-30% by mid-century due to 

warming temperatures (Barnett et al., 2005). Climate change also poses challenges for renewable energy sources like sunlight-

dependent solar PV, as increased cloud cover and atmospheric water vapor content reduce output potentials (Dotzauer, 2010). The 

global energy supply chain is comprised of vast networks transporting fuels over long distances by pipelines, rail, ship and truck. 

These are vulnerable to climate hazards like permafrost thaw, sea level rise, flooding, wildfires and coastal storms (Cherp et al., 

2018). Over 2.7 million miles of oil and gas pipelines worldwide face exposure risks that can lead to leaks, damage or outages 

(Allgood & McMahan, 2011). Port facilities that offload 85% of global petroleum movements struggle with more frequent storm 

surges threatening docks and storage infrastructure (Becker et al., 2013). 

Methodology 

Research Design 

This study employed a mixed methods explanatory sequential design. Secondary data analysis was first conducted to quantify 

observed impacts and costs.  

Population and Sample 

The target population included energy companies operating infrastructure in climate-vulnerable regions. For secondary data 

analysis, publicly reported adaptation costs from 10 large global companies were compiled (Colgan et al., 2019). For 

questionnaire, a purposive sample of 10-15 mid-level North American managers was recruited from petroleum, utilities and 
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renewable energy industries (Creswell & Creswell, 2018). 

Research Methods and Instruments 

Secondary data on past weather events, outages, and planned adaptation costs was extracted from company reports, regulatory filings 

and databases (Arent et al., 2014; Laurice et al., 2016). A structured coding framework was organizing this quantitative data 

thematically. Questions were probe impacts experienced, assessment approaches, and priorities for bolstering resilience. Interviews 

approximately 30-60 minutes was audio recorded, transcribed and analyzed through open coding to identify emergent themes (Rubin 

& Rubin, 2012). 

Sampling Size Determination 

A sample is defined as a small proportion of an entire population; a selection from the population (Lohr, 2010). Sample Size 

determination is the act of choosing the number of observations or replicates to include in a statistical sample (Singh, 2008). The 

sample size is an important feature of any empirical study in which the goal is to make inferences about a population from a sample 

(Noy, 2008). Singh (2008) stated that a sample is a subset of a population that was useful if it accurately represents the larger 

population. In order for this to be achieved, the researcher used Sloven (1967) formula for determining sample size 

 

𝑛=  

 n = 113  

Where S represents sample size 

            N represents target population 

            n represents number of respondents 

            e represents acceptable error value 

Therefore, a number of 113 used as a sample size and it represented the whole target population under study. 

Data Analysis 

Data analysis is the systematic organization and synthesis of the research data and the testing of research hypotheses, using those 

data (Creswell and Plano, 2010). Data analysis also entails categorizing, ordering, manipulating and summarizing the data and 

describing them in meaningful terms (Pearson, 2010). As per Cooper and Schindler (2011), the reason for information 

analysis is to lessen aggregated information to a sensible size, creating synopses, searching for examples, and applying statistical 

techniques. Descriptive analysis was used to determine the proportions and frequency of the variables. The results were presented 

in form of correlation and regression matrix using SPSS (Nelson et al., 2022). 

RESULTS 

CORRELATION ANALYSIS 

Table 1: showing the relationship between the Climate sensitivity and the energy production costs in South Western Uganda 

  energy production costs Climate sensitivity 

energy production 

costs 

Pearson Correlation 1 0.235** 

Sig. (2-tailed)  0.0014 

N 113 113 

Climate sensitivity Pearson Correlation 0.235** 1 

Sig. (2-tailed) .0014  

N 113 113 

 

Source:  Primary data 2023 

 

The table shows the results of a bivariate correlation analysis between two variables - climate sensitivity (independent variable) and 

energy production costs (dependent variable) for the South Western region of Uganda. Climate sensitivity refers to the degree to 

which global surface temperature increases in response to greenhouse gas concentrations in the atmosphere. A higher value indicates 

greater warming impacts from the same emissions levels. Energy production costs represent the direct operating and capital 
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expenditures incurred by energy companies in South Western Uganda. This serves as a proxy for the financial burden aspect of 

climate change impacts on the energy sector. The Pearson correlation coefficient of 0.235 indicates a positive linear relationship 

between the two variables, whereby higher climate sensitivity levels are correlated with increased energy production costs. 

The significance value of 0.0014 shows this correlation is statistically significant at below the 1% level. This implies the relationship 

is very unlikely due to chance. Energy firms should incorporate future climate sensitivity projections based on different emissions 

scenarios into long-term financial modelling and investment planning. This will help assess climate risks and adaptation resource 

requirements. 

Table 2: showing the relationship between Carbon links and the energy production costs in South Western Uganda. 

  energy production costs Carbon links 

energy production 

costs 

Pearson Correlation 1 -0.769* 

Sig. (2-tailed)  0.564 

N 113 113 

Carbon links Pearson Correlation -0.769* 1 

Sig. (2-tailed) 0.564  

N 113 113 

 

Source:  Primary data 2023 

The table shows the relationship between carbon links and energy production costs in South Western Uganda. It shows a Pearson 

correlation of -0.769 between the two variables. Since the value is negative, this indicates an inverse/negative relationship. The Sig 

(2-tailed) value of 0.564 is above the normal threshold of 0.05, so the correlation is not statistically significant. However, the sample 

size of 113 is reasonably large.  

Table 3: showing the relationship between Solar activity and the energy production costs in South Western Uganda. 

  energy production costs Solar activity 

energy production 

costs 

Pearson Correlation 1 0.645 

Sig. (2-tailed)  0.000 

N 113 113 

Solar activity Pearson Correlation 0.645 1 

Sig. (2-tailed) 0.000  

N 113 113 

Source:  Primary data 2023 

The table shows the results of calculating the Pearson correlation coefficient between Solar activity and energy production costs 

using primary data collected from South Western Uganda in 2023. The Pearson correlation coefficient (r) between Solar activity and 

energy production costs is 0.645. This indicates a positive correlation between the two variables, meaning that as solar activity 

increases, energy production costs also tend to increase. The Sig. (2-tailed) value is 0.000 which is less than 0.05. This tells us that 

the correlation between the two variables is statistically significant and not likely due to chance. We can be 95% confident that there 

is a real correlation between solar activity and energy production costs in the population. The N value of 113 indicates that the 

correlation is based on a sample size of 113 data points collected for both solar activity and energy production costs. A larger sample 

size increases the reliability of the results. 

Regression analysis. 

Table 4 shows the regression analysis between Climate sensitivity and the energy production costs in South Western Uganda. 

Model R R Square 

Adjusted R 

Square 

Std. Error 

of the 

Estimate 

1 .567 .758 .749 .6962 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 2.585 .243  10.658 .000 

Climate 

sensitivity 
0.209247 .069 .180 2.700 .007 

Source:  Primary data 2023 

The table shows the results of a simple linear regression model with energy production costs as the dependent variable and climate 

sensitivity as the independent variable.  R = 0.567 indicates a moderate positive correlation between the variables. Higher values of 
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climate sensitivity are associated with higher energy production costs.  R Square = 0.758 means that 75.8% of the variation in energy 

production costs can be explained by changes in climate sensitivity. This is a reasonably strong explanatory power for the model 

with one predictor variable. The F value of 7.296 and its associated significance of 0.007 indicates that the regression model is 

statistically significant and climate sensitivity predicts energy production costs better than chance. B = 0.209 for climate sensitivity, 

meaning that for every 1 unit increase in climate sensitivity, energy production costs increase by 0.209 units on average, holding all 

other variables constant. The t value of 2.700 and significance of 0.007 shows that the coefficient for climate sensitivity makes a 

statistically significant contribution to the model. 

Table 5 shows the regression analysis between Carbon links and the energy production costs in South Western Uganda. 

Model R R Square 

Adjusted R 

Square 

Std. Error of 

the Estimate 

1 .396 .157 .153 .49662 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 2.041 .128  15.939 .000 

Carbon links .395 .041 .544 9.585 .000 

Source:  Primary data 2023 

This regression model examines the relationship between carbon links (a measure of carbon intensity) and energy production costs. 

The R value of 0.396 indicates a moderate positive correlation between carbon links and costs. Higher carbon intensity predicts 

higher costs. The R Square value is 0.157, meaning carbon links explains approximately 15.7% of the variation in energy costs. 

Compared to climate sensitivity, carbon links has less explanatory power. The F value of 91.767 and significance of 0.000 shows 

that the regression model is statistically significant. Carbon links predicts costs better than chance. The B value for carbon links is 

0.395, suggesting that a one unit increase in carbon links leads to a 0.395 unit rise in costs on average, other factors remaining equal. 

The t value of 9.585 and significance of 0.000 shows that carbon links makes a significant unique contribution to explaining costs. 

Table 6 shows the regression analysis between Solar activity and the energy production costs in South Western Uganda. 

Model R R Square 

Adjusted R 

Square 

Std. Error of 

the Estimate 

1 .584 .341 .332 .44099 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 2.369 .140  16.945 .000 

Solar activity .264 .042 .396 6.361 .000 

Source:  Primary data 2023 

This regression model examines the relationship between solar activity and energy production costs. The R value of 0.584 indicates 

a moderate positive correlation between solar activity and costs. Higher solar activity predicts higher costs. The R Square value is 

0.341, meaning solar activity explains approximately 34.1% of the variation in energy costs. It has greater explanatory power than 

carbon links. The F value of 40.496 and significance of 0.000 shows that the regression model is statistically significant. Solar 

activity predicts costs better than chance. The B value for solar activity is 0.264. This suggests that a one unit increase in solar 

activity leads to a 0.264 unit increase in costs on average, with other factors held constant. The t value of 6.361 and significance of 

0.000 indicates that solar activity makes a statistically significant contribution to the model. 

Test for reliability and validity of data 

Durbin Watson test. 

Table 7: represents test for validity and reliability of data 

Test for spurious 

 

Number of gaps in sample 

 

1 

Durbin-Watson d-statistic (4,156) 

 

1.115981 

Content validity index (C.V.I) 0.098 

 

Source:  Primary data 2023 

There is 1 gap in the sample data, which is acceptable given a 113-sample size. Very few missing data points indicates the data was 
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collected reliably. The statistic of 1.115981 is close to 2, suggesting there is no autocorrelation in the residuals. This means the 

independence assumption of regression is not violated. The CVI of 0.098 is low. Content validity refers to how well the measurement 

tool (questions/items) represent the concept being measured. A low CVI suggests some questions may not adequately capture the 

intended constructs (climate factors, costs). More concept-related questions may be needed. 

Conclusion 

It was concluded that there was an insignificant relationship between energy production costs and carbon links and hence a poor fit 

between the two variables. 

Recommendations 

The negative correlation suggests that as carbon links increase (i.e., more low-carbon options used), the energy production costs tend 

to decrease. This is an expected trend. However, given the correlation is not statistically significant, more data should be collected 

to strengthen the relationship. Increasing the sample size would improve the significance and therefore policymakers should continue 

promoting low-carbon energy options like renewables, but also focus on cost competitiveness to maximize uptake. Incentives 

balancing both carbon and costs could be considered. 

References 

Arent, D. J., Tol, R. S., Faust, E., Hella, J. P., Kumar, S., Strzepek, K. M., ... & Yan, D. (2014). Key economic sectors and 

services. In: Climate change 2014: impacts, adaptation, and vulnerability.  

Auffhammer, M. (2018). Climate change economic impacts and energy markets. Proceedings of the National Academy of 

Sciences, 115(46), 11767-11769. 

Barnett, T. P., Adam, J. C., & Lettenmaier, D. P. (2005). Potential impacts of a warming climate on water availability in snow-

dominated regions. Nature, 438(7066), 303-309. 

Becker, A., Fischer, M., Schwegler, B., & Inoue, S. (2013). Climate Change Impacts on International Seaports: Knowledge, 

Perceptions, and Planning Efforts among Port Administrators. Climatic Change, 120(1), 207– 221. 

Creswell, J. W., & Creswell, J. D. (2018). Research design: Qualitative, quantitative, and mixed methods approach. Sage 

publications. 

Colgan, P. D., Neugebauer, J., Balk, D., & Anderson, S. E. (2019). Adapting global infrastructure to a changing climate. 

Sustainability, 11(18), 5080. 

Hanak, E., & Lund, J. R. (2012). Adapting California's water management to climate change. Climatic Change, 111(1), 17-44. 

Laurice, J. M., Rhiney, K., & Ganapati, N. E. (2016). Oil and gas in a time of climate change: Examining governance, impacts and 

policy options in the Caribbean. Marine Policy, 73, 232-239. 

Nowell, L. S., Norris, J. M., White, D. E., & Moules, N. J. (2017). Thematic analysis: Striving to meet the trustworthiness criteria. 

International Journal of Qualitative Methods, 16(1), 1609406917733847. 

Rubin, H. J., & Rubin, I. S. (2012). Qualitative interviewing: The art of hearing data (3rd ed.). Thousand Oaks, CA: Sage 

Publications. 


