International Journal of Academic Information Systems Research (IJAISR)
  Year: 2023 | Volume: 7 | Issue: 9 | Page No.: 32-39
Predicting Kidney Stone Presence from Urine Analysis: A Neural Network Approach using JNN Download PDF
Amira Jarghon and Samy S. Abu-Naser

Abstract:
Kidney stones pose a significant health concern, and early detection can lead to timely intervention and improved patient outcomes. This research endeavours to predict the presence of kidney stones based on urine analysis, utilizing a neural network model. A dataset of 552 urine specimens, comprising six essential physical characteristics (specific gravity, pH, osmolarity, conductivity, urea concentration, and calcium concentration), was collected and prepared. Our proposed neural network architecture, featuring three layers (input, hidden, output), was trained and validated, achieving an impressive accuracy of 98.67% and an average error of 0.012. In addition to model performance, feature importance analysis was conducted to determine the most influential factors in predicting kidney stone presence. The findings underscore the significance of urea concentration, specific gravity, calcium concentration, conductivity, osmolarity, and pH as key indicators. This research contributes to the early diagnosis of kidney stones and demonstrates the potential of neural networks in medical diagnostics. The clinical implications of these findings are discussed, emphasizing the importance of timely intervention in managing kidney stone-related health issues.