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Abstract— In this article, we will study existence solution for functional quadratic integral equation, after apply the Leray-Schauder 

alternative fixed point theorem, we considered the necessary sufficient conditions for the existence of solutions for equation, the 

solution was considered only in the space. In this way we will also show that the examples has solution. 
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1. INTRODUCTION  

Integral equations are a crucial and essential element of mathematical analysis and its practical applications (see [6], [7],[13], 

[19], [20] among other works). The study of integral equations has greatly progressed with the aid of diverse tools such as 

functional analysis, topology, and fixed-point theory where the last estimate have held great significance in various fields, 

particularly in the realms of differential, integral, and functional equations. These theorems serve as a topological tool for 

investigating the solutions of both linear and nonlinear equations.  

Nonlinear functions integral equations have long been discussed in detail in the literature and Various forms of functional 

integral equations are considered a special and prestigious branch of nonlinear analysis, and a variety of methods are sought to 

represent many practical and real-world problems (see [1], [4],[5], [14-18],[22]). 

Our work is presented in the following manner: In part 2, we provide some notations, definitions, and important details. Moving 

on to Part 3 is dedicated to proving the existence of a solution using the powerful generalized Leray-Schauder alternative 

theorem on [0,1]. As a demonstration, we also provide two examples to further clarify our theorem. Lastly, in part 4, it is contain 

our conclusion. 

 

2. Preliminaries and Notation 

In this part, we will provide some theorems, definitions and auxiliary facts that will be necessary for the following portions. 

The solution was considered only in the Banach space, so we denoted it as ℘ with the norm (‖. ‖) and zero element 𝜗. the Leray-

Schauder alternative theorem is as follows  

Theorem (the Leray-Schauder alternative) 2.1. [10] Suppose the set 𝒮 is open subset of a nonempty convex set 𝒞 in a Banach 

space ℘, let the element zero belong to 𝒮 and the mapping  𝒯: 𝒮̅ → 𝒞 is continuous and compact. Then either 

1- 𝒯 has at least one fixed point in 𝒮, or 

2- There exist 𝑎 belong to the interval (0,1) and 𝜅 ∈ 𝛾𝒮 where 𝑎𝒯𝜅, such that 𝛾𝒮 is boundary of Κ. 

Leray-Schauder alternative is theorem of the most important theorem of nonlinear functional analysis, proved by topological degrees 

in 1934. Nowadays, some types of Leray-Schauder type alternatives have been proven using various techniques (see 

[2],[9],[10],[11],[21]). Another important fixed point theorem often used in the theory of nonlinear differential and integral equations 

is the following generalization of Banach's contraction map principle, which was proved in Browder [8]. 

Definition 2.1. [12] A sequence of points {𝜓}𝑖=1
∞ ⊂ 𝚿 in normed vector space (𝚿, ‖. ‖) is a Cauchy sequence if and only if any 

positive number 휀 such that there is ℵ > ℕ 𝑎𝑛𝑑 𝓂, 𝓃 > ℵ indicate to  

‖𝜓𝓂 − 𝜓𝓃‖ < 휀 

 

Definition 2.2. [12] Let (𝚿, ‖. ‖) is anormed vector space, it is so called a Banach space if  (Ψ, ‖. ‖) is complete, this means that 

when a sequence is Cauchy and convergent with reference to the norm (‖. ‖).   
 

3.  Main results 
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We studied a type of problems referred to as quadratic integral equations for this paper. The subject of this paper focuses on functional 

quadratic integral equations, this is a type of equation of the following form  

𝒢𝜓(𝜏) = α(𝜏, 𝛽 (𝜏, 𝜍, 𝜓(𝑢(𝜍))) ∫ 𝛾(𝜏, 𝜍, 𝜓(𝜍), 𝜓∗(𝑣(𝜍)))𝑑𝜍)          𝜏 ∈ [0,1]                (⎈)

1

0

  

Such that 𝜏 ∈ 𝐼 and  𝑢, 𝑣: 𝐼 → 𝐼. we will analyze the equation (⎈) based on the following condition, which are listed as follows: 

1. The function 𝛼: 𝐼 × ℛ → ℛ is continuous and fulfilled the Lipschitz condition i.e there are 𝜙 ≥ 0 such that: 

|𝛼(𝜏, ℊ) − 𝛼(𝜏, 𝒽)| ≤ 𝜙|ℊ − 𝒽| 
hold for all ℊ, 𝒽 ∈ ℛ and 𝜏 ∈ 𝐼. 

2. The function 𝛽: 𝐼 × 𝐼 × ℛ → ℛ is continuous and ℋ𝛽: [0,1] → ℛ is nondecreasing continuous function  such that  

|𝛽(𝜏, 𝜍, 𝜓)| ≤ ℋ𝛽(𝜍)(|𝜓|) 

          for each 𝜓 ∈ ℛ and 𝜏 ∈ 𝐼. 
3. The function 𝛾: 𝐼 × 𝐼 × ℛ2 → ℛ is continuous and ℱ: [0,1]2 → ℛ is nondecreasing continuous function, also ℋ𝛾 : [0,1] →

ℛ  is nondecreasing continuous function such that 

|𝛾(𝜏, 𝜍, 𝜓, 𝜓∗)| ≤ ℋ𝛾(𝜍)ℱ(|𝜓|, |𝜓∗|) 

           For all 𝜓, 𝜓∗ ∈ ℛ and 𝜏 ∈ 𝐼. 
Theorem 3.1. If the assumption 1-3 are fulfilled then the equation (⎈) has at least one solution on interval [0,1]. 

Proof: Suppose the set 𝒞 is define by  

𝒞 = {𝜓 ∈ [0,1]: ‖𝜓‖ = 𝑚𝑎𝑥|𝜓| ≤ ℓ } 

This mean that it is nonempty, bounded, closed and convex which it has been proved in [3]. 

Now, let the set 𝒮 define as the following  

𝒮 = {𝜓 ∈ [0,1]: ‖𝜓‖ = 𝑚𝑎𝑥|𝜓| < ℓ } 

We conclude that it is open subset of  𝒞, which it is so called open convex set. Next step, we must prove that the mapping  𝒢: 𝒮̅ →
𝒞 is continuous and compact. So, let 𝜏1, 𝜏2 are arbitrary constant belong to the set 𝒮̅ such that 𝜏1 < 𝜏2 and |𝜏2−𝜏1| ≤ 휀, we obtain: 

|𝒢𝜓(𝜏2) − 𝒢𝜓(𝜏1)| ≤ |α(𝜏2, 𝛽(𝜏2, 𝜍, 𝜓(𝑢(𝜍))) ∫ 𝛾(𝜏2, 𝜍, 𝜓(𝜍), 𝜓∗(𝑣(𝜍)))𝑑𝜍) − 
1

0
  

                                  α(𝜏1, 𝛽(𝜏1, 𝜍, 𝜓(𝑢(𝜍))) ∫ 𝛾(𝜏1, 𝜍, 𝜓(𝜍), 𝜓∗(𝑣(𝜍)))𝑑𝜍)
1

0
|  

|𝒢𝜓(𝜏2) − 𝒢𝜓(𝜏1)| ≤ |α(𝜏2, 𝛽(𝜏2, 𝜍, 𝜓(𝑢(𝜍))) ∫ 𝛾(𝜏2, 𝜍, 𝜓(𝜍), 𝜓∗(𝑣(𝜍)))𝑑𝜍) 
1

0
     

                                      −α(𝜏2, 𝛽(𝜏2, 𝜍, 𝜓(𝑢(𝜍))) ∫ 𝛾(𝜏1, 𝜍, 𝜓(𝜍), 𝜓∗(𝑣(𝜍)))𝑑𝜍) 
1

0
         

                                       +α(𝜏2, 𝛽(𝜏2, 𝜍, 𝜓(𝑢(𝜍))) ∫ 𝛾(𝜏1, 𝜍, 𝜓(𝜍), 𝜓∗(𝑣(𝜍)))𝑑𝜍) 
1

0
  

                                     −α(𝜏1, 𝛽(𝜏1, 𝜍, 𝜓(𝑢(𝜍))) ∫ 𝛾(𝜏1, 𝜍, 𝜓(𝜍), 𝜓∗(𝑣(𝜍)))𝑑𝜍)
1

0
| 

 

|𝒢𝜓(𝜏2) − 𝒢𝜓(𝜏1)| ≤ 𝜙1[ |𝛽(𝜏2, 𝜍, 𝜓(𝑢(𝜍)))| ∫ |𝛾(𝜏2, 𝜍, 𝜓(𝜍), 𝜓∗(𝑣(𝜍))) − 𝛾(𝜏1, 𝜍, 𝜓(𝜍), 𝜓∗(𝑣(𝜍)))|
1

0

𝑑𝜍] 

           + 𝜙2[|𝛽(𝜏2, 𝜍, 𝜓(𝑢(𝜍))) − 𝛽(𝜏1, 𝜍, 𝜓(𝑢(𝜍)))| ∫ |𝛾(𝜏1, 𝜍, 𝜓(𝜍), 𝜓∗(𝑣(𝜍)))|
1

0
𝑑𝜍]  

That implying  

|𝒢𝜓(𝜏2) − 𝒢𝜓(𝜏1)| ≤ 𝜙1ℋ𝛽(|𝜓|)𝜔(𝛾, 𝛿) + 𝜙2𝜔(𝛾, 𝛽)ℋ𝛾(|𝜓|, |𝜓∗|) 

This means that the mapping 𝒢 is continuous.  

We consider that  𝒢(𝜓𝓂) is a Cauchy sequence, so let > 0 , since 𝒢 is continues mapping then |𝒢𝓃 − 𝒢| → 0 and there is some ℴ ∈

𝒩 where |𝒢ℴ − 𝒢| ≤
𝜀

3ℓ
 moreover, if  𝒢ℴ(𝜓𝓂) is Cauchy sequence then there is some 𝒩∗ > 0 such that |𝒢ℴ(𝜓𝑠) − 𝒢ℴ(𝜓𝑡)| <

𝜀

3
 

where 𝑠, 𝑡 > 𝒩∗ we get 

|𝒢(𝜓𝑠) − 𝒢(𝜓𝑡)| = |𝒢(𝜓𝑠) − 𝒢ℴ(𝜓𝑠) + 𝒢ℴ(𝜓𝑠) − 𝒢ℴ(𝜓𝑡) + 𝒢ℴ(𝜓𝑡) − 𝒢(𝜓𝑡)| 
                               ≤ |𝒢(𝜓𝑠) − 𝒢ℴ(𝜓𝑠)| + |𝒢ℴ(𝜓𝑠) − 𝒢ℴ(𝜓𝑡)| + |𝒢ℴ(𝜓𝑡) − 𝒢(𝜓𝑡)| 

                               < |𝒢 − 𝒢ℴ||𝜓𝑠| +
𝜀

3
+ |𝒢ℴ − 𝒢||𝜓𝑡| 

                               < |𝒢 − 𝒢ℴ|ℓ +
𝜀

3
+ |𝒢ℴ − 𝒢|ℓ 

                                <
𝜀

3ℓ
ℓ +

𝜀

3
+

𝜀

3ℓ
ℓ = 휀 

The last estimate is proved that the sequence 𝒢(𝜓𝓂) is Cauchy. Since the convex set 𝒞 subset of a Banach space ℘ which it is 

complete space then the set 𝒞 is also complete, so 𝒢(𝜓𝓂) converges of under image 𝒢 that imply to 𝒢 is compact.  

 

4. Examples  
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In this part, we extend two examples to further clarify our theorem. 

Example 4.1. Suppose the functional quadratic differential equation  

𝜓(𝜏) = 𝜏2 +
(𝜏 + 𝜍)

2𝜓(𝑢)
∫ 𝑒𝜏𝜍

1

0

(𝜓(𝜍) + 𝜓∗(𝑣)) 𝑑𝜍 

Now, we set 

a.  𝜏2 +
(𝜏+𝜍)

𝜓
∫ 𝑒𝜏𝜍

1

0
(𝜓 + 𝜓∗) 𝑑𝜍 = α(𝜏, 𝛽 (𝜏, 𝜍, 𝜓(𝑢(𝜍))) ∫ 𝛾(𝜏, 𝜍, 𝜓(𝜍), 𝜓∗(𝑣(𝜍)))𝑑𝜍)

1

0
  

For all 𝜓, 𝜓∗ ∈ ℛ and 𝜏, 𝜍 ∈ 𝐼, so we have  

|𝜏2 +
(𝜏+𝜍)

2𝜓
∫ 𝑒𝜏𝜍

1

0
(𝜓 + 𝜓∗)𝑑𝜍 − 𝜏2 −

(𝜏+𝜍)

2�̅�
∫ 𝑒𝜏𝜍

1

0
(�̅� + 𝜓∗

̅̅ ̅) 𝑑𝜍| =  

≤
1

2
|
(𝜏 + 𝜍)

𝜓
∫ 𝑒𝜏𝜍

1

0

(𝜓 + 𝜓∗)𝑑𝜍 −
(𝜏 + 𝜍)

�̅�
∫ 𝑒𝜏𝜍

1

0

(�̅� + 𝜓∗
̅̅ ̅) 𝑑𝜍| 

Then 𝜙 =
1

2
 for all 𝜏 ∈ 𝐼, means that that the assumption (1) is hold.  

b.  
(𝜏+𝜍)

𝜓
= 𝛽 (𝜏, 𝜍, 𝜓(𝑢(𝜍))), so we have 

|
(𝜏 + 𝜍)

𝜓
| = |(𝜏 + 𝜍)| |

1

𝜓
| 

For each 𝜓 ∈ ℛ and 𝜏 ∈ 𝐼, we note that |(𝜏 + 𝜍)| = ℋ𝛽 , since ℋ𝛽  is nondecreasing function means that the assumption (2) is hold. 

c. ∫ 𝑒𝜏𝜍
1

0
(𝜓 + 𝜓∗)𝑑𝜍 = ∫ 𝛾(𝜏, 𝜍, 𝜓(𝜍), 𝜓∗(𝑣(𝜍)))𝑑𝜍

1

0
 , so we have  

𝑒𝜏𝜍(𝜓 + 𝜓∗) = 𝛾(𝜏, 𝜍, 𝜓(𝜍), 𝜓∗(𝑣(𝜍))), 

For all 𝜓, 𝜓∗ ∈ ℛ and 𝜏 ∈ 𝐼, such that 
|𝑒𝜏𝜍(𝜓 + 𝜓∗)| = |𝑒𝜏𝜍||𝜓 + 𝜓∗|, 

We note that |𝑒𝜏𝜍| = ℋ𝛾 , since  ℋ𝛾 is nondecreasing function means that the assumption (3) is hold. 

 

Example 4.2. Suppose the functional quadratic differential equation  

𝜓(𝜏) = ln(1 + 𝜏2) +
2

3
(𝜍1−𝜏𝜓2(𝑢)) ∫

𝜓(𝜍)𝜓∗(𝑣)

𝜏 + 𝜍

1

0

 𝑑𝜍,                   

Now, we set 

a. ln(1 + 𝜏2) +
2

3
(𝜍1−𝜏𝜓2(𝑢)) ∫

𝜓(𝜍)𝜓∗(𝑣)

𝜏+𝜍

1

0
 𝑑𝜍 = α(𝜏, 𝛽 (𝜏, 𝜍, 𝜓(𝑢(𝜍))) ∫ 𝛾(𝜏, 𝜍, 𝜓(𝜍), 𝜓∗(𝑣(𝜍)))𝑑𝜍)

1

0
  

For all 𝜓, 𝜓∗ ∈ ℛ and 𝜏, 𝜍 ∈ 𝐼, so we have  

|ln(1 + 𝜏2) +
2

3
(𝜍1−𝜏𝜓2(𝑢)) ∫

𝜓(𝜍)𝜓∗(𝑣)

𝜏+𝜍

1

0
 𝑑𝜍 − ln(1 + 𝜏2) −

2

3
(𝜍1−𝜏�̅�2(𝑢)) ∫

�̅�(𝜍)𝜓∗̅̅ ̅̅ (𝑣)

𝜏+𝜍

1

0
 𝑑𝜍| =  

≤
2

3
|(𝜍1−𝜏𝜓2(𝑢)) ∫

𝜓(𝜍)𝜓∗(𝑣)

𝜏 + 𝜍

1

0

 𝑑𝜍 − (𝜍1−𝜏�̅�2(𝑢)) ∫
�̅�(𝜍)𝜓∗

̅̅ ̅(𝑣)

𝜏 + 𝜍

1

0

 𝑑𝜍|, 

Then 𝜙 =
2

3
 for all 𝜏 ∈ 𝐼, means that that the assumption (1) is hold.  

b. (𝜍1−𝜍𝜓2(𝑢)) = 𝛽 (𝜏, 𝜍, 𝜓(𝑢(𝜍))), so we have 

|(𝜍1−𝜏𝜓2(𝑢))| = |𝜍1−𝜏||𝜓2(𝑢)| 
For each 𝜓 ∈ ℛ, ∈ 𝐼 , we note that |𝜍1−𝜏| = ℋ𝛽 , since ℋ𝛽  is nondecreasing function means that the assumption (2) is hold. 

c. ∫
𝜓(𝜍)𝜓∗(𝑣)

𝜏+𝜍

1

0
 𝑑𝜍 = ∫ 𝛾(𝜏, 𝜍, 𝜓(𝜍), 𝜓∗(𝑣(𝜍)))𝑑𝜍

1

0
 , so we have  

𝜓(𝜍)𝜓∗(𝑣)

𝜏 + 𝜍
= 𝛾(𝜏, 𝜍, 𝜓(𝜍), 𝜓∗(𝑣(𝜍))), 

 For all 𝜓, 𝜓∗ ∈ ℛ and 𝜏 ∈ 𝐼, such that 

|
𝜓𝜓∗

𝜏 + 𝜍
| = |

1

𝜏 + 𝜍
| |𝜓𝜓∗|, 
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We note that |𝑒𝜏𝜍| = ℋ𝛾 , since ℋ𝛾  is nondecreasing function means that the assumption (3) is hold.  

 

5. Conclusion  

Through application of the generalized Leray-Schauder alternative theorem in the Banach space, we have successfully demonstrated 

the existence of the considered nonlinear functional integral equation on the interval [0, 1]. Additionally, our result is showcased 

with two examples to emphasize the level of accuracy solution achieved with this method. 
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