Inequalities for $\boldsymbol{L}_{\boldsymbol{p}}$ spaces, for $\mathbf{0}<\boldsymbol{P}<\mathbf{1}$

Sahab Mohsen Aboud ${ }^{1}$, Ahmed Hadi Hussain ${ }^{2}$
${ }^{1}$ Department of Mathematics, College of Basic Education, Babylon of University, Iraq
${ }^{2}$ Department of Automobile Engineering, College of Engineering Al-Musayab, University of Babylon, Iraq
E- mail ${ }^{1}$: bsc.sahab.jwer@uobabylon.edu.iq
E- mail ${ }^{2}$: met.ahmed.hadi@uobabylon.edu.iq

Abstract: Few papers introduced about finding the lower bound to the L_{1}-norm. If this lower bound in terms of log N for number N is called Little wood's conjecture. The must result in this subject up to now is a terms of bound of order $\sqrt{\log N}$. Here we generalize the Little wood's conjecture to functions in L_{p} spaces for $0<P<\infty$ and get lower bound in terms of $(\log N)^{2 p}$.

Keywords: L_{1} - norm, lower bound, Log N, Trigonometric polynomials, Dyadic System.

1. Introduction

The problem of estimating the bounds for L_{1} - norm of the trigonometric polynomials has the form

$$
" F(x)=a_{1} e^{i k_{1} x}+a_{2} e^{i k_{2} x}+\cdots+a_{n} e^{i k_{n} x} "
$$

where $0<k_{1}<k_{2}<\cdots<k_{n}$ are integers with $\left|a_{j}\right| \geq 1$, and " $j=1,2, \ldots N$, It has rich history see for example [1]. The existance of this bound in terms of $\log \mathrm{N}$ with coefficients equal to 1 is called Little wood's conjecture".

In [1] and [2] the authors have the best results that are intermes of $(\log N)^{2}$.
In our work we improve the results in [1] and [2] and prove the following theorem.

Theorem 1-1

"We can find $C(P)$ such that

$$
\|F\|>\mathrm{C}(P) \log N /(\log \log N)^{2}
$$

In our work we use some notations such as $c(p)$ is refere to absolute positive constant depending on p and variy from one step to another.

We use the $L_{p}[0,2 \pi]$ spaces for $0<p<\infty$, and defined as

$$
\begin{gathered}
L_{p}[0,2 \pi]=\left\{f:[0,2 \pi] \rightarrow R: C\left(\int_{0}^{2 \pi}|f|^{p}\right)^{\frac{1}{p}}<\infty\right\} . \\
=\|f\|_{p}
\end{gathered}
$$

$|E|$ denoted for the measure of the set E. If Γ is a finite sequence, $|\Gamma|$ will denote the number of the terms $\Gamma^{\prime \prime}$.

Definitions 1.1.

L_{P} space is space of all functions g satisfies $\|g\|_{p}<\infty$, define by

$$
\|g\|_{p}=\|g\|_{L_{p}(I)}=
$$

$\left(\int_{I}|g(x)|^{p} d x\right)^{\frac{1}{p}}$ where $0<P<\infty$

Definitions 1.2.

The function $\omega(\delta)$ is called the modulus of continuity of f where

$$
\omega(\delta)=\omega(\delta, f)_{p}=\sup _{0<|h|<\delta 1}\|f(x+h)-f(x)\|_{p}
$$

and $f(x)$ be defined in a closed interval.
Definitions 1.3 [3].
$S[f]$ at $x=x_{0}$ is the same as the Fourier series at $t=0$ of the even function.
$\frac{1}{2}\left[f\left(x_{0}+t\right)+f\left(x_{0}-t\right)\right]$, and $S[f]$ at $x=x_{0}$ is the series conjugate to the Fourier series at $t=0$ of the odd function $\frac{1}{2}\left[f\left(x_{0}+t\right)-f\left(x_{0}-t\right)\right]$.

Definitions 1.4. [6]
If E is a sub set of $[0,2 \pi]$ we mean by $|E|$ the measure of the set E, \grave{E} is the complement of E in $[0,2 \pi]$.
Definitions 1.5 (Big -oh: O(.)) [4]
Suppose that $f(n)$ and $g(n)$ be functions such that

$$
\exists k>0, \exists n_{0}, \forall n>n_{0},|f(n)| \leq|k \cdot g(n)|
$$

then $f(n) \in O(g(n))$ or with some abuse of notation $f(n)=O g(n)$.
Definitions 1.6 (Small -oh: o(.)) [4].
Suppose that $f(n)$ and $g(n)$ be functions such that

$$
\forall k>0, \exists n_{0}, \forall n>n_{0},|f(n)| \leq k \cdot|g(n)|
$$

then $f(n) \in o(g(n))$ or with some abuse of notation $f(n)=o g(n)$.
Definitions 1.7 (Characteristic function) [5].
For non-empty set y, and A sub set of y. a characteristic function of A is a mapping $\chi_{A}: y \rightarrow\{0,1\}$ which is defined as:

$$
\chi_{A}(y)= \begin{cases}1 & \text { if } y \in A \\ 0 & \text { if } y \in A^{c}\end{cases}
$$

Definitions 1.8 (Young function) [7]

Let $\phi(u), u \geq 0$, and $\psi(v), v \geq 0$, be two functions, continuous, vanishing at the origin, strictly increasing, and inverse to each other. Then for $a, b \geq 0$
we have the following inequality.

$$
a b \leq \phi(a)+\psi(b), \text { where } \phi(x)=\int_{0}^{x} \phi d u, \psi(y)=\int_{0}^{y} \psi d v
$$

Definitions 1.9 (Dyadic system) [8]

The standard dyadic system denoted by \mathcal{J}^{0} and defined as the form $. \mathcal{J}^{0}=\bigcup_{j \in Z} \mathcal{T}_{j}^{0}, \mathcal{T}_{j}^{0}=$ $\left\{2^{j}([0,1)+k): k \in Z\right\}$. A general dyadic system may be defined as a collection $\mathcal{T}=\cup_{j \in Z} \mathcal{T}_{j}$, where $\mathcal{T}_{j}=\mathcal{T}_{j}+$ x_{j} for some $x_{j} \in R$ and the partition \mathcal{T}_{j} refines \mathcal{T}_{j+1} for each $j \in Z$.

2.Auxiliary Lemmas

In this section we give some auxiliary lemma that we need in our research .

Lemma 2.1 [3]

If $\sum A_{n}(x)$ is $S^{\prime}[f]$ then

$$
f(x+h)-f(x-h) \sim \sum B_{n} \sin n h .
$$

Where

$$
A_{n}(x)=a_{n} \cos n x+b_{n} \sin n x
$$

and

$$
B_{n}(x)=a_{n} \sin n x-b_{n} \cos n x \quad n>0 .
$$

Lemma 2.2 [3] (Jensen's inequality).
The Jensen's inequality given of the form

$$
\frac{1}{b-a}\left(\varnothing \int_{a}^{b} f(x) d x\right) \leq \frac{1}{b-a}\left(\int_{a}^{b} \varphi(f(x) d x) .\right.
$$

with a, b are real's and be a function $f:[a, b] \rightarrow R$ defined on closed interval.
Lemma 2.3 (Young's inequality) [7]
If $c \geq 0$ and $d \geq 0$ are non-negative real numbers and if $p>1$ and $q>1$ are real numbers such that $\frac{1}{p}+$ $\frac{1}{q}=1$
Then

$$
c d \leq \frac{c^{p}}{p}+\frac{d^{q}}{q} .
$$

"The Equality above is true $\Leftrightarrow c^{p}=d^{q "}$.

Lemma 2.4 [3].

Let $n_{k+1} / n_{k} \geq q>1$ for all $k \operatorname{and} \gamma^{2}=\sum\left(a_{k}^{p}+b_{k}^{p}\right)$. is finite, So that

$$
\sum\left(a_{k} \cos n_{k} x+b_{k} \sin n_{k} x\right)\left(n_{k+1} / n_{k} \geq q>1 \text { is an } S[f]\right.
$$

Then

$$
A_{r, q}\left\{\sum\left(a_{k}^{p}+b_{k}^{p}\right)\right\}^{\frac{1}{p}} \leq\left\{c(p) \int_{0}^{2 \pi}|f|^{p} d x\right\}^{\frac{1}{p}} \leq B_{r, q}\left\{\sum\left(a_{k}^{p}+b_{k}^{p}\right)\right\}^{\frac{1}{p}}
$$

for every $p>0$, where $A_{r, q}$ and $B_{r, q}$ depend on r and q only.
If $\gamma \leq 1$, Then also

$$
\int_{0}^{2 \pi} \exp \mu f^{p} d x \leq c, \text { provided } \mu \leq \mu_{0}(q), \text { with } c \text { an absolute constant. }
$$

Lemma 2.5 [3].

(i) $\left(\int|f+g|^{p}\right)^{\frac{1}{p}} \leq 2^{\frac{1}{p}-1}\left(\int|f|^{p}\right)^{\frac{1}{p}}+\left(\int|g|^{p}\right)^{\frac{1}{p}} \quad$ where $0<p<1$.
(ii) $\left(\int|f+g|^{p}\right) \leq \int|f|^{p}+\int|g|^{p .} \quad$ where $0<p<1$.
(iii) $\left(\int|f+g|^{p}\right)^{\frac{1}{p}}>\left(\int|f|^{p}\right)^{\frac{1}{p}}+\left(\int|g|^{p}\right)^{\frac{1}{p}} \quad$ where $0<p<1$.

Lemma 2.6 [6]

$$
\sum_{s=n}^{2 n}\left(\frac{1}{2^{s}}\right)\binom{s}{n}=1 .
$$

3.Main Results

In this section we give our main results.

Theorem 3.1.

If $f \in L_{p}, 0<p<\infty$ then $\mathrm{S}[f]$ converges absolutely for $p=\frac{1}{2}$ this is not necessary true.

Proof

By using the Lemma 2.1 implies that

$$
\left|\sum B_{n} \sin n h-f(x)\right| \leq C|f(x+h)-f(x-h)|
$$

For $f \in L_{p}$

$$
\left\|\sum B_{n} \sin n h-f(x)\right\|_{p} \leq \omega(f, h)_{p}
$$

Theorem 3.2.

If E is a measurable set in $[0,2 \pi]$ satisfy $0<|E|<1$ and assume that

$$
G(x)=1+a_{1} e^{i x}+\cdots+a_{k} e^{i k x}
$$

Then

$$
\begin{equation*}
\left[|E|^{-1}\left(\int_{E}|G|^{p}\right)\right]^{|E|} \cdot\left[\left|E^{\prime}\right|^{-1}\left(\int_{E^{\prime}}|G|^{p}\right)\right]^{\left|E^{\prime}\right|} \geq 1 \tag{2.1}
\end{equation*}
$$

We mean by E^{\prime} the complement of E in the interval $[0,2 \pi]$ and $0<p<\infty$.
proof.
Let $\chi_{E}, \chi_{E^{\prime}}$ are characteristic function of E and E^{\prime} respectively. By Lemma 2.2 we have

$$
0 \leq\left(\int_{0}^{2 \pi} \log |G|^{P}\right)=|E|\left(\int_{0}^{2 \pi}\left(\chi_{E} /|E|\right) \log |G|^{p}\right)+\left|E^{\prime}\right|\left(\int_{0}^{2 \pi}\left(\chi_{E^{\prime}} /\left|E^{\prime}\right|\right) \log |G|^{p}\right)
$$

adding $|E|$ to above inequality we have

$$
1 \leq\left[|E|\left(\int_{0}^{2 \pi}\left(\chi_{E} /|E|\right) \log |G|^{p}\right)+\left|E^{\prime}\right|\left(\int_{0}^{2 \pi}\left(\chi_{E^{\prime}} /\left|E^{\prime}\right|\right) \log |G|^{p}\right)\right]+|E|
$$

Then taking e^{0} to both sides of the inequality above we have prove inequality (2.1)

Theorem 3.3.

Let $G(x)=a_{0}+a_{1} e^{i x}+\cdots+a_{k} e^{i k x}=g(x)+i \tilde{g}(x)$ and write $\quad \exp (i m x) G(x)=g_{m}(x)+i \tilde{g}_{m}(x)$.
Then

$$
\begin{equation*}
\lim \left\|g_{m}\right\|_{p}=(2 \mid \pi)\|G\|_{p}, \text { as } m \rightarrow \infty \tag{3.1}
\end{equation*}
$$

Proof.
Suppose that $I_{j}=\left(a_{j}, b_{j}\right)=(2 \pi j / m, 2 \pi(j+1) / m), j=0,1, \ldots, m-1$. We take m so big that the $(g-\tilde{g})$ in $I_{j}<$ ε for all $\varepsilon>0$.

This imply

$$
g_{m}(x)=g(x) \cos m x-\widetilde{g}(x) \sin m x
$$

differs from $g\left(a_{j}\right) \cos m x-\widetilde{g}\left(a_{j}\right) \sin m x$ such that
$\left.\left.g_{m}(x)-g\left(a_{j}\right)=[g(x) \operatorname{cosm} x-\widetilde{g}(x) \operatorname{sinm} x)\right]-\left[g\left(a_{j}\right) \operatorname{cosm} x-\widetilde{g}\left(a_{j}\right) \operatorname{sinm} x\right)\right]<2 \varepsilon$
By above equals $\left|G\left(a_{j}\right)\right| \cos \left(m x+t_{j}\right)$ where t_{j} satisfy

$$
\tan t_{j}=\tilde{g}\left(a_{j}\right) / g\left(a_{j}\right)
$$

It follows

$$
\begin{array}{r}
\left\|g_{m}\right\|_{p}=\left(\int_{I_{j}}\left|g_{m}\right|^{p}\right)^{\frac{1}{p}}=\left|G\left(a_{j}\right)\right|\left(\int_{I_{j}}\left|\cos \left(m_{x}+t_{j}\right)\right|^{p} d x\right)^{\frac{1}{p}}+\left|I_{j}\right| O \varepsilon \\
=(2 \mid \pi)\left|G\left(a_{j}\right)\right|\left|I_{j}\right|+\left|I_{j}\right| O \varepsilon>1
\end{array}
$$

make a summation for $\mathrm{j}=0,1, \ldots, \mathrm{~m}-1$ and suppose $m \rightarrow \infty$ and $\varepsilon \rightarrow 0$ we obtain (3.1)

Theorem 3.4.

Let $n_{j+1} / n_{j}>\lambda>1$, for all j. If a_{n}, b_{n} are the coefficients of an $f \in L_{p}, 0<p<1$, the series $\sum\left(a_{n_{j}}^{p}+b_{n_{j}}^{p}\right)$ converges. The result holds if merely $|f|\left(\log ^{+}|f|\right)^{\frac{1}{p}}$ is integrable.

Proof

Let $N>0$, for a suitable sequence $\alpha_{1,} \beta_{1} \ldots \alpha_{n}, \beta_{n}$ with $\sum \alpha_{j}^{p}+\beta_{j}^{p}=1$
we have

$$
\begin{equation*}
\left\{\sum_{j=1}^{N}\left(a_{n_{j}}^{p}+b_{n_{j}}^{p}\right)\right\}^{\frac{1}{p}} \leq c(p)\|f(g)\|_{p} \tag{4.1}
\end{equation*}
$$

Where

$$
g=\sum\left(\alpha_{j} \cos _{j} t+\beta_{j} \sin n_{j} t\right)
$$

Using the same lines of the proof Theorem (8.20) in [3], we get Lemma

$$
c(p) \sum\left(a_{k}^{p}+b_{k}^{p}\right)^{\frac{1}{p}} \leq\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}|f|^{p}\right)^{\frac{1}{p}} \leq c(p) B_{r, q}\left(\sum a_{k}^{p}+b_{k}^{p}\right)^{\frac{1}{p}}
$$

$$
\text { for } 0<p<1
$$

There are positive constant γ, δ depending on λ only such that

$$
\int_{0}^{2 \pi} e^{\gamma q^{2}} \mathrm{dx} \leq \delta
$$

We have

$$
\left\|e^{\gamma}\right\|_{p} \leq \delta
$$

Let $\Phi(u)=e^{\gamma u^{2}}-\gamma u^{2}-1$. The functions Φ and Φ vanish for $u=0$, and Φ is strictly increasing for $u \geq 0$. Its complementary function $\Psi(v)$, as is easily seen, is $O\left(v \log ^{\frac{1}{2}} v\right)$ for $v \rightarrow \infty$. In other words

$$
\Psi(v) \leq A_{\lambda} v\left(\log ^{+} v\right)^{\frac{1}{p}}+B_{\lambda} \text { for } v \geq 0
$$

By Young's inequality now show that the last term in (4.1) is not greater than

$$
c(p)\left\{\|\Phi(|g|)+\Psi(|f|)\|_{p}\right\} \leq\left\|e^{\gamma q^{p}}\right\|_{p}+A_{\lambda}\left\||f|\left(\log ^{+}|f|\right)\right\|_{p}+2 B_{\lambda},
$$

which gives $\left\{\sum_{j=1}^{N} a_{n_{j}}^{p}+b_{n_{j}}^{p}\right\}^{\frac{1}{p}} \leq A_{\lambda} \||f|\left(\log ^{+}|f| \|_{p}+\right.$ ÁA$_{\lambda}$.
With $A_{\lambda}=2 B_{\lambda}+\delta$. The inequality holds if $N \rightarrow \infty$.

Corollary 3.1.1.

Let $g \in L_{p}$ and let $m_{1}, m_{2 \ldots}$ be a positive integer sequence satisfies any termes can be written uncial as $b_{1} m_{1}+$ $\cdots b_{n} m_{n}$, for an integer n , where $b_{j} \in\{-1,0,1\}, j=1,2, \ldots$, Then if g has the form

$$
g(x)=a_{0}+a_{1} e^{i x}+\cdots+a_{n} e^{i n x}+\cdots \text { we have }
$$

$$
\begin{array}{r}
\left\{\sum_{j=1}^{\infty}\left|a_{m j}\right|^{p}\right\}^{\frac{1}{p}} \leq c\left\||g|\left(\log ^{+}|g|\right)\right\|_{p}+c \\
\left\|a_{m j}\right\|_{p} \leq c\left\||g|\left(\log ^{+}|g|\right)\right\|_{p}+c
\end{array}
$$

where $\log ^{+} a=\log a$ if $a \geq 1$ and $\log ^{+} a=0$ if $0<a \leq 1$.
Theorem 3.5.
Let $E \subset[0,2 \pi]$ is a set and positive constants $b_{n}, b_{n+1}, \ldots b_{2 n}$ such that
$|E|=1-\frac{1}{2^{n}}, b_{n}+b_{n+1}+\cdots+b_{2 n}=1$, and
$\left\|f_{q}\right\|_{p} \geq \sum_{s=n}^{2 n} b_{s}\left\|f_{s}\right\|_{p}+\left(\frac{1}{2^{n-1}}\right)\left\|f_{n-1}\right\|_{p}$ where $0<p<\infty$

Proof

Let $g_{r}(x)=\operatorname{sgn} f_{r}(x)$. We see g_{r} and the spectrum $g_{r} g_{s} \ldots g_{t}, r<s<\cdots<t$, contains only odd multiples of $2^{k_{r}}$ (5.2)

The spectrum of the function f consisting of odd multiples of 2^{k} if and only if f is $\left(2 \pi / 2^{k}\right)$ - periodic and $f\left(\frac{\pi}{2^{k}}+x\right)=-f(x)$.

Let $\varepsilon=\left\{\varepsilon_{0}, \ldots, \varepsilon_{2 n}\right\}$ is sequence of $+1 s$ and $-1 s$, and let \emptyset be a family of sequences which contain more +1 than 1.

The function $\chi(x)$ can be defined as

$$
\chi(x)=\sum_{\varepsilon \in \Phi} \prod_{k=0}^{2 n}\left(\frac{1+\varepsilon_{k} g_{k}}{2}\right)
$$

Since $\quad\|f\|=0$, we have

$$
\begin{equation*}
\left\|f_{q}\right\|_{p}=2\|f \chi\|_{p}=2\left\|\left(f_{0}+\cdots+f_{2 n}\right) \chi\right\|_{p} \tag{5.3}
\end{equation*}
$$

Then

$$
\left\|f_{q}\right\|_{p}>\sum_{s=0}^{2 n}\left\|f_{s} \chi\right\|_{p} \quad \text { where } 0<p<1
$$

We shall show that all norms

$$
A_{s}=\left\|f_{s} \chi\right\|_{p} \text { are positive and that }
$$

$2\left(A_{n}+A_{n+1}+\cdots+A_{2 n}\right)$ and $2 A_{n-1}>$ the $1^{\text {st }}$ and $2^{\text {nd }}$ terms of the right hand side of (5.1), So we examine A_{s} for affixed s.
A_{s} is the sume of the norms $\left\|f_{s} \prod_{k=0}^{2 n}\left(\frac{1+\varepsilon_{k} g_{k}}{2}\right)\right\|_{p} \quad$ for all ε in Φ.
Now, we abserve that

$$
\begin{equation*}
\left\|f_{s} \prod_{k=0}^{2 n}\left(\frac{1+\varepsilon_{k} g_{k}}{2}\right)\right\|_{p}=\left\|\prod_{k<s}^{n}\left(\frac{1+\varepsilon_{k} g_{k}}{2}\right) f_{s}\left(\frac{1+\varepsilon_{k} g_{k}}{2}\right) \cdot \prod_{k>s}^{n}\left(\frac{1+\varepsilon_{k} g_{k}}{2}\right)\right\|_{p} \tag{5.4}
\end{equation*}
$$

By (5.2) the first factor in the last norm will be only a factor $1 / 2^{s}$.
Hence

$$
\begin{gather*}
\left\|f_{s} \prod_{k=0}^{2 n}\left(\frac{1+\varepsilon_{k} g_{k}}{2}\right)\right\|_{p}=\left(\frac{1}{2^{s}}\right)\left\|f_{s}\left(\frac{1+\varepsilon_{s} g_{s}}{2}\right) \prod_{k>s}\left(\frac{1+\varepsilon_{k} g_{k}}{2}\right)\right\|_{p} \\
=\left(\frac{1}{2^{s+1}}\right)\left\|\varepsilon_{s} f_{s} \prod_{k>s}\left(\frac{1+\varepsilon_{k} g_{k}}{2}\right)\right\|_{p} \tag{5.5}
\end{gather*}
$$

In the last equality.
Now, let as contribution of the sequence ε to A_{s} which have a definite pattern for $k>s$ and this pattern contains $m, 0 \leq m \leq \min (n, 2 n-s)-1$ elements .Let as divide Φ into $n+1$ classes $\Phi_{0}, \Phi_{1}, \ldots \Phi_{n}$ as the number -1 elements. The ε with the given pattern for $k>s$ distributed among the Φ_{j} as follows:
(i) There are no termes if $j<m$.
(ii) There is one term in Φ_{m} such that $\varepsilon_{s}=1$.
(iii) There are $\binom{s}{j-m-1}$ with $\varepsilon_{s}=-1$ and $\binom{s}{j-m}$ with $\varepsilon=1$ in
$\Phi_{j}, j>m$, then the contribution of ε_{s} to A_{s} with the given pattern for $k>s$ is
$\left\{\left(1 / 2^{s+1}\right)\left\|f_{s} \prod_{k>s}\left(\frac{1+\varepsilon_{k} g_{k}}{2}\right)\right\|_{p}\right\}\left\{1+\left\{\binom{s}{1}-\binom{s}{0}\right\}+\cdots+\left\{\binom{s}{n-m}-\binom{s}{n-m-1}\right\}\right\}$
$\left(1 / 2^{s+1}\right)\binom{s}{n-m}\left\|f_{s} \prod_{k>s}\left(\frac{1+\varepsilon_{k} g_{k}}{2}\right)\right\|_{p}$
Where $\binom{s}{a}=0$ if $a>s . A_{S}$ will be obtained if we make a summation for the termes under ε with apttern having m element, equal to -1 for $k>s$ and we make a summation under m with $\boldsymbol{\operatorname { m a x }}(\mathbf{0}, \boldsymbol{n}-\boldsymbol{s}) \leq \boldsymbol{m} \leq \boldsymbol{m i n}(\boldsymbol{n}, \mathbf{2 n}-\boldsymbol{s})$. Thus it is evident that all $A_{s}>0$.

We examine now the cases $s=n-1$ and $s \geq n$
$s=n-1$. since $\binom{s}{n-m}=1, A_{n-1}$ will exceed

$$
\left(1 / 2^{n}\right)\left\|f_{n-1} \sum \prod_{k>n-1}\left(\frac{1+\varepsilon_{k} g_{k}}{2}\right)\right\|_{p}
$$

where the summation exceed over all choices of +1 and -1 for the $\varepsilon_{n}, \varepsilon_{n+1}, \ldots, \varepsilon_{2 n}$ except the choices $\varepsilon_{n}=\varepsilon_{n+1}=$ $\cdots=\varepsilon_{2 n}=-1$ and
$\varepsilon_{n}=\varepsilon_{n+1}=\cdots=\varepsilon_{2 n}=1$. The summation above equal to 1 for all x except these x where $f_{n}, f_{n+1}, \ldots, f_{2 n}$ are all \geq 0 are all ≤ 0.

The last set has measure

$$
\int \Pi_{k>n-1}\left(\frac{1-g_{k}}{2}\right)+\int \prod_{k>n-1}\left(\frac{1+g_{k}}{2}\right)=1 / 2^{n}
$$

and so it's the complement of E has also measure equal (1- $\left(1 / 2^{n}\right)$)
This shows that $2 A_{n-1}$ greater than the last term in the right hand side of (5.1). $s \geq n$, Then all choices of $\varepsilon_{k}, k \geq$ n, are permissible and all the factors $\binom{s}{n-m}$ are not $<\binom{s}{n}$. As the intervals previous case we abtain

$$
A_{s} \geq 2\left(1 / 2^{s+1}\right)\binom{s}{n}\left\|f_{s}\right\|_{p}=\left(1 / 2^{s}\right)\binom{s}{n}\left\|f_{s}\right\|_{p}
$$

Writing $B_{s}=\left(1 / 2^{s}\right)\binom{s}{n}, s=n, n+1, \ldots, 2 n$ by using Lemma (2.6) we see that the condition $b_{n}+b_{n+1}+\cdots+$ $b_{2 n}=1$ is satisfied. The Theorem proof completed.

4. Theorem 1.1.

There exists a positive constant satisfies

$$
\|F\|_{P} \geq c(p)(\log N)(\log \log N)^{2}
$$

In this section we give the prove Theorem 1.1

$$
\Gamma=\left\{n_{1}, n_{2}, \ldots n_{N}\right\}, F(x)=f(x)+i f(x)=\sum_{\jmath=1}^{N} e^{(n n, x)}
$$

Proof.

We will prove this Theorem using induction on N , Let

$$
\|H\|_{P} \geq C_{0}(\log M) /(\log \log M)^{2}
$$

For any H exponential sum satisfy $M<N$ is nonzero conditions, $c(p)$ is a constant depends on p . We also mention that it ere to avoid trivial proof, assume that $N \rightarrow \infty$.
We will first replace the Γ by one of their translations. This clearly does not affect F and allows for profitability use Theorem 3.5. We are writing numbers $n_{1}, n_{2}, \ldots, n_{N}$ dyadic system and substract their joint tail (if found). This amounts to a translation make each n_{j} positive. Suppose $2^{k_{0}}$ is the highest power of the value of 2 which divides all elements of the translated sequence. There are definitely odd and even multiples of $2^{k_{0}}$. If the odd number exceeds the number of even ones, then we add $2^{k_{0}}$ for all Γ elements. We can write Γ_{0} for the odd multiplier of $2^{k_{0}}$. Now consider the set of even multiples of $2^{k_{0}}$ and again subtract their joint tail from all elements of Γ. Suppose $2^{k_{1}}\left(k_{1}>k_{0}\right)$ is the highest power of 2 which divides all even multiples of $2^{k_{0}}$ If there exists more odd than even multiples of $2^{k_{1}}$ (among even multiples of $2^{k_{0}}$ then we add2 $2^{k_{1}}$ to all Γ elements. Obviously, the operations in the second step do not affect $\left|\Gamma_{0}\right|$ and $2^{k_{0}}$ We write Γ_{1} for the odd multiples of $2^{k_{1}}$ and continue in the same manner until the sequence Γ is exhausted. Thus we obtain the sequence $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{r}$ of discrete subsets of Γ such that Γ_{j} contains only odd multiples of $2^{k_{j}}, j=0,1, \ldots, r,\left|\Gamma_{j}\right| \leq\left|\Gamma_{j+1}\right|+\cdots+\left|\Gamma_{r}\right|, j<r$ and $\Gamma=\Gamma_{1} \cup \Gamma_{2} \cup \ldots \cup \Gamma_{r}$. No let of translate the sequence Γ by of $2^{k_{r}}$ then L_{p} norm of any term of Γ is different from $\pi / 2$ times the p-norm of its real part $<1 / N$. This is true Theorem 3.2. Now by using Theorem 3.5 we have

$$
\begin{gather*}
\|F\|_{P}=(\pi / 2)\|f\|_{p}+O(N)^{-1} \geq(\pi / 2)\left(1 / 2^{n-1}\right)\left\|f_{q}\right\|_{p}+O(N)^{-1} \text { for } 0<p<\infty \tag{1.1}\\
\geq\left(\frac{\pi}{2}\right)\left(\frac{1}{2^{n-1}}\right) \sum_{s=n}^{2 n} b_{s}\left\|f_{s}\right\|_{p}+\left(\frac{\pi}{2}\right)\left(\frac{1}{2^{n-1}}\right)\left\|f_{n-1}\right\|_{p}+O(N)^{-1} \\
=\sum_{s=n}^{2 n} b_{s}\left\|F_{s}\right\|_{p}+\left(1 / 2^{n-1}\right)\left\|f_{n-1}\right\|_{p}+O(N)^{-1}
\end{gather*}
$$

Where $F_{s}=\sum_{m \in \Gamma_{s}} e^{(i m x)}$ and E depends on the choice of $f_{s}, s=0,1, \ldots 2 n$.
Consider the cases:

Case (1)

Exist $2 n+1$, with n satisfying the inequalities
$\log \log \log N<n \log 2<1+\log \log \log N$, defined Γ_{j} with $\left|\Gamma_{j}\right| \geq N(\log N)^{4}$. So our induction
hypothesis and $b_{n}+b_{n+1}+\cdots+b_{2 n}=1$ impels that

$$
\begin{equation*}
\sum_{s=n}^{2 n} b_{s}\left\|F_{s}\right\|_{p} \geq C\left(\frac{\log N-4 \log \log N}{(\log \log N)^{2}}\right)(1+O(1 / \log N)) \tag{1.2}
\end{equation*}
$$

where C is a positive constant.

$$
\begin{align*}
= & {\left[C \frac{\log N}{(\log \log N)^{2}}-\left(C \frac{(4 \log \log N)}{(\log \log N)^{2}}\right)(1+O(1 / \log N))\right] } \\
& \geq\left\{C\left[\left(\frac{\log N}{(\log \log N)^{2}}-\left(\frac{4 C_{0}}{\log \log N}\right)\right](1+O(1 / \log N))\right\}\right. \tag{1.3}
\end{align*}
$$

By subtract $\left[C \frac{1}{\log \log N}\right]$ in equality above we have

$$
\sum_{s=n}^{2 n} b_{s}\left\|F_{s}\right\|_{p} \geq C\left[\left(\frac{\log N}{(\log \log N)^{2}}\right)-\left(\frac{5 C}{(\log \log N)}\right)\right]
$$

Where abroches $\mathrm{N} \rightarrow \infty$.
Now, let as prove we can choose C such that $\left(1 / 2^{n-1}\right)\left\|f_{n-1}\right\|_{p}>5 C / \log \log N$.

Consider the remark:

(1) The norm of the sum of the terms of F is upper bound for $\left\|f_{n-1}\right\|$ which multiplies by $2^{k_{n-1}}$. And the norm of this sum bounded by $\|F\|$.
(2) We can assume $\|F\|_{p}$ bounded above by $\log N$. Which is trivial and there is nothing to prove.
(3) $(1 /|E|)^{|E|}$ and $(1 /|E ́|)^{|E|}$ are bounded.

By using these remarks and applying Theorem(3.2) we abtain

$$
1 \leq C\left(\left\|f_{n-1}\right\|_{p}\right)^{|E|}\left(\left\|f_{n-1}\right\|_{p}\right)^{|\dot{E}|} \leq C\left(\left\|f_{n-1}\right\|_{p}\right)^{|E|}, \text { where in the last inequality we used(2) and the }
$$ estimate

$$
|\dot{E}|=1 / 2^{n} \leq 1 / \log \log N
$$

Then

$$
\begin{equation*}
\left\|f_{n-1}\right\|_{p} \geq C \tag{1.4}
\end{equation*}
$$

of (1.1),(1.2),(1.4) and the inequality $1 / 2^{n-1}>\log \log N$ yield

$$
\begin{aligned}
& \quad\|F\|_{p} \geq C\left(\frac{\log N}{(\log \log N)^{2}}\right)-\frac{5 C}{\log \log N}+O(N)^{-1}+\frac{C}{2^{n-1}} \\
& \geq C\left(\frac{\log N}{(\log \log N)^{2}}\right)
\end{aligned}
$$

For $N \rightarrow \infty$, The case (1) proof completed.
Case (2)
At most $4 \log \log N \Gamma_{j}$ are such that $\left|\Gamma_{j}\right| \geq N /(\log N)^{4}$.
Suppose that $\Gamma_{j_{1}}, \Gamma_{j_{2}}, \ldots, \Gamma_{j_{k}}, j_{1}<j_{2}<\cdots<j_{k}, k<4 \log \log \log N$ be the Γ_{j} with more than $N /(\log N)^{4}$ elements. We prove in this case there are more than $(\log N)^{3}$ classes Γ_{j}.

Suppose $j_{1}, j_{2}-j_{1}, \ldots, j_{k}-j_{k-1}$ are less than $(\log N)^{3}$.

We write $\Gamma^{\prime}{ }_{j}=\Gamma_{j+1} \cup \ldots \cup \Gamma_{r}$, i.e the set of even multiples of $2^{k_{j}}$.
Since $\left|\Gamma^{\prime}{ }_{j}\right| \geq\left|\Gamma_{j}\right|$ we get

$$
\begin{aligned}
\left|\Gamma_{j_{1}}\right| \geq\left(\frac{1}{2}\right)\left|\Gamma_{j_{1}} \cup \Gamma_{j_{1}}\right| & \geq \frac{1}{2}\left\{N-\frac{N}{(\log N)^{4}}(\log N)^{3}\right\} \\
& =\left(\frac{1}{2}\right)\left\{N-\frac{N}{\log N}\right\} .
\end{aligned}
$$

Similarity we get $\left|\Gamma_{j_{h}}\right| \geq\left(\frac{1}{2^{h}}\right)\left\{N-\frac{N}{\log N}\left(1+2+\cdots+2^{h-1}\right\}, 1 \leq h \leq k\right.$.
assume $h=k$ in above we see that $\left|\Gamma_{j_{k}}\right|$ grater than

$$
C N /(\log \log N)^{4} .
$$

Since $\left|\Gamma_{j}\right| \leq N /(\log N)^{4}$ if $j \geq j_{k}$, the number of Γ_{j} with $\mathrm{j}>j_{k}$ grater than

$$
\frac{C(\log N)^{4}}{(\log \log N)^{4}} \geq(\log N)^{3}
$$

On choosing now one frequency from each such class we abtain a subsequence of Γ satisfies the hypotheses of Theorem 3.3. Using Theorem $3.3 \log |F| \leq \log N$ we have

$$
(\log N)^{\frac{1}{2}}\|F\|_{P} \geq C(\log N)^{\frac{3}{2}}
$$

provided than $N \rightarrow \infty$, We chosen $C_{0}<C$ in above, then 1.1 satisfy.
From case 1 and 2 we complete the proof.

References

[1] J. Fournier, "On a theorem of Paley and the Littlewoods conjecture.," in Arkiv 199-216.
[2] S. K. Pichorides, "On a Conjecture of Littlewoods Concerning Exponential Sums,," in Vol. 18 (1977), 8-16, I."Bull. Greek Math. Soc.
[3] A. ZYGMUND, "Trigonometric Series.," in Cambridge University Press, 1968, October 1979, Vol. I, II.
[4] N. a. p. p. Mondale, "Another Asymptotic Notation:" Almost"," in arXiv preprint arXiv, 1304.5617(2013), Ghosh.
[5] A. Syropoulos, ""Mathematics of multisets," in Workshop on Membrane Computing, Springer, Berlin, Heidelberg, 2000.
[6] Pichorides, Stylianos K. "On the L¹ norm of exponential sums." Annales de l'institut Fourier. Vol. 30. No. 2. 1980
[7] Carothers, N. L. "Approximation theory-a short course." (1998)
[8] Hytönen, Tuomas. "On Petermichl's dyadic shift and the Hilbert transform." Comptes Rendus Mathematique 346.21-22 (2008): 1133-1136

