Inequalities for L_p spaces, for 0 < P < 1

Sahab Mohsen Aboud¹, Ahmed Hadi Hussain²

¹Department of Mathematics, College of Basic Education, Babylon of University, Iraq ²Department of Automobile Engineering, College of Engineering Al-Musayab, University of Babylon, Iraq

> E- mail¹: <u>bsc.sahab.jwer@uobabylon.edu.iq</u> E- mail²: <u>met.ahmed.hadi@uobabylon.edu.iq</u>

Abstract: Few papers introduced about finding the lower bound to the L_1 -norm. If this lower bound in terms of log N for number N is called Little wood's conjecture. The must result in this subject up to now is a terms of bound of order $\sqrt{\log N}$. Here we generalize the Little wood's conjecture to functions in L_p spaces for $0 < P < \infty$ and get lower bound in terms of $(\log N)^{2p}$.

Keywords: *L*₁- norm, lower bound, Log N, Trigonometric polynomials, Dyadic System.

1. Introduction

The problem of estimating the bounds for L_1 - norm of the trigonometric polynomials has the form

$$F(x) = a_1 e^{ik_1x} + a_2 e^{ik_2x} + \dots + a_n e^{ik_nx}$$

where $0 < k_1 < k_2 < \cdots < k_n$ are integers with $|a_j| \ge 1$, and " $j = 1, 2, \dots N$, It has rich history see for example [1]. The existance of this bound in terms of log N with coefficients equal to 1 is called Little wood's conjecture".

In [1] and [2] the authors have the best results that are intermes of $(log N)^2$.

In our work we improve the results in [1] and [2] and prove the following theorem.

Theorem 1-1

"We can find C(*P*) such that

$$||F|| > C(P) \log N / (\log \log N)^2.$$

In our work we use some notations such as c(p) is refere to absolute positive constant depending on p and variy from one step to another.

We use the L_p [0,2 π] spaces for 0 < p < ∞ , and defined as

$$L_p[0,2\pi] = \{ f : [0,2\pi] \to R : C\left(\int_0^{2\pi} |f|^p\right)^{\frac{1}{p}} < \infty \}.$$
$$= \|f\|_p$$

|E| denoted for the measure of the set E. If Γ is a finite sequence, $|\Gamma|$ will denote the number of the terms Γ ".

Definitions 1.1.

 L_P space is space of all functions g satisfies $||g||_p < \infty$, define by $||g||_p = ||g||_{L_p(I)} = (\int_I |g(x)|^p dx)^{\frac{1}{p}}$ where $0 < P < \infty$

Definitions 1.2.

The function $\omega(\delta)$ is called the modulus of continuity of *f* where

$$\omega(\delta) = \omega(\delta, f)_p = \sup_{0 < |h| < \delta_1} \|f(x+h) - f(x)\|_p.$$

and f(x) be defined in a closed interval.

Definitions 1.3 [3].

S[f] at $x = x_0$ is the same as the Fourier series at t = 0 of the even function.

 $\frac{1}{2}[f(x_0 + t) + f(x_0 - t)]$, and S[f] at $x = x_0$ is the series conjugate to the Fourier series at t = 0 of the odd function $\frac{1}{2}[f(x_0 + t) - f(x_0 - t)]$.

Definitions 1.4. [6]

If *E* is a subset of $[0,2\pi]$ we mean by |E| the measure of the set *E*, \dot{E} is the complement of *E* in $[0,2\pi]$.

Definitions 1.5 (Big -oh: O(.)) [4]

Suppose that f(n) and g(n) be functions such that

 $\exists \ k > 0, \exists \ n_0, \forall \ n > n_0, |f(n)| \le | \ k \cdot g(n)|$

then $f(n) \in O(g(n))$ or with some abuse of notation f(n) = Og(n).

Definitions 1.6 (Small -oh: o(.)) [4].

Suppose that f(n) and g(n) be functions such that

 $\forall k > 0, \exists n_0, \forall n > n_0, |f(n)| \le k \cdot |g(n)|$

then $f(n) \in o(g(n))$ or with some abuse of notation f(n) = og(n).

Definitions 1.7 (Characteristic function) [5].

For non-empty set y , and A sub set of y. a characteristic function of A is a mapping $\chi_A : y \to \{0, 1\}$ which is defined as:

$$\chi_A(y) = \begin{cases} 1 & \text{if } y \in A \\ 0 & \text{if } y \in A^c \end{cases}$$

Definitions 1.8 (Young function) [7]

Let $\phi(u), u \ge 0$, and $\psi(v), v \ge 0$, be two functions, continuous, vanishing at the origin, strictly increasing, and inverse to each other. Then for $a, b \ge 0$

we have the following inequality.

$$ab \leq \phi(a) + \psi(b)$$
, where $\phi(x) = \int_0^x \phi du$, $\psi(y) = \int_0^y \psi dv$.

Definitions 1.9 (Dyadic system) [8]

The standard dyadic system denoted by \mathcal{T}^0 and defined as the form $\mathcal{T}^0 = \bigcup_{j \in \mathbb{Z}} \mathcal{T}_j^0, \mathcal{T}_j^0 = \{2^j([0,1)+k): k \in \mathbb{Z}\}$. A general dyadic system may be defined as a collection $\mathcal{T} = \bigcup_{j \in \mathbb{Z}} \mathcal{T}_j$, where $\mathcal{T}_j = \mathcal{T}_j + x_j$ for some $x_j \in \mathbb{R}$ and the partition \mathcal{T}_j refines \mathcal{T}_{j+1} for each $j \in \mathbb{Z}$.

2. Auxiliary Lemmas

In this section we give some auxiliary lemma that we need in our research .

Lemma 2.1 [3]

If $\sum A_n(x)$ is S'[f] then

$$f(x+h) - f(x-h) \sim \sum B_n \sin nh$$

Where $A_n(x) = a_n \cos nx + b_n \sin nx$

and

$$B_n(x) = a_n \sin nx - b_n \cos nx \qquad n > 0.$$

Lemma 2.2 [3] (Jensen's inequality).

The Jensen's inequality given of the form

$$\frac{1}{b-a}(\emptyset\int_a^b f(x)dx) \le \frac{1}{b-a}(\int_a^b \varphi(f(x)dx).$$

with *a*, *b* are real's and be a function $f:[a, b] \rightarrow R$ defined on closed interval.

Lemma 2.3 (Young's inequality) [7]

If $c \ge 0$ and $d \ge 0$ are non-negative real numbers and if p > 1 and q > 1 are real numbers such that $\frac{1}{p} + \frac{1}{2} = 1$

$$cd \leq \frac{c^p}{p} + \frac{d^q}{q}.$$

"The Equality above is true $\Leftrightarrow c^p = d^{q}$ ".

Lemma 2.4 [3].

Let $n_{k+1}/n_k \ge q > 1$ for all k and $\gamma^2 = \sum (a_k^p + b_k^p)$. is finite, So that

 $\sum (a_k \cos n_k x + b_k \sin n_k x)(n_{k+1}/n_k \ge q > 1 \text{ is an } S[f]$

Then

Then

$$A_{r,q}\left\{\sum (a_k^p + b_k^p)\right\}^{\frac{1}{p}} \le \left\{c(p)\int_0^{2\pi} |f|^p dx\right\}^{\frac{1}{p}} \le B_{r,q}\left\{\sum (a_k^p + b_k^p)\right\}^{\frac{1}{p}}$$

for every p > 0, where $A_{r,q}$ and $B_{r,q}$ depend on r and q only.

If $\gamma \leq 1$, Then also

 $\int_0^{2\pi} \exp \mu f^p dx \le c$, provided $\mu \le \mu_0(q)$, with *c* an absolute constant.

Lemma 2.5 [3].

(i)
$$(\int |f + g|^p)^{\frac{1}{p}} \le 2^{\frac{1}{p}-1} (\int |f|^p)^{\frac{1}{p}} + (\int |g|^p)^{\frac{1}{p}}$$
 where $0 .
(ii) $(\int |f + g|^p) \le \int |f|^p + \int |g|^p$ where $0 .
(iii) $(\int |f + g|^p)^{\frac{1}{p}} > (\int |f|^p)^{\frac{1}{p}} + (\int |g|^p)^{\frac{1}{p}}$ where $0 .$$$

Lemma 2.6 [6]

$$\sum_{s=n}^{2n} \left(\frac{1}{2^s}\right) \binom{s}{n} = 1$$

3.Main Results

In this section we give our main results.

Theorem 3.1.

If $f \in L_p$, $0 then S[f] converges absolutely for <math>p = \frac{1}{2}$ this is not necessary true.

Proof

By using the Lemma 2.1 implies that

$$\left|\sum B_n \sin nh - f(x)\right| \le C|f(x+h) - f(x-h)|$$

For $f \in L_p$

$$\|\sum B_n \sin nh - f(x)\|_p \le \omega(f,h)_p.$$

Theorem 3.2.

If E is a measurable set in $[0,2\pi]$ satisfy 0 < |E| < 1 and assume that

$$G(x) = 1 + a_1 e^{ix} + \dots + a_k e^{ikx}$$

Then

$$\left[|E|^{-1} \left(\int_{E} |G|^{p}\right)\right]^{|E|} \cdot \left[|E'|^{-1} \left(\int_{E'} |G|^{p}\right)\right]^{|E'|} \ge 1$$
(2.1)

We mean by *E*' the complement of *E* in the interval $[0,2\pi]$ and 0 .

proof.

Let χ_E , $\chi_{E'}$ are characteristic function of E and E' respectively. By Lemma 2.2 we have

$$0 \le \left(\int_0^{2\pi} \log|G|^p\right) = |E| \left(\int_0^{2\pi} (\chi_E/|E|) \log|G|^p\right) + |E'| \left(\int_0^{2\pi} (\chi_{E'}/|E'|) \log|G|^p\right)$$

adding |E| to above inequality we have

$$1 \le \left[|E| \left(\int_0^{2\pi} (\chi_E / |E|) \log|G|^p \right) + |E'| \left(\int_0^{2\pi} (\chi_{E'} / |E'|) \log|G|^p \right) \right] + |E|$$

Then taking e^0 to both sides of the inequality above we have prove inequality (2.1)

 $exp(imx)G(x) = g_m(x) + i\tilde{g}_m(x).$

Theorem 3.3.

Let
$$G(x) = a_0 + a_1 e^{ix} + \dots + a_k e^{ikx} = g(x) + i\tilde{g}(x)$$
 and write

Then

$$\lim \|g_m\|_p = (2|\pi) \|G\|_p, \text{ as } m \to \infty$$
(3.1)

Proof.

Suppose that $I_j = (a_{j,}b_j) = (2\pi j/m, 2\pi (j+1)/m), j = 0, 1, ..., m-1$. We take m so big that the $(g - \tilde{g})$ in $I_j < 0$ ε for all $\varepsilon > 0$.

This imply

$$g_m(x) = g(x) \cos mx - \widetilde{g}(x) \sin mx$$

differs from $g(a_i) \cos mx - \tilde{g}(a_i) \sin mx$ such that

$$g_{m}(x) - g(a_{j}) = [g(x)cosmx - \tilde{g}(x)sinmx)] - [g(a_{j})cosmx - \tilde{g}(a_{j})sinmx)] < 2\varepsilon$$

By above equals $|G(a_i)| \cos(mx + t_i)$ where t_i satisfy

$$\tan t_j = \tilde{g}(a_j)/g(a_j)$$

It follows

$$\|g_m\|_p = \left(\int_{I_j} |g_m|^p\right)^{\frac{1}{p}} = |G(a_j)| \left(\int_{I_j} |\cos(m_x + t_j)|^p dx\right)^{\frac{1}{p}} + |I_j| O\varepsilon$$
$$= (2|\pi)|G(a_j)| |I_j| + |I_j| O\varepsilon > 1$$

make a summation for j =0, 1, ...,m-1 and suppose $m \rightarrow \infty$ and $\varepsilon \rightarrow 0$ we obtain (3.1)

Theorem 3.4.

Let $n_{j+1}/n_j > \lambda > 1$, for all j. If a_n, b_n are the coefficients of an $f \in L_p$, $0 , the series <math>\sum \left(a_{n_j}^p + b_{n_j}^p\right)$ converges. The result holds if merely $|f|(log^+|f|)^{\frac{1}{p}}$ is integrable.

Proof

Let N > 0, for a suitable sequence $\alpha_1, \beta_1 \dots \alpha_n, \beta_n$ with $\sum \alpha_i^p + \beta_i^p = 1$

we have

$$\left\{\sum_{j=1}^{N} (a_{n_j}^p + b_{n_j}^p)\right\}^{\frac{1}{p}} \le c(p) \|f(g)\|_p$$
(4.1)

Where

$$g = \sum (\alpha_j \cos n_j t + \beta_j \sin n_j t)$$

Using the same lines of the proof Theorem (8.20) in [3], we get Lemma

$$c(p)\sum (a_k^p + b_k^p)^{\frac{1}{p}} \le (\frac{1}{2\pi}\int_0^{2\pi} |f|^p)^{\frac{1}{p}} \le c(p)B_{r,q}(\sum a_k^p + b_k^p)^{\frac{1}{p}}$$

for 0

There are positive constant γ , δ depending on λ only such that

 $\int_{0}^{2\pi} e^{\gamma q^{2}} \, \mathrm{dx} \le \delta$ $\|e^{\gamma}\|_{p} \le \delta.$

We have

Let $\Phi(u) = e^{\gamma u^2} - \gamma u^2 - 1$. The functions Φ and $\dot{\Phi}$ vanish for u = 0, and $\dot{\Phi}$ is strictly increasing for $u \ge 0$. Its complementary function $\Psi(v)$, as is easily seen, is $O\left(v \log^{\frac{1}{2}} v\right)$ for $v \to \infty$. In other words

$$\Psi(v) \leq A_{\lambda} v (\log^+ v)^{\frac{1}{p}} + B_{\lambda} \text{ for } v \geq 0.$$

By Young's inequality now show that the last term in (4.1) is not greater than

$$c(p)\{\|\Phi(|g|) + \Psi(|f|)\|_{p}\} \leq \|e^{\gamma q^{p}}\|_{p} + A_{\lambda}\||f|(\log^{+}|f|)\|_{p} + 2B_{\lambda},$$

which gives $\left\{\sum_{j=1}^{N} a_{n_j}^p + b_{n_j}^p\right\}^{\frac{1}{p}} \le A_{\lambda} |||f| (log^+|f|||_p + A_{\lambda})$.

With $A_{\lambda} = 2 B_{\lambda} + \delta$. The inequality holds if $N \to \infty$.

Corollary 3.1.1.

Let $g \in L_p$ and let $m_1, m_{2...}$ be a positive integer sequence satisfies any termes can be written uncial as $b_1m_1 + \cdots + b_nm_n$, for an integer n, where $b_j \in \{-1,0,1\}, j = 1,2, \dots$. Then if g has the form

 $g(x) = a_0 + a_1 e^{ix} + \dots + a_n e^{inx} + \dots$ we have

$$\left\{\sum_{j=1}^{\infty} \left|a_{mj}\right|^{p}\right\}^{\frac{1}{p}} \leq c |||g|(\log^{+}|g|)||_{p} + c$$
$$\left\|a_{mj}\right\|_{p} \leq c |||g|(\log^{+}|g|)||_{p} + c$$

where $log^+ a = log a$ if $a \ge 1$ and $log^+ a = 0$ if $0 < a \le 1$.

Theorem 3.5.

Let $E \subset [0,2\pi]$ is a set and positive constants $b_n, b_{n+1}, \dots b_{2n}$ such that

$$|E| = 1 - \frac{1}{2^n}$$
, $b_n + b_{n+1} + \dots + b_{2n} = 1$, and

$$\left\| f_q \right\|_p \ge \sum_{s=n}^{2n} b_s \| f_s \|_p + \left(\frac{1}{2^{n-1}} \right) \| f_{n-1} \|_p \text{ where } 0 (5.1)$$

Proof

Let $g_r(x) = sgnf_r(x)$. We see g_r and the spectrum $g_rg_s \dots g_t$, $r < s < \dots < t$, contains only odd multiples of 2^{k_r} (5.2)

The spectrum of the function *f* consisting of odd multiples of 2^k if and only if *f* is $(2\pi/2^k)$ - periodic and $f\left(\frac{\pi}{2^k} + x\right) = -f(x)$.

Let $\varepsilon = {\varepsilon_0, ..., \varepsilon_{2n}}$ is sequence of +1s and -1s, and let \emptyset be a family of sequences which contain more +1 than -1.

The function χ (x) can be defined as

$$\chi(x) = \sum_{\varepsilon \in \Phi} \prod_{k=0}^{2n} (\frac{1 + \varepsilon_k g_k}{2}).$$

Since ||f|| = 0, we have

$$\left\|f_{q}\right\|_{p} = 2\|f\chi\|_{p} = 2\|(f_{0} + \dots + f_{2n})\chi\|_{p}$$
(5.3)

Then

$$\|f_q\|_{p} > \sum_{s=0}^{2n} \|f_s \chi\|_{p}$$
 where 0

We shall show that all norms

 $A_s = ||f_s \chi||_p$ are positive and that

2($A_n + A_{n+1} + \dots + A_{2n}$) and $2A_{n-1}$ > the 1st and 2nd terms of the right hand side of (5.1), So we examine A_s for affixed s.

 A_s is the sume of the norms $\left\| f_s \prod_{k=0}^{2n} \left(\frac{1+\varepsilon_k g_k}{2} \right) \right\|_p$ for all ε in Φ .

Now, we abserve that

$$\left\| f_{s} \prod_{k=0}^{2n} \left(\frac{1+\varepsilon_{k}g_{k}}{2} \right) \right\|_{p} = \left\| \prod_{ks}^{n} \left(\frac{1+\varepsilon_{k}g_{k}}{2} \right) \right\|_{p}$$
(5.4)

By (5.2) the first factor in the last norm will be only a factor $1/2^{5}$.

Hence

1

$$\left\| f_{s} \prod_{k=0}^{2n} \left(\frac{1+\varepsilon_{k}g_{k}}{2} \right) \right\|_{p} = \left(\frac{1}{2^{s}} \right) \left\| f_{s} \left(\frac{1+\varepsilon_{s}g_{s}}{2} \right) \prod_{k>s} \left(\frac{1+\varepsilon_{k}g_{k}}{2} \right) \right\|_{p}$$

$$= \left(\frac{1}{2^{s+1}} \right) \left\| \varepsilon_{s}f_{s} \prod_{k>s} \left(\frac{1+\varepsilon_{k}g_{k}}{2} \right) \right\|_{p}$$

$$(5.5)$$

In the last equality.

Now ,let as contribution of the sequence ε to A_s which have a definite pattern for k > s and this pattern contains m, $0 \le m \le \min(n, 2n - s)$ –1elements .Let as divide Φ into n + 1 classes $\Phi_0, \Phi_1, \dots, \Phi_n$ as the number -1 elements. The ε with the given pattern for k > s distributed among the Φ_j as follows:

- (i) There are no termes if j < m.
- (ii) There is one term in Φ_m such that $\varepsilon_s = 1$.

(iii) There are $\binom{s}{j-m-1}$ with $\varepsilon_s = -1$ and $\binom{s}{j-m}$ with $\varepsilon = 1$ in

 Φ_{i} , j > m, then the contribution of ε_s to A_s with the given pattern for k > s is

$$\begin{cases} \binom{1}{2^{s+1}} \| f_s \prod_{k>s} \left(\frac{1+\varepsilon_k g_k}{2} \right) \|_p \\ \left\{ 1 + \left\{ \binom{s}{1} - \binom{s}{0} \right\} + \dots + \left\{ \binom{s}{n-m} - \binom{s}{n-m-1} \right\} \right\} \\ = \\ \binom{1}{2^{s+1}} \binom{s}{n-m} \| f_s \prod_{k>s} \left(\frac{1+\varepsilon_k g_k}{2} \right) \|_p \tag{5.6}$$

Where $\binom{s}{a} = 0$ *if* a > s. A_s will be obtained if we make a summation for the termes under ε with apttern having m element, equal to -1 for k > s and we make a summation under m with $\max(0, n - s) \le m \le \min(n, 2n - s)$. Thus it is evident that all $A_s > 0$.

We examine now the cases s = n - 1 and $s \ge n$

s = n - 1. since $\binom{s}{n-m} = 1$, A_{n-1} will exceed

$$(1/2^n) \left\| f_{n-1} \sum \prod_{k>n-1} \left(\frac{1+\varepsilon_k g_k}{2} \right) \right\|_p$$

where the summation exceed over all choices of +1 and -1 for the ε_n , ε_{n+1} , ..., ε_{2n} except the choices $\varepsilon_n = \varepsilon_{n+1} = \cdots = \varepsilon_{2n} = -1$ and

 $\varepsilon_n = \varepsilon_{n+1} = \cdots = \varepsilon_{2n} = 1$. The summation above equal to 1 for all *x* except these *x* where $f_n, f_{n+1}, \dots, f_{2n}$ are all ≥ 0 are all ≤ 0 .

The last set has measure

International Journal of Engineering and Information Systems (IJEAIS) ISSN: 2643-640X Vol. 8 Issue 1 January - 2024, Pages: 92-101

$$\int \prod_{k>n-1} \left(\frac{1-g_k}{2}\right) + \int \prod_{k>n-1} \left(\frac{1+g_k}{2}\right) = \frac{1}{2^n}$$

and so it's the complement of *E* has also measure equal (1 - (1/2n))

This shows that $2A_{n-1}$ greater than the last term in the right hand side of (5.1). $s \ge n$, Then all choices of $\varepsilon_k, k \ge n$, are permissible and all the factors $\binom{s}{n-m}$ are not $<\binom{s}{n}$. As the intervals previous case we abtain

$$A_{s} \geq 2\left(\frac{1}{2^{s+1}}\right)\binom{s}{n}||f_{s}||_{p} = \left(\frac{1}{2^{s}}\right)\binom{s}{n}||f_{s}||_{p}.$$

Writing $B_s = (1/2s) {s \choose n}$, s = n, n + 1, ..., 2n by using Lemma (2.6) we see that the condition $b_n + b_{n+1} + \dots + b_{2n} = 1$ is satisfied. The Theorem proof completed.

4. Theorem 1.1.

There exists a positive constant satisfies

 $||F||_P \ge c(p)(\log N)(\log \log N)^2$

In this section we give the prove Theorem 1.1

$$\Gamma = \{ n_1, n_2, \dots n_N \}, F(x) = f(x) + i f(x) = \sum_{l=1}^N e^{(ln_l x)}$$

Proof.

We will prove this Theorem using induction on N, Let

 $||H||_P \ge C_0 (\log M) / (\log \log M)^2$

For any H exponential sum satisfy M < N is nonzero conditions, c(p) is a constant depends on p. We also mention that it ere to avoid trivial proof, assume that $N \rightarrow \infty$.

We will first replace the Γ by one of their translations. This clearly does not affect F and allows for profitability use Theorem 3.5. We are writing numbers $n_1, n_2, ..., n_N$ dyadic system and substract their joint tail (if found). This amounts to a translation make each n_j positive. Suppose 2^{k_0} is the highest power of the value of 2 which divides all elements of the translated sequence. There are definitely odd and even multiples of 2^{k_0} . If the odd number exceeds the number of even ones , then we add 2^{k_0} for all Γ elements. We can write Γ_0 for the odd multiplier of 2^{k_0} . Now consider the set of even multiples of 2^{k_0} and again subtract their joint tail from all elements of Γ . Suppose $2^{k_1}(k_1 > k_0)$ is the highest power of 2 which divides all even multiples of 2^{k_0} . If there exists more odd than even multiples of 2^{k_1} (among even multiples of 2^{k_0} then we add 2^{k_1} to all Γ elements. Obviously, the operations in the second step do not affect $|\Gamma_0|$ and 2^{k_0} . We write Γ_1 for the odd multiples of 2^{k_1} and continue in the same manner until the sequence Γ is exhausted. Thus we obtain the sequence $\Gamma_1, \Gamma_2, ..., \Gamma_r$ of discrete subsets of Γ such that Γ_j contains only odd multiples of 2^{k_j} , j = 0, 1, ..., r, $|\Gamma_j| \leq |\Gamma_{j+1}| + \dots + |\Gamma_r|$, j < r and $\Gamma = \Gamma_1 \cup \Gamma_2 \cup ... \cup \Gamma_r$. No let of translate the sequence Γ by of 2^{k_r} then L_p norm of any term of Γ is different from $\pi/2$ times the p – norm of its real part < 1/N. This is true Theorem 3.2. Now by using Theorem 3.5 we have

 $\|F\|_{p} = (\pi/2) \|f\|_{p} + O(N)^{-1} \ge (\pi/2) (1/2^{n-1}) \|f_{q}\|_{p} + O(N)^{-1} \text{ for } 0$

$$\geq \left(\frac{\pi}{2}\right) \left(\frac{1}{2^{n-1}}\right) \sum_{s=n}^{2n} b_s \|f_s\|_p + \left(\frac{\pi}{2}\right) \left(\frac{1}{2^{n-1}}\right) \|f_{n-1}\|_p + O(N)^{-1}$$
$$= \sum_{s=n}^{2n} b_s \|F_s\|_p + (1/2^{n-1}) \|f_{n-1}\|_p + O(N)^{-1}$$

Where $F_s = \sum_{m \in \Gamma_s} e^{(imx)}$ and *E* depends on the choice of $f_{s,s} = 0, 1, ... 2n$.

Consider the cases:

Case (1)

Exist 2n + 1, with *n* satisfying the inequalities

 $\log \log \log N < n \log 2 < 1 + \log \log \log N$, defined Γ_j with $|\Gamma_j| \ge N(\log N)^4$. So our induction hypothesis and $b_n + b_{n+1} + \dots + b_{2n} = 1$ impels that

$$\sum_{s=n}^{2n} b_s \|F_s\|_p \ge C \left(\frac{\log N - 4\log \log N}{(\log \log N)^2}\right) (1 + O(1/\log N))$$
(1.2)

where C is a positive constant.

$$= \left[C \frac{\log N}{(\log \log N)^2} - \left(C \frac{(4 \log \log N)}{(\log \log N)^2} \right) (1 + O(1/\log N)) \right]$$
$$\geq \left\{ C \left[\left(\frac{\log N}{(\log \log N)^2} - \left(\frac{4C_0}{\log \log N} \right) \right] (1 + O(1/\log N)) \right\}$$
(1.3)

By subtract $\left[C \frac{1}{\log \log N}\right]$ in equality above we have

$$\sum_{s=n}^{2n} b_s \|F_s\|_p \ge C \left[\left(\frac{\log N}{(\log \log N)^2} \right) - \left(\frac{5C}{(\log \log N)} \right) \right]$$

Where abroches $N \rightarrow \infty$.

Now, let as prove we can choose *C* such that $(1/2^{n-1}) ||f_{n-1}||_p > 5C/\log \log N$.

Consider the remark:

(1) The norm of the sum of the terms of F is upper bound for $||f_{n-1}||$ which multiplies by $2^{k_{n-1}}$. And the norm of this sum bounded by ||F||.

(2) We can assume $||F||_p$ bounded above by *logN*. Which is trivial and there is nothing to prove.

(3) $(1/|E|)^{|E|}$ and $(1/|\acute{E}|)^{|\acute{E}|}$ are bounded.

By using these remarks and applying Theorem(3.2) we abtain

 $1 \leq C(\|f_{n-1}\|_p)^{|E|}(\|f_{n-1}\|_p)^{|E|} \leq C(\|f_{n-1}\|_p)^{|E|}$, where in the last inequality we used (2) and the estimate

 $|\acute{E}| = 1/2^n \le 1/\log\log N.$

Then

$$\|f_{n-1}\|_p \ge C \tag{1.4}$$

of (1.1), (1.2), (1.4) and the inequality $1/2^{n-1} > \log \log N$ yield

$$\|F\|_{p} \ge C\left(\frac{\log N}{(\log\log N)^{2}}\right) - \frac{5C}{\log\log N} + O(N)^{-1} + \frac{C}{2^{n-1}}$$
$$\ge C\left(\frac{\log N}{(\log\log N)^{2}}\right)$$

For $N \to \infty$, The case (1) proof completed.

Case (2)

At most 4 log log $N\Gamma_i$ are such that $|\Gamma_i| \ge N/(\log N)^4$.

Suppose that $\Gamma_{j_1}, \Gamma_{j_2}, ..., \Gamma_{j_k}$, $j_1 < j_2 < \cdots < j_k$, $k < 4 \log \log \log N$ be the Γ_j with more than $N/(\log N)^4$ elements. We prove in this case there are more than $(\log N)^3$ classes Γ_j .

Suppose $j_1, j_2 - j_1, \dots, j_k - j_{k-1}$ are less than $(logN)^3$.

We write $\Gamma'_i = \Gamma_{i+1} \cup ... \cup \Gamma_r$, i.e the set of even multiples of 2^{k_j} .

Since $|\Gamma'_i| \ge |\Gamma_i|$ we get

$$\begin{split} \left| \Gamma_{j_1} \right| &\geq \left(\frac{1}{2} \right) \left| \Gamma_{j_1} \cup \Gamma_{j_1} \right| \geq \frac{1}{2} \left\{ N - \frac{N}{(\log N)^4} (\log N)^3 \right\} \\ &= \left(\frac{1}{2} \right) \left\{ N - \frac{N}{\log N} \right\}. \end{split}$$

Similarity we get $|\Gamma_{j_h}| \ge \left(\frac{1}{2^h}\right) \left\{ N - \frac{N}{\log N} \left(1 + 2 + \dots + 2^{h-1}\right), 1 \le h \le k. \right\}$

assume h = k in above we see that $|\Gamma_{j_k}|$ grater than

 $CN/(\log \log N)^4$.

Since $|\Gamma_j| \leq N/(\log N)^4$ if $j \geq j_k$, the number of Γ_j with $j > j_k$ grater than

 $\frac{C(\log N)^4}{(\log \log N)^4} \ge (\log N)^3.$

On choosing now one frequency from each such class we abtain a subsequence of Γ satisfies the hypotheses of Theorem 3.3. Using Theorem 3.3 $log|F| \leq log N$ we have

$$(log N)^{\frac{1}{2}} ||F||_{P} \ge C(log N)^{\frac{3}{2}}.$$

provided than $N \rightarrow \infty$, We chosen $C_0 < C$ in above, then 1.1 satisfy.

From case 1 and 2 we complete the proof.

References

- [1] J. Fournier, "On a theorem of Paley and the Littlewoods conjecture.," in Arkiv 199-216.
- [2] S. K. Pichorides, "On a Conjecture of Littlewoods Concerning Exponential Sums,," in Vol. 18 (1977), 8-16, I."Bull. Greek Math. Soc.
- [3] A. ZYGMUND, "Trigonometric Series.," in Cambridge University Press, 1968, October 1979, Vol. I, II.
- [4] N. a. p. p. Mondale, "Another Asymptotic Notation:" Almost"," in arXiv preprint arXiv, 1304.5617(2013), Ghosh.
- [5] A. Syropoulos, ""Mathematics of multisets," in Workshop on Membrane Computing, Springer, Berlin, Heidelberg, 2000.
- [6] Pichorides, Stylianos K. "On the L¹ norm of exponential sums." Annales de l'institut Fourier. Vol. 30. No. 2. 1980
- [7] Carothers, N. L. "Approximation theory-a short course." (1998)
- [8] Hytönen, Tuomas. "On Petermichl's dyadic shift and the Hilbert transform." Comptes Rendus Mathematique 346.21-22 (2008): 1133-1136