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Abstract: Few papers introduced about finding the lower bound to the L, -norm. If this lower bound in terms of log N for number

N is called Little wood’s conjecture. The must result in this subject up to now is a terms of bound of order ,/log N. Here we
generalize the Little wood’s conjecture to functions in L,spaces for 0 < P < co and get lower bound in terms of (log N)?".
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1. Introduction
The problem of estimating the bounds for L;- norm of the trigonometric polynomials has the form
"F(x) = a,e*1* + a,et*2* + ... + q, ekn*"

where 0 < k; < k, < -+ < kj, are integers with |a;| > 1,and "j = 1,2, ... N,It has rich history see for example

[1]. The existance of this bound in terms of log N with coefficients equal to 1 is called Little wood’s
conjecture”.

In [1] and [2] the authors have the best results that are intermes of (logN)?2.

In our work we improve the results in [1] and [2] and prove the following theorem.

Theorem 1-1
"We can find C(P) such that
IIF]l > C(P)log N/(loglog N)2.

In our work we use some notations such as c(p) is refere to absolute positive constant depending on p and
variy from one step to another.

We use the L, [0,27] spaces for 0 < p < o, and defined as

Ly[0.27] = { £:[0,2m] - R:C (J"IfIP)" < 0}

= Ifll,
|E| denoted for the measure of the set E. If T is a finite sequence, || will denote the number of the terms
r".
Definitions 1.1.
Lp space is space of all functions g satisfies ||g|| , < oo, define by llgll, = llg ll Ly() =

1
(J)lg@)I? dx ) P where 0 < P <o

Definitions 1.2.
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The function w(9) is called the modulus of continuity of f where

w(8) =w(6,f)p = 0<?flll|r<)51”f(x +h) = fFlp.

and f(x) be defined in a closed interval.
Definitions 1.3 [3].
S[ f] at x= x¢ is the same as the Fourier series at ¢ = 0 of the even function.
%[f (xo + t) + f(xo — )], and S[f ] at x = x, is the series conjugate to the Fourier series at ¢ = 0 of the odd
function 2 [ f(xo + ) — f(xo — £)].
Definitions 1.4. [6]
If E isa sub set of [0,21r] we mean by |E| the measure of the set E, E is the complement of E in [0 ,27].
Definitions 1.5 (Big -oh: O(.)) [4]
Suppose that f(n) and g(n) be functions such that
Ak >0,I3ny,Vn>ny,lfMW|<|k-gn)l
then f(n) € 0(g(n)) or with some abuse of notation f(n) = 0g(n).
Definitions 1.6 (Small -oh: o(.)) [4].
Suppose that f(n) and g(n) be functions such that
Vk>03n,,Vn>ng,|f(W)|<k-|ghn)|
then f(n) € o(g(n)) or with some abuse of notation f(n) = og(n).
Definitions 1.7 (Characteristic function ) [5].

For non-empty set y , and A sub set of y. a characteristic function of A is a mapping x,:y — {0,1} which
is defined as:

1 ify €A

Xa () =
0 if y € AC

Definitions 1.8 ( Young function ) [7]

Let ¢(u),u = 0,and yY(v),v = 0, be two functions, continuous, vanishing at the origin, strictly increasing,
and inverse to each other. Then for a,b >0

we have the following inequality.
ab < ¢(a) + Y(b), where p(x) = [ pdu, Y() = [; Pdv.
Definitions 1.9 (Dyadic system) [8]

The standard dyadic system denoted by 7° and defined as the form . T°=U;,7°,7° =
{27(10,1) + k): k € Z}. A general dyadic system may be defined as a collection T = Uje, T; where T; = T; +
x; for some x; € R and the partition J; refines Jj,, for each j € Z.

2.Auxiliary Lemmas

In this section we give some auxiliary lemma that we need in our research .

www.ijeais.org/ijeais
93



International Journal of Engineering and Information Systems (IJEAIS)
ISSN: 2643-640X
Vol. 8 Issue 1 January - 2024, Pages: 92-101

Lemma 2.1 [3]
If ¥ A,(x)isS'[f] then
fx+h)—f(x—h)~YB,sinnh.
Where A,(x) = a, cosnx + b, sinnx
and
B, (x) = a,sinnx — b, cosnx n > 0.
Lemma 2.2 [3] (Jensen’s inequality).

The Jensen’s inequality given of the form

(@[, f(0)dx) < ([ o(F(x)dx).
with a, b are real’s and be a function f:[a,b] - R defined on closed interval.

Lemma 2.3 (Young's inequality) [7]
If c>0andd = 0 are non-negative real numbers and if p > 1 and g > 1 are real numbers such that

11
q
Then

14 q
cd < = d
p

+ 5
“The Equality above is true <& c? = d?”.
Lemma 2.4 [3].

Let nyy1/n = q > 1forall kandy? = ¥ (af + bY). is finite, So that

Y(a, cosny x + by, sinny x)(Nyy1 /N =q > 1isan S [f]

Then

1
A oS + B < {c) [1fPax}” < B, of5(a) + b
for every p > 0, where 4, ; and B, ; depend on r and q only.
If y <1, Then also
fozn exp u fPdx < c,provided u < py(q), with ¢ an absolute constant.

Lemma 2.5 [3].
O (If + g|p)% < 21’1_1(f|f|p)% + (flglp)% where 0 < p < 1.
i) (JIf + gIP) < [IfIP + [lgl” where 0 < p < 1.
(i) ([1f + g1y > (JIF17) + (Jlgl?y  where0<p < 1.
Lemma 2.6 [6]
() Q=1

3.Main Results
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In this section we give our main results.

Theorem 3.1.
If f €L, 0 <p < o then S[f] converges absolutely for p = %this is not necessary true.
Proof
By using the Lemma 2.1 implies that
|X By sinnh — f(x)] < CIf(x + h) — f(x — h)|
Forf €L,

IS By sinnh —f(Oll, < 0(fh),. m

Theorem 3.2.
If E is a measurable set in [0,27] satisfy 0 < |E| < 1 and assume that
G(x) =1+ ae™ + -+ ae**
Then
[E Qe D Glar)* 21 (2
We mean by E’ the complement of E in the interval [0,2rr] and 0 < p < oo.

proof.

Let xg, xp’ are characteristic function of E and E’ respectively. By Lemma 2.2 we have

0 < (J;"10g1617) = 1E| (J7" Cxs/IED1ogIGIP) + 1E'| (£ Gegr /1E"D 1oglGI?)

adding |E| to above inequality we have

1< [1E1 (7" Ges/\ED 10gIG 1P ) + 1E'L(J2" Crer /1E') ToglGIP)] + E

Then taking e° to both sides of the inequality above we have prove inequality (2.1) ]
Theorem 3.3.
Let G(x) = ag + a;e™* + -+ + ae™™ = g(x) + ig(x) and write exp(imx)G (x) = gm (%) + iGpm ().
Then
lim||gmll, = Q)G asm — oo (3.1)
Proof.

Suppose that I; = (aj_bj) = (2nj/m,2n(j+1)/m),j=0,1,..,m —1. We take m so big that the (g — §) in I; <
€ foralle > 0.

This imply

Im(x) = g(x) cosmx — g (x) sinmx.
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differs from g(a;) cosmx — g (a]-) sinmx such that
Im(x) — g(aj) = [g(x)cosmx — § (x)sinmx)] — [g(aj)cosmx - g“(aj)sinmx)] < 2¢
By above equals |G ( a;)| cos(mx + t;) where ¢; satisfy

tant; = g (a;)/g(a;)

It follows

1 1

» o\

lgnlly = { [ 191" ) = 16@)I( [ leos(m, + ) "ax | + 5o
Ij Ij
= 2Im[6(apl [5] +|1] 0e >1

make a summation forj=0, 1, ...,m-1 and suppose m — o0 and &€ = 0 we obtain (3.1) ]
Theorem 3.4.

Let njy/n; >A>1, for all j. If apb,are the coefficients of an f€L,, 0<p<1, the series

1
> (aﬁj + bfl'j) converges. The result holds if merely |f]| (log™|f |)5 is integrable.
Proof
Let N > 0, for a suitable sequence a; B, ... ay, B, with Y af + B} = 1

we have
1
(i@, + 2D} < coIf ()l (1)
Where
g = Z(a]- cosn;t + f; sinn;t)

Using the same lines of the proof Theorem (8.20) in [3], we get Lemma

1
@) T(af + B < & [P < cp)Bog(Sal + B
for0<p<1

There are positive constant y, § depending on 4 only such that

fozn e¥’dx < 6§
We have lle”|l, < 6.
Let ®(u) = e — yu? — 1. The functions ® and® vanish for u = 0,and  is strictly increasing for u = 0. Its
complementary function ¥ (v), as is easily seen, is O (v lo g% v) for v — oo, In other words

Y) < Aav(longv)% + B, forv = 0.

By Young's inequality now show that the last term in (4.1) is not greater than

www.ijeais.org/ijeais
96



International Journal of Engineering and Information Systems (IJEAIS)
ISSN: 2643-640X
Vol. 8 Issue 1 January - 2024, Pages: 92-101

c@{ll® (gl +¥UfDIL} < IIqupllp + Al 1og™If DIl + 2By,

1

which gives {1, b + b2 I < A;lIf1(log*IfIIl, + 4.

With 4, =2 B; + § . The inequality holdsif N > . m

Corollary 3.1.1.

Let g € L, and let m; m,  be a positive integer sequence satisfies any termes can be written uncial as b;m; +
«+bymy, for aninteger n, where b; € {—1,0,1},j = 1,2, ...., Then if g has the form

g(x) = ag + a;e™ + - + a,e™ + - we have

SIS

[ee)

Ylawl”t < clligltogtighl, +¢

j=1
lamll < c lllglCog*1gDIl, + ¢
where logT a =logaif a=1andlogta=0if 0<a<1. [ ]
Theorem 3.5.

Let E < [0,27] is a set and positive constants by, b, 1, ... by, such that

|El =1 — by +byys + -+ by = 1,and

1
”fq”p > RZabslifslly + (G fa-all, where 0 <p <o (5.1)
Proof

Let g,(x) = sgnf;,(x). We see g, and the spectrum g, gs ... g; ,7 < s < -+ < t, contains only odd multiples of 2%
(5.2)

The spectrum of the function f consisting of odd multiples of 2* if and only if fis (2/2¥) - periodic and
f(G+x) = —f00.

Let € = {&, ..., &2, } is sequence of +1s and — 1s, and let @ be a family of sequences which contain more +1 than -
1.

The function y (x) can be defined as

OEDY ﬁ(%).

c€EP k=0

Since Il =0, we have
71l = 20Fxll, = 20Cfo ++ + fondlly (5.3)
Then
Ifall, > Z2lifixll,  where0 <p <1

We shall show that all norms
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As = |Ifsxll, are positive and that

2(4, +Apyq + -+ Ayp) and 24,1 > the 15t and 2nd terms of the right hand side of (5.1), So we examine A for
affixed s.

Ay is the sume of the norms

fs TIi% (Hzﬂ) ”p for all £ in .

Now, we abserve that
2 1+epgr _ 1+e gk 1+ex gk 1+ergk
ST ()| = s (52) 1 (252) Tl (R4 59
1 p

By (5.2) the first factor in the last norm will be only a factor 1/ 25

Hence

2n (1+Skgk)|| =(l)
S k=0 2 P 25

= ()

In the last equality.

1+&59 1+&kg
fy (2 [ (2 ")||,,

eofe Mess 2B 65)

Now ,let as contribution of the sequence ¢ to A; which have a definite pattern for k > s and this pattern contains
m, 0 <m < min(n,2n—s) —lelements .Let as divide ® into n+ 1 classes &, ®4,... P, as the number -1
elements. The ¢ with the given pattern for k > s distributed among the ®; as follows:

() There are no termes if j < m.
(if) There is one term in ®,, such that ¢, = 1.
(iii) There are (]._;l_l) with &g = —1 and (}._Sm) withe = 1in

o] pJ>m, then the contribution of € to A; with the given pattern for k > sis

fs Hk>s (1+€k9k)

2

(Ys41)
(Y1) )

Where (%) = 0if a > s. A; will be obtained if we make a summation for the termes under & with apttern having
m element, equal to -1 for k > s and we make a summation under m with max(0,n —s) < m < min(n,2n—s).
Thus it is evident that all A; > 0.

A+{O -+ +{(5) — (s -

Flles(B29)] 69

2

We examine now thecases s=n—1lands>n
s=n—1lsince (, ° )=1,4,_, will exceed
) n-m riin-1

3 I (52

k>n-1 P

(Y/2n)

where the summation exceed over all choices of +1 and -1 for the €, £,41, ..., £, except the choices €, = €41 =

=g, =—1and
&n = Epyq1 =+ = &y, = 1. The summation above equal to 1 for all x except these x where f,, f,11, ..., fon are all =
Oareall <0.

The last set has measure
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fHk>n—1 (1_2&) + f Hk>n—1 (1+29k) = 1/2n

and so it’s the complement of E has also measure equal (1- ( 1/ on))
This shows that 24,,_; greater than the last term in the right hand side of (5.1). s = n, Then all choices of &, k >
n, are permissible and all the factors (n_sm) are not < (fl) As the intervals previous case we abtain

A5 2 2(Yp501) OIEN, = (o) AN

Writing B; = (1/25)(751), s =mn,n+1,...,2n by using Lemma (2.6) we see that the condition b, + b4 + -+
b,, = 1 is satisfied. The Theorem proof completed.m

4. Theorem 1.1.

There exists a positive constant satisfies

IFllp = c(p)(log N)(loglog N)?

In this section we give the prove Theorem 1.1

P={nyn eny), F@) = fG) +if () = BV, elt)
Proof.
We will prove this Theorem using induction on N, Let
IHllp = Co (log M)/ (loglog M)?

For any H exponential sum satisfy M < N is nonzero conditions, c(p) is a constant depends on p. We also mention
that it ere to avoid trivial proof, assume that N — oo.

We will first replace the I by one of their translations. This clearly does not affect F and allows for profitability use
Theorem 3.5. We are writing numbers ny,n,, ...,nydyadic system and substract their joint tail (if found). This
amounts to a translation make each n;positive. Suppose 2¥¢ is the highest power of the value of 2 which divides
all elements of the translated sequence. There are definitely odd and even multiples of 2¥o. If the odd number
exceeds the number of even ones , then we add 2*ofor all T elements. We can write I, for the odd multiplier of 2%o.
Now consider the set of even multiples of 2¥0 and again subtract their joint tail from all elements of I' . Suppose
2%1(k, > k) is the highest power of 2 which divides all even multiples of 2¥0 If there exists more odd than even
multiples of 2¥1 (among even multiples of 2¥¢ then we add2¥* to all T elements. Obviously, the operations in
the second step do not affect |Ty|and 2¥0 We write I; for the odd multiples of 2¥ and continue in the same manner
until the sequence T is exhausted. Thus we obtain the sequence I}, I3, ..., I of discrete subsets of I' such that I}
contains only odd multiples of 2%,j=01,..,7, I“]| < |Fj+1| +-+ ||, j<randT=T; UL U..UT. No let of
translate the sequence I by of 2% then L, norm of any term of T is different from 7/2 times the p — norm of its
real part < 1/N. This is true Theorem 3.2. Now by using Theorem 3.5 we have

IFllp = @/2DIfNl, + ON)™H = (1/2) (1/2"'1)||fq||p +O0(N)™ for0<p<o (11)

> (%) (55) 22 bllfslly + (2) (=) Wfaoallp + OV
= XL bsllEll, + (/2" D) |l fuall, + 0N
Where F; = Yper, e@™) and E depends on the choice of f; ,s = 0,1, ... 2n.
Consider the cases:
Case (1)

Exist 2n + 1, with n satisfying the inequalities
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logloglog N <nlog2 <1+ logloglogN, defined I; with |F]| > N(log N)*. So our induction
hypothesis and b,, + b, + - + by, = 1 impels that

1 —4logl
S blIEIl, 2 € (REEEER) (14 0(1/log ) (1.2)

where C is a positive constant.

3 [ logN ( (4loglogN)

) 1+ 0(1/logN))]

(loglog N)? B (loglog N)?
2 (| (Gogiogm ~ (giagn)| A ¥ 0C/100ND} - 13)

1

] in equality above we have
loglogN

s=n

By subtract [C

Where abroches N— oo,
Now, let as prove we can choose C such that(1/2" )| f,,_, I, >5C/loglogN.
Consider the remark:

(1) The norm of the sum of the terms of F is upper bound for ||f;,,_, || which multiplies by 2kn-1 And the

norm of this sum bounded by [|F]||.
(2) We can assume [|F||,, bounded above by logN. Which is trivial and there is nothing to prove.

(3) (1/|ED'®! and (1/|E|)|E|are bounded.
By using these remarks and applying Theorem(3.2) we abtain

1< C(Ilfn_lllp)lEl(IIfn_lllp)|E| < C(”fn—l”p)lEl , Where in the last inequality we used(2) and the

estimate
|E| =1/2" < 1/loglogN.
Then
fa-allp = € (1.4)

of (1.1),(1.2),(1.4) and the inequality1/2"* > loglog N yield

log N ) 5C

-1
(loglog N)? O+

17l = ¢ "

logN
> ¢ ()
(loglog N)?

For N — o, The case (1) proof completed.

B loglog N

Case (2)
At most 4 log log NI} are such that |l“}| > N/(log N)*.

Suppose that T, T}, .., T}, , j1 <j, <+ <jx, k <4logloglogN be the I} with more than N/(logN)*
elements. We prove in this case there are more than (log N)?3 classesT.

Suppose ji, jo = j1, -, i — Jx—1 are less than (logN)?3.
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We write I''; = Ij;; U ...UT,, i.e the set of even multiples of 2%,

Since |I';| > |Tj| we get

0,2 ()5, ur,|

v

1fy__N 3
2 {N (logN)* (lOgN) }
G - gm)

2 logN)

Similarity we get [T}, | = (zih) {N —ﬁ 1424+ 2’1‘1}, 1<h< k.

assume h = k in above we see that |I}, | grater than
CN/(loglog N)*.
Since |I}| < N/(logN)*if j > j, the number of I withj > j, grater than

C(logN)*
(oglogN)? > (logN)3.

On choosing now one frequency from each such class we abtain a subsequence of T satisfies the
hypotheses of Theorem 3.3. Using Theorem 3.3 log|F| < log N we have

1 3
(logN)z ||F|lp = C(logN)z.
provided than N - o0, We chosen C, < C in above, then 1.1 satisfy.

From case 1 and 2 we complete the proof.
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