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Abstract : This paper introduces the concept of a generalized approximation space in the context of graph theory and topology. Two
relations are defined as topological structures derived from graphs: the first is the Hi-incidence composed ( resp Hi-non incidence
composed), which represents a supra topology, and the second is the H-incidence composed ( resp Hz-non incidence composed),
which represents a topology. The study establishes that the H; relation, as a supra topology, can be utilized with graphs to define
the lower and upper sets in the generalized approximation space. Furthermore, it explores various relationships between these sets,
contributing to a deeper understanding of their interactions within this framework.
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1. INTRODUCTION :

Two factors make graph theory a significant and
intriguing area of mathematics that is primarily utilized in
discrete mathematics. In terms of mathematics, the graph is
appealing. They can be used to depict a wide range of
mathematical graphs, including topographic space and
harmonic objects, even though they are simple relation
graphs. The second reason is that when many concepts are
empirically represented by graphs, they will be incredibly
helpful in practice. The concepts of topological graph theory
[1,2,3,4,5,8, and 9] are a subfield of mathematics that have
numerous applications in both theoretical and practical
contexts. We predict that topological graph structure will play
a key role in bridging the topology and applications divide.
For all graph theory slang and notation, we refer to Harary [6]
and all terminology and notation in topology , we refer to
Moller [7].Some basic concepts of graph theory [10] are
presented . A undirected graph or graph is pair ¢ =
(\W (G),E(G)) where W (€) is a non-empty set whose
elements are called points or vertices (called vertex set) and
E(G) is the set of unordered pairs of elements of W (€) (called
edge set). An edge of a graph that joins a vertex to itself is
called a loop. A star graph Sn is an undirected graph
consisting of one central vertex connected to peripheral
vertices, with no edges between the peripheral vertices. It has
vertices and edges, forming a tree. An antisymmetric graph,

let €= (v (G),E(G)) be a graph if (&,0) € E(€) and
(@i, ) € E(€) implies & = ¢ Then € is called antisymmetric
graph. The incidence vertex edges set of & is denoted by
INVE(®H) and defined by :INVE(®) = {{ €E (€):1=
(& ,2) for somea €W (€)}. The non-incidence vertex
edges set of ¢ is denoted by NINVE(¢ ) and defined by:
NINVE(® ) = {{ €E (€): 1= (a+¥) and a,¥ # @ for som
2,% €W (€)}. The incidence vertex edges system (resp. non-

incidence vertex edges system) of a vertex & €W (€) is
denoted by INVES(®) (resp. NINVES(&)) and defined by :
INVES(¢) = {INVE()} (resp.NINVES(¢d) = {NINVE(&)})
.The admixture vertex edges system of a vertex @ €V ()
is denoted by AVES(®) and defined by: AVES(®) =
{INVES(®) , NINVES(&))}, such that such that AVE(D) €
AVES(®) . The A-space is the pair (€, §,) such that € is a

graph and fj,:¥ (€) - P (P (E((ﬁ))) is a mapping which
assigns for each o in W (&) its admixture vertex edges system

in P(P (E((ﬁ))). The a-derived graph of an sub graph H is
denoted by [E(H)]; , and defined by: [E(H)]; =
{'i € E(€); VAVE(®) where ¢ incidence on'i’}

AVE(@) n (E®) — (1)) # ¢
The family of a-closed of an sub graph H in a-space is
defined by : By, = {E(H) € E(6); [E(H)], € E(H}.
The family of a-open of an sub graph H in a-space is
defined by :
T, = {E(S) € E(€); E(S) = E(€) — E(H) such that
E(H) € Fy,}. Then Ty, represents a supra topology on E(€)
because (1)@ , E(€) € Ty, .
(2) If {Sll S I} € TI[]a then Ui Si € 'Blja' An
approximation space is a structure (€, T) , where € is a non-
empty set called the universe, and T is a binary relation on €
. Itis used in rough set theory to define lower and upper
approximations of subsets of ¢ , based on the
indistinguishability or similarity defined by T. A
Generalized Approximation Space is a structure (G, T),
where G isa universal set, and T is a generalized structure
such as a relation supra topology used to define lower and
upper approximations of subsets of G , enabling flexible and
broad applications beyond traditional equivalence based
approximation spaces.
2. A-Lower and A-Upper Approximations
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In this section we introduce the supra topological spaces
i-space and n-space. The unguarded. We defined i-interior, n-
interior, i-closure, and n-closure. Lastly, using i-interior (resp.
n-interior and a-interior), to define the a-lower and a-upper
approximations in generalized rough set theory and look into
some of its aspects.

Definition 2.1: Let € = (\v (G),E((E)) be a graph and
suppose that §;:W (€) — P(P (E(G))) (resp. H,:v (€) —
P (P (E((E))) is a mapping which assigns for each @ in W (€)
it's incidence (resp. non incidence) vertex edges system in

P(P (E(G))). The pair (€, §;) (resp. (€, f,)) is called an i-
space (resp. n-space).

Definition 2.2: Let (&, f;) be an i-space and (€, fj,) be an n-
space and let H € €. Then :

(1) The i-derived and n-derived of an sub graph H are defined
respectively by :

[Hmy={fEH@”ME%»n@Gn—ﬁD¢¢}

' where @ incidence on { ’

wmn‘=fEE@%NWVM¢NWEm)—ﬁD¢¢}
! where @ incidence on © )

(2) The families of i-closed and n-closed of an sub graph
H in i-space and n-space are defined respectively by :

i, = {ECH) € BC0); [B(H)], < BE(},

By, = {ECH) € E(@); [E(H)], € B},

(3) The families of i-open and n-open of an sub graph H in
i-space and n-space are defined respectively by :

T = E(S) € E(€); E(S) = E(€) — E(H)
bi such that E(H) € Fy, '

T = E(S) € E(€); E(S) = E(€) — E(H)
fn ™ such that E(H) € Fy '
(4) The i-interior and n-interior of an sub graph H are defined
respectively by :
Int; (E(H)) =U {E(S) € Ty E(S) < B}
Int, (E(H)) =U {E(S) € Ty, E(S) € EH)}.
(5) The i-closure and n-closure of an sub graph H are defined
respectively by :
et (EH)) =n {B(K) € Fy; EH) € B0}
cl (EG) =n {EG9) € Fy s EH) € O},
(6) The i-boundary and n-boundary of an sub graph H are
defined respectively by :

[BE01P = cy (E) — Int; (E)).

[EEL = L, (E) — Int, (BH)) .

Theorem 2.3: Let (&, fj;) (resp. (€, §,)) be is an i-space (resp.
n-space) and H < &, then H is an i-open (resp. n-open) if and
only if it contains at least one incidence vertex edges (resp.
non incidence vertex edges) of @ € V(H) incidence ont for
eacht € E(H).

Proof : Let (G, ;) be an i-space and H be an i-open graph
contained in € and t € E(H) . Suppose that for each incidence
vertex edges of @ € V(H) incidence on T such that
INVE(¢ ) & E(H) where ¢ € V(H) incidence ont for
eacht € E(H) = INVE(¢)N[E(€) — E(H)] # @ where &

incidenceont € E(H) = 1 € [E(€) — E(H)]. since E(H) is

i-open = E(€) — E(H) is i-closed, from definition (2.2(2)) we
obtain  [E(€) — E(H)]i c [E@) — EH)] thust € [E@) -
E(H)]. Therefor © ¢ E(H) which contradicts with © € E(H)
and consequently if H € G is i-open and © € E(H), then at
least one incidence vertex edges of ¢ € V(H) incidence on
t for each i € E(H) which is contained in E(H).

Conversely, letie E(H) and H contains at least one
incidence vertex edges of & € V(H) incidence ont for each
TEEH) e (foreacht € E(H) 3 €
V(H) incidence on{ s.t INVE(¢)) S E(H)). Let Q€
[E(€) —E(H)]. by definiton ( (32 (1) ) =
INVE(w )N [(E(G) - E(H)) - {Q}] # @ where 1« incidence
on o then g & E(H). If o € E(H) there would be an incidence
vertex edges of 1, such that INVE(« ) € E(H) and this would

imply that : INVE(« )N [(B(6) — E(H)) - (0} =0 - o ¢
E(H) = o € E(®) — E(H), thus

[E@ - BH)], < [E@© — B(H)]. Hence E(€) — E(H) is i-
closed and E(H) is i-open . Similarly, we can prove that H is

n-open if and only if it contains the non incidence vertex edges
of ¢ € V(H) incidence on t for each{ € E(H) .

Definition 2.4: Let R = (\V ((E),E((E)) be a generalized

approximation space and H < €. Then is called H; —
incidence composed (resp. H; — non incidence composed) if
H contains at least one incidence vertex edges (resp. non
incidence vertex edges) of @ € V(H) incidence on t for
each 1 € E(H).

Definition 2.5: Let # = (¥ (€),E(€)) be a generalized
approximation space, then the families of all H; — incidence
composed (resp. H; — non incidence composed) graph are
denoted by T; (resp. T,,) and defined by:

HCc G vieE(H) 3@ e V(H) incidence
T = on 't such that INVE($) € E(H)
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Hc G vieE(H) 3@ e V(H) incidence

(resp. T, = on { such that NINVE(¢) € E(H) )-

Theorem 2.6: Let R = (W (€),E(€)) be a generalized
approximation space, then 7T; (resp. T,) forms a supra

topology on E(G) .

Proof : Now to prove that T, is supra topology on E(€) : (1)
E(G), (S Ti .

(2) LetE(H) € T;Vie€e L leti € U;E(H,) imply that 3 i, € 1
such that te E(H; ) € U;E(H)), since E(H; )€eTIde€
V(H) incidence on { such that INVE(¢) € E(H;,) hence
INVE(®) € U;E(H;)) = UE(H) €T; Vi€l We prove
with the same technique T,, is supra topology on E(€).

Theorem 2.7: Let R = (W (€),E(€)) be a generalized
approximation space, if € is a star graph then T; = P (E(G))

(resp. T, =P (E(G))) .Proof : Let & be a star graph with
center vertex ®. and leaves {&;, ®, ... ... ,®n,} the edges set
is given by :

E(G) = {[1 = (Q’Jc, (:';)1)'.[.2 = (Q’Jc' QSZ)' s by = ((:},)c' (:E,)n)}
For any H € € let {;, = (&, ®m) € H then INVE(d,) =
{{iup S HthusHeT;s0T; =P (E((E)) . Now to proof T, =
P(E((E)) . For any HS G let = (., ) € H then

NINVE(Gp:) =@ S HthusH € T,y s0 T, = P(E(@)).

Theorem 2.8: Let & = (W (€),E(€)) be a generalized
approximation space, if € is an antisymmetric graph then

T, =P (F;(@)) and T,, = ((25.1:;(@)) :

Proof :Let & be antisymmetric graph and H is every subgrah
of G then every t, € E(H) we can write it T, = (&, ®,) and
INVE(é,) = {i,} € Hthus H € F; there fore T; = P (E(@)).

And we can prove T, = ((25, E(G)) because not there exist H

proper sub graph of antisymmetric graph G it achieves
property definition (2.5) class T,, thus only@, E(€) € T,, .

Theorem 2.9: Let (G6H;) be an i-space then
INVE(&;) foralli =1, ..., |[V(€)] is i-open.

Proof :By using theorem (2.3) for eacht € INVE(®;)
such that { = (¢;, &;) thus there exist ¢; € V(H) incidence
ontand INVE(®;) S INVE(®;) hence INVE(&);) is i-open.
Proposition 2.10: Let 8 = (\W (G),E(G)) be a generalized
approximation space, then T; = Ty, and T, = Ty,

Proof :The proof of T; = Ty, and T, = Ty, is immediately
follows from definition (2. 4), (2. 5) and theorem (2..3).

Remark 2.11: An immediate consequence of proposition
(3.10) and theorem (2. 6) we have Ty, and Ty form supra
topologies on G.

Definition 2.12: Let 8 = (W (€),E(€)) be a generalized
approximation space, then the families of all H, — incidence
composed (resp. H, —non incidence composed) graph are
denoted by f; (resp. t,,) and defined by:

H C G Vi€ E(H) where & € V(H) incidence
i = on{ such that INVE(¢) € E(H)

(resp. Ty 5
B {H C G V(€ E(H) where ¢ € V(H) incidence}

on { such that NINVE(¢) € E(H)

Theorem 2.13: Let R = (¥ (€),E(€)) be a generalized
approximation space, then ; (resp. t,) forms a topology on

E@®).
Proof : Now to prove that f; is topology on E() :
(DE@,B€ET.

(2) Let E(H),E(K) € 1, and for each i € E(H) n E(K)so i €
E(H) where ¢ € V(H) incidence on { such that INVE(¢)) S
E(H) and t € E(K) where ¢ € V(K) incidence on { such that
INVE(&) € E(K) thus INVE(¢) € E(H) nE(K) -~ EH) N
E(K) €1y .

(3) Let E(H)) € 1; Vi € 1. Then for each © € U;E(H;) imply
that 3i, €I such that te E(H; )< Uifi(H;), hence
INVE(®) € E(H;,) € U;EH), that is UE(H) ed; Vie
1. We prove with the same technique 1§, is topology on E().

Theorem 2.14: Let & = (W (€),E(€)) be a generalized
approximation space , if € is simple connected graph then ;
(resp. t,,) forms an indiscrete topology on E(G).

Proof : Assume there is a proper subgraph H of €. Such that
H € 1 by definition (2.12)

H c G Ve E(H) where ¢ € V(H)
Ti =1 incidence on{ such that INVE(¢) € E(H)

Let's take T = (g, &) € E(H) must INVE(&,) S E(H)
such that INVE( &) contains at least one edge let it be T and
INVE( ¢,) € E(H) such that INVE( ;) contains at least one
edge different from T let it be o because € is connected graph
thus must o = (&, ®,) € E(H) also INVE(®;) € E(H)
such that INVE( ¢),) contains at least one edge let it be o
and INVE( &,) S E(H) such that INVE( ¢,) contains at least
one edge different from o let it be ¢ because € is connected
graph, and by repeating this process we find that H = &, thus
H is not proper subgraph of ¢ and ; = { @, € } this indiscrete
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topology on"&. Assume there is a proper subgraph H of €.
Such that H € 1, by definition (2.12)

H c G Vi€ E(H) where ¢ € V(H)
tn = Jincidence on { such that NINVE($) € E(H) (-

which implies that H must include more and more edges
from € that are not incidence to vertices in H . Since € is
connected, every vertex in H is connected to other vertices by
edges in €, so H would eventually need to include these edges
and corresponding vertices. If NINVE(®) € E(H) where ¢ €
V(H) incidence on i for eacht € E(H) , then H must
include all edges and vertices of ¢ to satisfy the
condition.This contradicts the assumption that H is a proper
subgraph because H would ultimately become H = ¢ ,thus H
is not proper subgraph of € and t, = { @, € } this indiscrete
topology on"¢.

Note 2.15: The families H, — incidence composed (resp.
H; —non incidence composed) it is generalization to H, —
incidence composed (resp. H, — non incidence composed)

i.e:(every T; (resp. t,) isT; (resp. T,) ) .

In this research, we confirm that the study will be limited to
the generalized approximation space using the relation T;
(resp. T,) only, which represents a supra topology. The
relation T; (resp. T,) is a generalization of the relation f;
(resp. T,) , which represents an ordinary topology.
However, the focus will be entirely on T; (resp. T,) due to
its flexibility and ability to provide more comprehensive
results. The relation F; (resp. T,) will not be used in the
analysis, and our attention will be directed solely to studying
the properties, approximations (lower and upper), and
criteria associated with F; (resp. T,,) ) . to avoid overlap or
confusion between the different relations.

Definition 2.16: Let & = (¥ (€),E(€)) be a generalized
approximation space and Ty, Ty, and Ty, be the supra
topologies induced by 3 and let H < . Then:

(1) The i-lower and i-upper approximations of H are defined
respectively by:

Li(E(H)) = Int;(E(H)).
Ui(E(H) = CL(EH).
(2) The n-lower and n-upper approximations of H are defined
respectively by:
Lo (E(H)) = Int, (E(H)).
Un(E() = Cly(EH)).
(3) The a-lower and a-upper approximations of H are defined
respectively by:
La(E(H)) = Int, (B(H)).
Ua(E(H)) = Cla(B(H)).

Example 2.17: Let G = (\W (®), E(G)) such that W (€) =
031,(1)2 (1)3:004} E(G) ={i, = (@, 01),1; =
(®1,D4), T3 = (D2, D3), Ty = (B2, B4), Ts = (B3, Dy}

Wa, X
Then ﬁwa—ﬁu@BSﬁwa=&ﬁaﬁ B (¢h3) =
{{l3: ls}} hi(®w,) = {lz' (g L } And
Figure 2.1: graph @glven in Example (2.17).

fn(®1) = {{l3: L, Ls}} An(®7) = {{'{'1,'{'2,'['5}} An(®3) =
{{tn T, 143}, Ba(ha) = {11,133} - And
ﬁa(qt)l) = {{.[‘11.[‘2}1 {.f3!.f4!.[.5}}! [ja((‘{y)Z) = {{.f3'.f4-}' {Ifﬂfz:'i‘s}}:
Ba(h3) = {{{3, T}, {t1, T2, Ta}}, Ba(Da) = {{t2, T, s}, {01, 3} -
And

E(G)' @; {.i'.]_l .i:z}' {ltl: .i:z; .t3; .64}, {.{'1, .{'2, .{'3, .('5},
Dp. = {TSJ .{.4}: {.’L.Sl .’L.4-1 .{.5}1 {.’L.Zl .’L.31 .’L.4-' TS}' {.f3' i5}

) {lz, lg, LS}J {Lll Ly, Ly, lS}

= {E(@) 0.

T’f] P {l3, l4}, {l3, l.4, lS} ) {LZJ L3, L4—! "5}! {llﬁ '-3; '-4-; '-5}
2 ) {.ESJ .ES}J {.EZJ Ll—t .ES}J {.fl! .":2! .":4—! i'S}

Also we note that the i-closed , n-closed and a-closed sets in
this example are :
) E((E) Q) {.{.311.41.{.5} {lS} {l4} {lll l2l lS} {lll lZ}”
Fﬁi = {ll}l {lll l-21 l.4}, {th "3}! {"’3} '
Fy, ={£(©),0 }.
) E(G)i (Z): {.t3! .t4! TS}: {.{.5}: {.[.4}1 {.i-.ll TZ! TS}I {.i-.ll TZ}' )
Fr]a = {.i-.l}ﬂ {[2 }’ {Tlﬂ .[.2’ .f4—}! {.fli .f3 }! {i3} We
can get the following four tables:
Table2.1:L; (E‘(H)),Ln (E(H)) and L, (E(H) forall H C €.

B | L(Bm) | La(Be) | L (BeD)
i ¢ ¢ ¢
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{i;} ¢ ¢ ¢
{is} ¢ ¢ ¢
{ls} ¢ ¢ ¢
{is} ¢ ¢ ¢
{i;, T} {i,, T2} ¢ {t,, T}
{i;, 13} ¢ ¢ ¢
{i;, s} ¢ ¢ ¢
{i;, is} ¢ ¢ ¢
{ip, 3} ¢ ¢ ¢
{ip, s} ¢ ¢ ¢
{ip, s} ¢ ¢ ¢
O N Y ¢ Y
(i) | (i) ¢ {fa.is)
{l, s} ¢ ¢ ¢
lnt) | (6.0) ¢ fi )
{.tl ’ TZ ’ i4} {il ’ TZ } d) {il ) '62 }
{.tl ’ TZ ’ TS } {il ’ TZ } d) {il ) '62 }
{.,L'Z ) .f3 ) [4} {[3 ) [4} d) {[3 ) [4}
{.{'2' lf3' [5} {lf3' [S} d) {TSJ [5}
{TS ’ 'i4' i~1} {[3 ) [4} d) {[3 ) [4}
{.{'3' lf4' [5} {lf3' lf4' [S} d) {TSJ .[.4' [5}
{Ll—' TS ’ i~1} (b d) q)
{.{'4' TS' TZ } {Lh TS' TZ } d) {Lh TSJ .[.2 }
{Tlﬁ 'ES' i~5} {lf3' [S} d) {TSJ [5}
{.tl ) TZ ’ TS ’ i4} {il ’ TZ ’ TS ’ i4} d) {il ) '62 ) '63 ) i’4}
{Tlf TZ' 'ES' i~5} {'ilﬁ 'EZ' 'ES' i~5} d) {'fll TZ! TB! i~5}
{.{'2' .{'3' lf4' [5} {IEZ' lf3' lf4' [S} d) {TZJ .[.3' .[.4' [5}
{Tlf TS' 'i4' i~5} {lf3' lf4' [S} d) {'fll TB! 'f4' i~5}
{.tl ) .EZ ’ 'i4 ) TS } {il ’ 'EZ ’ 'i4 ’ TS } - d) {il ) 'EZ ) '64 ) TS }
E(€) E(€) E(€) E(€)
¢ ¢ ¢ ¢

Table2.2:U; (E(H)),Un (E(H) and U, (E(H)) forallH C €.

E(H) Ui (E) | U, (Ba) | ua (B)
{t) {t) E(6) (i)
i) iy, ) E(€) (i)
i) (i) H0) (i)
iy} i) E@© (i)
{is} {is} E(€) {is}
{i,, 5} {i,, 1} E(€) {t,, 5}
{ty, 1) {ty, ) H0) {ty, )
iy, ) {6, T, Ty} E(6) {6y, T}
{ty,Ts) {6, T, s} E(6) {ty, T, Ts)
{i,, 13} ) E(© E©
{0} {ty, T, T} E(€) {ty, T, T}
{i, Ts) {ty, T, Ts) E@© {ty, T, Ts)
{f5, 10} {ts, T} E(6) (s, ()
{is, Ts) {is, T, s} E(€) (s, T s}
({0, s} {5, L, 5} H0) {5, L, 15}
{ty, T, ) E(6) E(6) E(6)

i) | 06 | E@ [ {600
Wi} | L} | KO | (6
bl | E®© G) G)
i) | E@© E(©) E(€)
(it} | E@© E(©) E(©)
Gl | Gl | 5@ | (6]
Lt} | E@© G) HG)
flb) | E@© E(©) E(©)
LG | E@© E(©) E(E)
LbGi) | BE© E©) G)
(GG} | BE© G) G)
(Lllnls) | E© E(©) E(€)
(LG} | E@© E(©) E(E)
LG} | @ G) G)
HG) E©) HG) HG)
& & ¢ o

Proposition 2.18: Let R = (V (&), E(€)) be a generalized
approximation space, and Fy, Fy and Fy_ be the families of
i-closed, n-closed"and a-closed graphs induced by 3. Then
any i-closed (or n-closed) graph is a-closed.

Proof : Let H € € be an i-closed graph then [E(H)]; c E(H).
From definition (2. 2(1)) :
()], = {L € E(€); INVE(®) n (EH) —{}) = 0 }
i where & incidence on ©
and from introduction:
i (H)]* _ {L € E(€); AVE(®) n (EH) — {}) # @,}

where & incidence on ©

Consequently, [E(H)], € [E(H)]; and since H is i-closed so
[E(H)]; € E(H) thus [E(H)], € E(H) which implies H is a-
closed. Therefore any i-closed graph is a-closed. Similarly,
we can prove that any n-closed is a-closed .

Proposition 2.19: Let B = (V (€),E(€)) be a generalized
approximation space and Ty, Ty, and Ty, be the supra
topologies induced by 2. Then any i-open (or n-open) graph
is a-open.

Proof : Let K € € be ani-open graphand H = & — K. So H is
i-closed graph and by using Proposition (2.18) H is a-closed.
Hence K = € — H is a-open. Accordingly, any i-open graph is
a-open. By the same manner we can prove that any n-open
graph is a-open .

Proposition 2.20: Let & = (V(€), E(€)) be a generalized
approximation space and H € €. Then:

(D) Li(E(H) U Lo (E(H)) € La(E(H)).

(2) Ua(B(H)) < Uy(E(H) N U (E(H)).

Proof: (1) Since
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L (BH)) =u {E(S) € By ES) € B} Hence
L; (E(H)) c E(H) and L, (E(H)) is i-open since the union of
any family of i-open graph is i-open. Since L, (E(H)) =u
{E(S) € Ty, B(S) S B} So Ly (B(H)) < E(H)  and
Ly (E(H)) is n-open since the union of any family of n-open
graph is n-open. Since L; (E(H)) is i-open, then by
Proposition (2.19) it is a-open and since L, (E(H)) is n-open,
then by Proposition (2.19) it is also a-open. Hence
L; (E(H)) ULy, (E(H)) is a-open and
Li (BGD) U L, (EG)) < (). But

Lo (B(H)) = U {E(S) € Ty, B(S) < B(H)}.

Consequently,

Li (BH) U L, (EG) € L, (Ea),

(2) Since

U; (B =n () € Fy; EH) € ER)). Hence B(H) <
U, (E(H)) and U; (E(H)) is i-closed since the intersection of
any family of i-closed graph is i-closed. Since

Uy (BOD) =n (E(K) € By B(H) € BO}. thus E(H) ©
U, (E(H)) and U, (E(H)) is n-closed since the intersection
of any family of n-closed graph is n-closed. Since U; (E(H))
is i-closed then, by Proposition (2.18) it is a-closed and since
U, (E(H)) is n-closed then, by Proposition 2.18) it is also a-
closed. Hence U; (E(H)) nu, (E(H)) is a-closed and
EH) < u; (EaD) n v, (B) But U, (E(H)) =n
{E(K) € Fy; E(H) € E(R)}.

According. U, (E(H)) cU; (E(H)) nu, (E(H)).

Remark 2.21: Let B = (V(G),E(€)) be a generalized

approximation space and H S € Then the following
statements are not necessarily true:

(1) La (E®H)) = Li (BD) U L, (E)).

@ U, (EaD) = u; (Ea) nu, (Ea).
The next example shows pervious remark.
Example 2. 22: According to example" (2.17):

(1) Let H=(V(H),EH) such that V(H)=
{®1, Oz, D3, P4} and E(H) = {t,, G5, T4, T3 Then

J(B) = (0, L(EW) = (i) and
(

and U, (E(H)) = E(E), such that U; (E(H)) nu, (E(H)) =
{6y &) and so U, (B = U; (EGD)) N U, (BD).

Proposition 2.23: Let & = (V(€), E(€)) be a generalized
approximation space and H < €. If the relation T, = T, U
Ty, holds, then the following relations will be valid :

(1) La(E(H)) = Li(E(H) U Ly (E(H)).
() U.(EH)) = Ui(EH) N UL (EH)).
Proof : (1) Lett € L, (F;(H)) & 1€ nt, (E(H))
= 1€ U{E(S) € Tp,; E(S) < E(H)}
& te UfE(S) € Ty, U Tp,; B(S) € E(H)}
& 1€ U{ES) € Ty, E(S) < B}
U'f € U{E(S) € Ty,; E(S) < E(H)}
o tent (EH)) Ute Int, (EH))
siely (E(H)) UieL, (E(H))
o tel (Bm) UL, (Em)
Therefore L, (E(H)) = Li(E(H)) UL, (E(H)).
(2) Let te U, (E(H)) = te cl, (BH))
e ten{BK) € Fy; E(H) € EK)}
e ten{E(K) € Fg, U Fy ; EH) € B}
= ten {EK) € Fy; EH) € EK)
n ten (B € Fy,; B € EK))
o feqy (F;(H)) ntecy (E(H))
o teu; (Em) n teu, (Em)
= te U (Em) n v, (E)
Therefore U,(E(H)) = U;(E(H)) N U, (E(H)).
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