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Abstract : In this paper, we introduce a new space called A-space, derived from the admixture vertex edges system on a graph G .
We define the family of open sets in the A-space, which forms a supra topology on G . Furthermore, we present the definitions of
key operators such as interior, closure, and boundary within this framework. We extend our work to introduce the conce pt of a
generalized approximation space on graphs, defining the lower and upper approximations. Additionally, we discuss methods for
calculating the accuracy of sub graphs, demonstrating the applicability of these structures in graph theory.
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1. INTRODUCTION :

Mostly used in discrete mathematics, graph theory is an imp
ortant and fascinating branch of mathematics for two reasons
. The graph has a pleasing mathematical appearance. Despit
e being basic relation graphs, they can be used to represent d
iverse mathematical graphs, such as harmonic objects and to
pographic space. Secondly, graphs will be very useful in pra
ctice when numerous concepts are empirically represented b
y them. What topological graph theory is about [1, 2, 3, 4, 5,
8, and 9]

Rephrase are a branch of mathematics with a wide range of
theoretical and practical applications. In order to bridge the
gap between topology and applications, we believe that
topological graph structure will be crucial. We consult Harary
[6] for all graph theory jargon and nomenclature, and Moller
[7] for all topology language and notation . A few
fundamental ideas of graph theory [10] are introduced. An
undirected graph U = (W(u),3(u)) is a graph where edges
have no direction. It consists of a set of vertices V(U) and a
set of edges J(U) , where each edge is an unordered pair (u,v)
of vertices. A loop is an edge in a graph that connects a vertex
to itself.. A star graph S, is a tree with one central vertex
connected to all other vertices, which are leaves. It has n
vertices (n = 2) and n-1 edges. An antisymmetric graph, let
u = (V(),3()) be a graph if (¢, @) € J) and(d, &) €
JQ) implies

0l = & Then U is called antisymmetric graph.

An approximation space is a mathematical structure used in
rough set theory, defined as a pair (S,R) , where: S is a non-
empty set called the universe of discourse. R is an
equivalence relation on S, which partitions S into disjoint
equivalence classes. The approximation space is used to
analyze uncertainty by approximating subsets of S through
lower and upper approximations based on the relation R. A
Generalized Approximation Space is a structure (G,T),

where G is a universal set, and T is a generalized structure
such as a relation supra topology used to define lower and
upper approximations of subsets of G, enabling flexible and
broad applications beyond traditional equivalence based
approximation spaces.

2. A-space, I-space and N-space

Definition 2.1. The undirected graph A = (V(U), 3Q)) is
amathematical structure cnsisting of two sets: the first V()
is a non-empty set represents points (called vertices). The
second set 3(U)) represents binary relations between these
points (called edges).

Definition 2.2. Let 3(U) be a non-empty set and let Ty_be a
collection of open subsets of 2. The pair (U, Ty, ) is called
supra topological space if the folloowing conditions are met :
¢, JQU) €Ty, .2) If {Spi€l} € Ty, then U;S; €
Ty, -

Definition 2.3. Let Ul = (V(), 3(U)) be a graph and a vertex
® € V() then:

a) The incidence vertex edges set of  is denoted by INVE (&)
and defined by: INVE(®) = {{ € 3Q):T =
(e, u) for some u € VQU)} .

b) The non-incidence vertex edges set of & is denoted
by NINVE(®) and defined by: NINVE(&)

={t e 3):T = (w,7)and u ,» # & for some u,r €
vl

Definition 2.4. Let U = (V(QU), 3(U)) be a graph , then the
incidence vertex edges system (resp. non-incidence vertex
edges system) of a vertex @ € V(U) is denoted by INVES(&)
(resp. NINVES(®)) and defined by INVES(®) =
{INVE(¢)} (resp. NINVES(&) = {NINVE({)}) .

Example 2.5. Let U = (V(u), 3(20)) be an graph such that
VD) = {®1, Oz, B3, Ds, D5},
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3 = {Tl = (@1'@1)"'{2 = ((‘{)1"3!)2)'{3 = ((1:)2'(\1:)4)"{'4 =
(6}32'6}35)"{5 = (‘;)3"1()4)"{6 = (‘I)s"z)s)"’lﬁ = ((1:)4' (1)5)}

Figure 2.1. graph U given in Example (2.5).
Then INVE(&,) = {t4,1,}, INVE(,) =
{t2, 15,143, INVE(®3) = {{5, 16}, INVE(D,) =
{3,105, 17}, INVE(®s) = {4, 16,17} and
INVES(&,) = {{{1,1,}}, INVES(&,) =
{{T 2131 4}} , INVES(3) = {{l 5L 6}} ’
INVES(¢h,) = {{{5, 15,173}, INVES(s) = {{{ 4,76 T7}} -
Also, we have
NINVE(®,) = {i 5,14, 15 16,17}, NINVE(®,) =
{'fp'fs"f B'T 7}'NINVE((‘{’)3) =
{'fp'fz"fsff 4’T7}'NINVE((‘{’)4) =
{{1,12,14,T6}, NINVE(®s) = {{1,15,135,1,4}.and
NINVES(61) = {{{3, 14,15, 16153},
NINVES((,) = {{{1,75,16,17}}, NINVES((p3) =
{{i 1'1: Z'T S'T 4'.[. 7}} ’ NINVES((:';)AL) =
{{TDTZ'T 4"f6}}'NINVES((‘{’)5) = {{Tl’tzisyts}}-
Definition 2.6. Let U = (VQ),3Q)) be a graph The
Admixture vertex edges system of a vertex @ € V(U) is
denoted by AVES(®) and defined by : AVES(®) =
{INVES(&)) , NINVES(p)} .
Definition 2.7. Let U = (V(U),3)) be a graph the
admixture vertex edges of a vertex @ € V(U) is denoted by
AVE(&) such that AVE(¢) € AVES(&) .
Example 2.8. According to Example(2.4) , the Admixture
vertex edges systems are given by :
AVES((IH) = {{l 1"['2}, {t 3041516 1 7}} ’
AVES((I)z) = {{'fz"f3"f4}' {'fp'fs,'f 6'.[.7}}
AVES((I)3) = {{l 5'.[.6}' {'fp'f 23,11 7}} ’
AVES((‘{')‘;) = {{'fs"f 5"['7}' {Tpf 2t 4-'.[.6}} )
AVES((bs) = {{l wl 6'.[.7}' {t, 1,1 o 5}} .
Definition 2.9. Let U = (VQ),3)) be a graph. and
suppose that fi,: V(D) - p (p(3(W)) is a mapping which
assigns for each ¢ in V() its admixture vertex edges system
inp (p(3(u))) . The pair (U, §,) is called the A-space.
Example 2.10. According to Example (2.4) , the
mapping f, is given by:
fJa(‘zh) = {{TLTZ}' {31415 161 7}} ’
FJa(‘z)z) = {{TZ'T3'IE4}' {115 161 7}}'
f]a(d.bs) = {{.[5'.[.6}' {'f1"[2"[3"f 4’{7}} ,
f]a(d.()4) = {{'[3’{5"[7}' {'fp'[z"f wl 6}};
fa(@s) = {{{4, 161, {{1,1,151s}}.
Therefore (U, fj,) is an A-space.

Definition 2.11. Let U = (V(),3(2)) be a graph and
suppose that f;: V(&) — p (p(3(u))) (resp. B,: VQ) —
p (p(3(u))) is a mapping which assigns for each ¢ in V()
it's incidence (resp. non incidence) vertex edges system in

p (p(3(u))). The pair (U, f;)(resp. (1, f,)) is called an I-
space (resp. N-space).

Definition 2.12. Let (U, fj,) be an A-space , (1, ;) be an I-
space and (U, §j,) be an N-space and let X < . Then :

(1) The a-derived , i-derived and n-derived of an graph X are
defined respectively by :
3@, = {l € 3(U); VAVE(®) where ¢ incidence on { }
a JAVE(@) N () —{th) # ¢
(3], = {i‘ € J(U); INVE(®) N (3(X) — {t}) # d),}
! where @ incidence on { '
[3@)]n
_ {t € 3(U); NINVE(®) n (3(X) —{t}H # dx}
h where ¢ incidence on { '
(2) The families of a-closed , i-closed and n-closed of an
graph X in A-space, I-space and N-space are defined
respectively by:
Fy, = {3(®) 3QD; [3®)]a € 3®)}.
Fp, = {3(%) € 3(W); [3(H)]; € 3(H)}.
Fp, = {3(%) € 3(W); [3(®)], € 3(XH)}.
(3) The families of a-open, i-open and n-open of an graph
X in A-space, I-space and N-space are defined respectively
by :
By, = {3(5) € 3W); 3(S) = 3 — 3(¥) such  that
3(X) € Fg}.

Ty, = (3(S) € 3D; 3(S) = 3A) — 3(¥) such  that
3(%) € Ff]i}.

T, = {3(S) € 3U); 3(S) = () —J(%X) such that
3(%) € Fy}.

(4) The a-interior, i-interior and n-interior of an graph X are
defined respectively by :

Int,(3(%)) =U {3(S) € Ty,; 3(S) € 3(¥)}.
Int;(3(%)) =U {3(S) € Tp,;; 3(S) € 3(F)}.
Int, (3(%)) =U {3(S) € Ty,; 3(S) € 3(X)}.

(5) The a-closure, i-closure and n-closure of an graph X are
defined respectively by :

CL(3®)) =n {3(K) € Fy,; 3(*) < 3(10}.
CL(3()) =n {3(K) € Fy; 3(%) < 3K}
CL(3(0) =n {3(K) € Fy,; 3(¥) € 310}

(6) The a-boundary, i-boundary and n-boundary of an graph
X are defined respectively by :
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[3()]% = CL(3(X)) — Int, (3(%)) .
[3G]P = CL(3(®)) — Int;(3()) -
Theorem 2.13. Let (U, §,) be an A-space and X < U, then X
is an a-open if and only if it contains at least one admixture
vertex edges of & € V(%) incidence ont for each T € 3(3%).
proof . Let (U, fj;) be an A-space and X be an a-open graph
contained in U andie 3(X) . Suppose that for each
admixture vertex edges of & € V(¥) incidence on T,
AVE(® ) € 3(%) where ® € V(X)
incidence on{ for each i € 3(¥).= AVE(® )N[IQ) —
3@+
where ¢ incidenceoni € 3(¥) = 1 € [JQU) —
3(¥)], .Since 3(%) is a-open . JQ) — 3(X) is a-closed,
S0
[3Q) — 3(@)], € [3QD — 3(X)]
thust € [3QU) — 3(X)]. Therefore{ & 3(X%) which
contradicts with© € 3(¥) and
consequently if X € U is a-open and T € J(X), then at least
one admixture vertex edges of »E
V(%) incidence on 1 for eacht € 3(X) which is contained
in 3(X). Conversely, let X contains at least one admixture
vertex edges of & € V(¥) incidence on for each T € 3(¥)

Let g € [3Q) — 3(¥)],
= AVE()N[(3W) - 3(%)) —{a}] # ¢
where « icidence on g then g & J3(%).If o € 3(X) there
would be an admixture vertex edges of «, AVE(« ), such that
AVE(u ) € 3(%) and this would imply
thatAVE(«)N[(3) - 3(X)) —{}] = ¢, ~ o ¢
3(X) = o € 3Q) — 3(X)thus [FA) — 3X)], €
[3Q) — 3(%)]. Hence Q) — 3(X) is a-closed and 3(X) is
a-open.
Theorem 2.14. Let (U, §;) (resp. (U, fj,)) be is an I-space
(resp. N-space) and X < U, then X is an i-open (resp. n-open)
if and only if it contains at least one incidence vertex edges
(resp. non incidence vertex edges) of @ € V(¥) incidence
onf{ foreach i € 3(X).
proof . we use the same method mentioned above
proposition 2.15. Let § = (V(U),3()) be a generalized
approximation space, then the following classes:

T = XcU; vie 3(%) 3 ® e V(X) incidence on {

ha ™ { such that AVE(®) < 3(%) }

T = XcU; vie 3(%¥)3 ® € V(X) incidence on {

b ™ { such that INVE(¢) € 3(X) }
(resp. T,

(X< vie J(X) I @ € V(X) incidence on {

B { such that NINVE()) € 3(%) }

Are supra topologies on .

Theorem 2.16. Let R = (V(U),3U)) be a generalized

approximation space and e is isolated edge then :

(1) {e}isi-closed.

(2) If {e} € ) then {e} is not n-closed.

proof. Let e is isolated edge in a graph U. Then:

(1) Since e = (®,,®,) isisolated edge for every i € J(U)
such that T # e then e ¢ INVE(®) where & incidence on T we
getINVE(D) N ({e}—{}) =¢ hence for every i€
3QD then © & [{e}];, thus [{e}]; = ¢ < {e} there fore {e} is
i-closed.

(2) Since {e} & 3(U) then there exist at least a edge i; €
3 different from e since e is isolated edge then e €
NINVE(&H) where & incidence on ©; and NINVE(®) N
({e} —{i,}) = {e} # dand hence i, € [{e}],. Thus [{e}], &
{e}, therefore {e} is not n-closed.

Theorem 2.17. Let R = (V(QU), 3(W)) be a generalized
approximation space. Then if U is disconnected graph then
Fg, = {$, 3QD}

proof. Let U be a disconnected graph then there exist at least
two disjoint component in U say A and B thatis A N B = .
Let X be any a proper sub graph in Uie. ¢ & X < JQ).
Then:

(i) If XcA then XZ B and for all Te B then X c
NINVE(&H) where @ incidence on T and NINVE(®) N
(X —{1}) =X+ ptheni € [X],and{ ¢ X there fore [X], &
X then X is not n-closed.

(i) If X< B then X & A and for all Te A then X <
NINVE(&H) where @ incidence on © and NINVE(®) N
(X —{{}) = X # ptheni € [X],and { ¢ X there fore [X], &
X then X is not n-closed.

(i) IfXnA + dand X N B #= ¢ thenthere exist at least { €
A and i, € B such that {,{; € X, since X ¢ 3(U) then there
exist 1, € J(U) and i, & X then T, belong to one of them
component of U, if i, € A then {; € NINVE(¢) where &
incidence on i, and NINVE(®) N (¥ — {i,}) contain at least
t, and hence NINVE(¢) n (¥ — {(,}) # ¢, then T, € [¥],
andt, ¢ X, thus [X],, € X and hence X is not n-closed, if i, €
B then 1€ NINVE(®) whered incidence ontand
NINVE(®) N (¥ —{t,}) contain at least i and hence
NINVE(®) N (X —{(,}) # ¢, then 1, € [¥], and T, & X,
thus [X],, € X and hence X is not n-closed ,there for the only
n-closed are ¢, 3(U) and hence F,-]n = {¢, 3}

Theorem 2.18. Let 8 = (V(QU),JU)) be a generalized
approximation space. Then if U is star graph then: Fy =
Fy, = p(3Q)).

proof.Let U is star graph and X is subgraph of U then there
exist center vertex @, adjacent with every vertexin U, lett, =
(®n, Oc) € JU) and since U is star graph so INVE(®,) =
{t,} but INVE(&,) N%—{{,} = ¢ hence , & [X]; thus
[X]; = ¢ therefor F. = p(3(U)). And NINVE($p.) = ¢ thus
NINVE(¢.) N %X — {{,} = ¢ hence ©, ¢ [X], thus [¥], = ¢
therefor Fy = p(3(U)). Hence Fy,, = Fy = p(3QD).
Theorem 2.19. Let 8 = (V(QU), 3(U)) be a generalized
approximation space. Then if Ul is antisymmetric graph
then:

(1) Fy, = (b, 30D}

(2) Fy, = p(3(W)).

proof. Let U be an antisymmetric graph then:
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(1) Since U is antisymmetric graph then U is disconnected
graph and hence by Theorem (2.17) we get Ffan = {0, 3}
(2) Since U is antisymmetric graph then every i, € 3(U) it
can be written T, = (®p, ®n), S0 INVE(d,) = {i,} and
assume that X is every subgraph of U then INVE(&,) N
(% — {i,}) = ¢ thus [X]; = d < X hence ¥ is i-closed and
hence Fg, = p(3()).

3. Accuracy of the Lower, Upper and Boundary
Approximation Spaces.
Definition 3.1. Let £ = (V(U), 3(U)) be a
generalized approximation space and Ty, Tg, and T, be
the supra topologies induced by R and let X < . Then:
(1) The i-lower and i-upper approximations of X are defined
respectively by:

Li(3(¥)) = Int; (3(X)).

Ui(3(¥)) = CL(3(X)).
(2) The n-lower and n-upper approximations of X are defined
respectively by:

Ly (3(X)) = Int,, (3(X)).

Un(3(X)) = CL(3(X)).
(3) The a-lower and a-upper approximations of X are defined
respectively by:

La(3 (%)) = Int,(3(¥)).

Ua(3(%)) = CL(3(X)).
Definition 3.2. Let 8 = (VQ),3)) be a generalized
approximation space and g, Tg, and Ty, be the supra
topologies induced by 3 and let X < . Then:
(1) The i-boundary of X are defined by:

Bd; (3(¥)) = U;(3(¥)) — L;(3(3).
(2) The n-boundary of X are defined by:
Bdn(3(%)) = Un(3(¥) — Ln(3(0)).

(3) The a-boundary of X are defined by:

Bda(3(%)) = UL(3(X)) — La(3()).
Definition 3.4. Let R = (V(Q),3(W)) be a generalized
approximation space. The accuracy of the approximation of
a subgraph X < U using (§;,6, and f,) are defined
respectively by: f

_,_ BaB®)|
_1_BhB&E)]

fn(3(3®) =1 | |3((u()|))|.
. |Bdy(3Cx

Itis obviousthat 0 < f;(3(¥)) <1, 0 <f,(3(*)) <1land
0<f,(3(*%)) <1. Moreover, if {@@)=1 or
fa(3(X)) =1 or {,(3(%)) =1 then X is called X-definable
(%-exact) graph otherwise, it is called X-rough.

Example 3.5. Let i = (V(U), 3(W)) such that V() =
{4)1.@2,693. ‘;.'34} , Q) = {T1 = (pr d)l) "fz =

(@1, ®4), T3 = (D2, D3), Ty = (D2, D4), Ts = (D3, D)}

Then 6;(y) = {{in &3}, Bi(d2) = {03}, Bilds) =
{{lfs,'fs}}, Bi(®4) = {{TZ:‘E@‘ES}} .And
fn(D1) = {{l, 115}, Ba(d2) = {{tu 0153}, Bn(3) =
{{'['1,'['2,'{'4}}, An(®4) = {{Tﬂfs}} .And
a(@1) = {{i, 0} {63,005}, Ba(h2) = {{is, 1), {1, T, 153,
fa(®s) = {{f3, s}, (T, 02, T3}, Ba(a) = {{T2, T, 153, {0, 133} -
And

3, b, {ty, ), {ty, G, T, T} {1, &, G, T3,
Ty, = {is, o} {05, Ty, 153, {5, T3, T, T3,

{.[.3 ’ .[IS }: {,LZ ’ .t4! .[IS }! {,Ll ’ TZ ’ .f4-' .tS }

Ty, = {30, ¢ 3.
3 (u)t d>’ {.,L.l’ .’L.Z }; {.lLllt .,L.Z! .i-.3! 1—‘4—}! {.{'1: .{'2: .i-.3; TS}'

Ty, = {3, 0} {5,113, {0, 15, T, T3, {1, 5, T, s 3
B ’ {.’L.31 .,L.S}x {.t2!.f41 .,LIS}t {.tli .tZJ .t4!.f5}

Table 3.1. f;(3(%)), f.(3(%)) and §,(3(X)) for all X < 1.
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Theorem 3.6. Let = (V(U),3()) be a generalized

approximation space and xcg U. Then 3(%) f(3(3®) fn(3(%) f.(3(X)
(1) Li(3() U Ly(3(¥) € Ly(3(X)). . 275 5 s
(2) Ua(3(%)) < Ui(3(X)) N UL(3(X)). ) 3/5 0 4/5
(3) Bd,(3(¥)) < Bd;(3(X)) N Bd,(3(%)). . 4/5 0 4/5
{is}
(®) 1 (3(X)) = max{f;(3(X)), Fa (BN} ) a/5 0 a/5
proof. (1) and (2) The proof is similar to the proof of (i) 4/5 0 4/5
proposition (2.20) in [11]
(i, 1} 1 0 1
(3) Leti € Bd,(3(X)) = T € (Ua(3(0)) - L(3(%))) =
1€ U,(3() A e L (3(X). {t, G} 3/5 0 3/5
Since U,(3(%)) < U;(3(3))NUL(3(X)). R 2/5 0 2/5
And L;(3(%)) UL,(3(%)) < L.(3(%)). Then te 5
(U(BE@)N UL (3@)) A T¢ (Li(3(0) UL.(3()) = s} 5 _ s
(te U(3@) A te Uy(3(0)A(te L(3M) A te {tz 15} 0
L(3()) = (te ,(3() A te L(3®))A (te iz, 1) 205 0 205
U.(3) A Te L (3(0)) = te (U(3(0) - {215} 205 0 2/5
Li(30)) A te (Un(3(®) - La(3(®)) = te s, 04} 1 0 1
Bd;(3(%)) A 1€ Bd,(3(X)=>1€ ) 4/5 0 4/5
(Bdi(3(%)) ann(s(x))). Therefore Bd,(3(X)) € e 25 5 25
Bd;(3(%)) N Bd,(3()). e 5 7
4) By (3) above we get Bd,(3(%)) < Bdi(3(¥))n {1, &, 3} 2/5
Bd,(3(%)) = Bd,(3(%)) < Bd;(3(%)) and hence ORI 4/5 0 4/5
[Bd,(8(0)] < [Bay(3(®)| = Pl < BN = L
TBd o) = ‘|Bd_(3(x))| 3l 13 {1,115} 4/5 0 4/5
1- 13| =21- |13(u)| = fa(S(x)) 2 fl(S(x)) {.i..z,'i..3,'i..4} 2/5 0 2/5
Using the same way we get §,(3(%)) = §,(3(¥)) thus 2/5 o 2/5
7a(3(¥) = max{fi(3(X)), 1 (3(X))} - {5}
{5, 1, 1) 2/5 0 2/5
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