Certain properties of b-closed ideal in a BCI-algebra

Mohsin Shaalan Abdulhussein ${ }^{1}$, Falah Mahdi Atshan ${ }^{2}$
1Faculty of Mathematical Sciences, University of Kufa, Najaf, Iraq
mohsins.alakayshee@uokufa.edu.iq
2The General Directorate of Education in Al-Najaf Al-Ashraf, Najaf, Iraq

Abstract

In this paper has been devoted for defining the notion of b-closed BCI-algebra by adopting notions of BH-algebra. Also, we have studied some types of ideal, that could be proved by BCI-algebra. In addition, we have introduced some theorems and propositions related to BCI-algebra detailed with proofs.

Keywords-BCI-algebra, Closed ideals, P-ideals, Positive implicative ideals, Quasi-associative ideals

Introduction

In 1966,the notion of BCK-algebras was found firstly by (Y.Imai) and (K.Iseki) [17]. On the other hand, (K.Iseki) had defined the BCI-algebra [8] at the same year. Also, (C. S. Hoo) introduced the notion of an ideal and a closed ideal in 1991,for BCI-algebra[4]. A generalization of BCH-algebras that is called the BH-algebra used defined by (Jun et al) in 1998 [16]. In 2000, (Y. L. Liu, J. Meng, X. H Zhang and Z. Caiyue) gave us the notions of q-Ideals and a-Ideals in BCI-Algebras[18], and (A. Namdar and A. B. Saeid) found the concept of n-fold implicative ideal [2]. A fantastic ideal in a BCI-algebra was introduced by (A. B. Saeid) in 2010[1]. In 2011, "H.M.A.saeed introduced the notion of some type of ideals in a BH-algebra" [5]. In this paper, we have introduced the notion of some type of ideals in a BCI-algebra.

1. BASIC CONCEPTS AND NOTATIONS ABOUT BCI,BCK,BCH, AND BH- ALGEBRA:

Some basic concepts are recalled about BCI-algebra, BCK-algebra, BCH-algebra, BH-algebra in this section .
Definition(1.1) : [8,9,19]
Assume a set $Y \neq \emptyset, B C I-$ algebra Y is said to be an algebra $(Y, \circ, 0)$ of type $(2,0)$, \circ be binary operation and 0 is a constant , satisfies the coditions: $\forall \mathrm{w}, \mathrm{v}, \mathrm{k} \in \mathrm{Y}$:

$$
\begin{gathered}
((\mathrm{w} \circ \mathrm{v}) \circ(\mathrm{w} \circ \mathrm{k})) \circ(\mathrm{k} \circ \mathrm{v})=0 . \\
(\mathrm{w} \circ(\mathrm{w} \circ \mathrm{v})) \circ \mathrm{v}=0 . \\
\mathrm{w} \circ \mathrm{w}=0 . \\
\mathrm{w} \circ \mathrm{v}=0 \text { and } \mathrm{v} \circ \mathrm{w}=0 \Rightarrow \mathrm{w}=\mathrm{v}
\end{gathered}
$$

Example (1.2): [1]
Assume $\mathrm{Y}=\{0,1, \mathrm{i}, \mathrm{j}, \mathrm{k}\}$ and defined the binary operation \circ as follows:

。	0	1	i	j	k
0	0	0	i	i	i
1	1	0	i	i	i
i	i	i	0	0	0
j	j	i	1	0	0
k	k	i	1	1	0

Thus, $(\mathrm{Y}, \mathrm{o}, 0)$ is a BCI - algebra.
Definition(1.3) : [6,9,17]
Each BCK - algebra Y be a BCI - algebra Y if satisfies the condition:
$0 \circ \mathrm{w}=0 \forall \mathrm{w} \in \mathrm{Y}$.
Remark (1.4):[8,9]
Each BCK - algebra Y be BCI - algebra Y, but the vice is not true, in example (1.2), Y be a BCI - algebra , but not a BCK algebra as $\mathrm{i}=0 \circ \mathrm{i} \neq 0$.

Proposition(1.5): [7,11,12]
If BCH - algebra Y, then the following conditions satisfies $\forall w, v, k \in Y$.

$$
\begin{gathered}
\mathrm{w} \circ 0=\mathrm{w} . \\
(\mathrm{w} \circ(\mathrm{w} \circ \mathrm{v})) \circ \mathrm{v}=0 . \\
0 \circ(\mathrm{w} \circ \mathrm{v})=(0 \circ \mathrm{w}) \circ(0 \circ \mathrm{v}) . \\
0 \circ(0 \circ(0 \circ \mathrm{w}))=0 \circ \mathrm{w} .
\end{gathered}
$$

$\omega \leq \mathrm{v} \Rightarrow 0 \circ \mathrm{w}=0 \circ \mathrm{v}$.
Remark (1.6):[11,14]
A BCH-algebra Y is known a proper if it is not a BCI-algebra, where each BCI - algebra Y be a $\mathrm{BCH}-$ algebra Y , but the vice is not true as in the following example.

Example (1.7): [13]
Let $\mathrm{Y}=\{0,1,2,3\}$ and \circ be a binary operation is define by:

\circ	0	1	2	3
0	0	0	0	0
1	1	0	3	3
2	2	0	0	2
3	3	0	0	0

Thus ($\mathrm{Y}, \mathrm{o}, 0$) be a BCH - algebra Y but is not a BCI - algebra Y since

$$
((2 \circ 3) \circ(2 \circ 1)) \circ(1 \circ 3)=(2 \circ 0) \circ 3=2 \circ 3=2 \neq 0
$$

Definition(1.8) : [3,15,16]
Suppose $\mathrm{Y} \neq \emptyset, \mathrm{BH}$ - algebra Y with a binary operation \circ and a constant 0 satisfies the conditions:

$$
\mathrm{w} \circ \mathrm{w}=0, \forall \mathrm{w} \in \mathrm{Y}
$$

$\mathrm{w} \circ \mathrm{v}=0$ and $\mathrm{v} \circ \mathrm{w}=0 \Rightarrow \mathrm{w}=\mathrm{v}, \forall \mathrm{w}, \mathrm{v} \in \mathrm{Y}$.
$\mathrm{w} \circ 0=\mathrm{w}, \forall \mathrm{w} \in \mathrm{Y}$.

International Journal of Engineering and Information Systems (IJEAIS)
ISSN: 2643-640X
Vol. 8 Issue 2 February - 2024, Pages: 22-32
Example (1.9): [16]
Assume $Y=\{0,1,2,3\}$ and defined the binary operation \circ by:

\circ	0	1	2	3
0	0	3	0	2
1	1	0	0	0
2	2	2	0	3
3	3	3	1	0

Hence $(\mathrm{Y}, \circ, 0)$ be a BH -algebra Y .
Remark (1.10):[16]
Each BCH - algebra Y be a BH - algebra Y, but the vice is not true . In example(1.9), the BH - algebra Y is not a BCH algebra.

Since $(0 \circ 1) \circ 2=3 \circ 2=1 \neq(0 \circ 2) \circ 1=0 \circ 1=3$.
Definition(1.11) :[16]
Suppose $\emptyset \neq \mathrm{S} \subseteq \mathrm{Y}$, of a BH -algebra Y is denoted as a subalgebra (BH - algebra) of Y if $\mathrm{w} \circ \mathrm{v} \in \mathrm{S} \forall \mathrm{w}, \mathrm{v} \in \mathrm{S}$.
Remark (1.12):[5]
According to remark(1.4) , remark(1.6) and remark(1.10) we obtain:
Each BCK - algebra is a BCH - algebra.
Each BCK - algebra is a BH - algebra.
Each BCI - algebra is a BH - algebra.
Definition(1.13) : [5]
The set $\mathrm{Y}+=\{\mathrm{w} \in \mathrm{Y}: 0 \circ \mathrm{w}=0\}$ is dnoted by the BCA-part of Y where Y be a BH - algebra .
2. Basic Concepts and Notations about ideal of BCI and BH - algebra :

We introduce the basic concepts about ideals, P-ideals, closed ideals, implicative ideals, , positive implicative ideals, quasiassociative ideals, in this section .

Definition(2.1) : [10]
Assume $\emptyset \neq \mathrm{R} \subseteq \mathrm{Y},(\mathrm{Y}, \circ, 0)$ is a $\mathrm{BCI}-$ algebra, R be denoted an ideal of Y if R satisfying the conditions:

$$
0 \in \mathrm{R} .
$$

$w \circ v \in R$ and $v \in R \Rightarrow w \in R$.
Definition(2.2) : [3,16]
Suppose that R is a subset of a BH -algebra Y , that is nonempty, then R is said to be an ideal of Y if the following conditions are satisfied:
$0 \in \mathrm{R}$.
wo $v \in R$ and $v \in R$ imply $w \in R$
Definition(2.3): [5]

Suppose $\emptyset \neq R \subseteq Y, R$ is an ideal of a $B H$ - algebra Y, R is said to be a closed ideal of Y if $\forall w \in R$, we obtaind $0 \circ w \in R$.
Definition(2.4) : [5]
Assume $\varnothing \neq \mathrm{R} \subseteq \mathrm{Y}$ and R is an ideal of a BH - algebra Y , hence R is said to be a P - ideal of Y if the following conditions are held:

$$
0 \in \mathrm{R} .
$$

$(w \circ k) \circ(v \circ k) \in R$ and $v \in R \Rightarrow w \in R$, for all $w, v, k \in Y$.
Definition(2.5) : [5]
Assume $\varnothing \neq \mathrm{R} \subseteq \mathrm{Y}$, and R is an ideal of a BH - algebra Y , thus R is said to be an implicative ideal of Y the following conditions are held:

$$
0 \in \mathrm{R} .
$$

$(\mathrm{w} \circ(\mathrm{v} \circ \mathrm{w})) \circ \mathrm{k} \in \mathrm{R}$ and $\mathrm{k} \in \mathrm{R} \Rightarrow \mathrm{w} \in \mathrm{R}$, for all $\mathrm{w}, \mathrm{v}, \mathrm{k} \in \mathrm{Y}$.
Definition(2.6) : [5]
Suppose $\emptyset \neq \mathrm{R} \subseteq \mathrm{Y}$ and R is an ideal of a BH - algebra Y , thus R is said to be a positive implicative ideal if the following conditions are satisfied:
$0 \in R$.

$$
(\mathrm{w} \circ \mathrm{v}) \circ \mathrm{k} \in \mathrm{R} \text { and } \mathrm{v} \circ \mathrm{k} \in \mathrm{R} \Rightarrow \mathrm{w} \circ \mathrm{k} \in \mathrm{R} \text { for all } \mathrm{w}, \mathrm{v}, \mathrm{k} \in \mathrm{Y} .
$$

Definition(2.7) : [5]
Suppose R is an ideal of a $\mathrm{BH}-$ algebra Y , thus R denoted by a quasi-associative ideal if for each $\mathrm{w} \in \mathrm{Y}$, we obtaind $0 \circ$ ($0 \circ$ $\mathrm{w})=0 \circ \mathrm{w}$.

Proposition(2.8):[1] If Y is an associative BCI-algebra, then each ideal is a fantastic ideal of Y .
Definition(2.9) : [5]
Suppose that Y is a BH -algebra and R is an ideal of Y , therefore R is said to be a closed ideal w.r.t. an element $\mathrm{b} \in \mathrm{Y}$ if $\mathrm{b} \circ(0 \circ$ $w) \in R, \forall w \in R$.

Remark (2.10):[5]
Assume R be an ideal of a BH - algebra Y such that $\mathrm{R}=\{0\}$, then R is said to be 0 - closed ideal, also if $\mathrm{R}=\mathrm{Y}$ then R called a b-closed ideal, for all $b \in Y$.

Definition(2.11) : [5]
Let Y is a closed BCI-algebra w.r.t. b , iff each proper ideal is a b-closed ideal such that Y is a $\mathrm{BCI}-$ algebra with $\mathrm{b} \in \mathrm{Y}$.
3-The Main Results:
The devoted of study the concept for a closed ideal will be presented In this section with a closed BCI-algebra, for that we involve these notions with some types of ideals in BCI -algebra which we mentioned in the paper.

Theorem(3.1):
Suppose that $\mathrm{Y}=\mathrm{Y}+$ where Y a BH -algebra. If R is an ideal of Y , then R is a b-closed ideal, $\forall \mathrm{b} \in \mathrm{R}$.
Proof:
Assume $b \in R$.
To prove R is a b-closed ideal, assume Y BCI- algebra:
\Rightarrow Y BH-algebra [By Remark(1.12), each BCI-algebra is a BH- algebra]
Suppose $v \in R$, then we have
$b \circ(0 \circ v)=b \circ 0 \quad[$ By definition (1.13), Since $\mathrm{Y}=\mathrm{Y}+$ and $0 \circ \mathrm{Y}=0, \forall \mathrm{v} \in \mathrm{Y}+]$

International Journal of Engineering and Information Systems (IJEAIS)
ISSN: 2643-640X
Vol. 8 Issue 2 February - 2024, Pages: 22-32

$$
\begin{aligned}
=\mathrm{b} \quad[\text { By definition(1.8), Since vo } 0 & =\mathrm{v}, \forall \mathrm{v} \in \mathrm{Y}] \\
\Rightarrow b \circ(0 \circ v) & =b \in R
\end{aligned}
$$

Hence, R is said $a b-$ closed ideal of $Y, \forall b \in R$.
Theorem(3.2):
If Y is a BCI-algebra and R be an ideal of Y , then R is a b-closed ideal, $\forall \mathrm{b} \in \mathrm{R}$.
Proof:
Suppose Y BCI- algebra
\Rightarrow Y BH-algebra [By Remark(1.12),(3)]
Suppose $b \in R$ and Since R be an ideal of a BCI - algebra Y.
$\Rightarrow \mathrm{R}$ is an ideal of a BH-algebra $\mathrm{Y} \quad$ [By Remark(1.12),(3)]
But, $0 \circ v=0, \forall v \in Y$
[By definition(1.3)]
$\Rightarrow \mathrm{Y}=\mathrm{Y}_{+}$
[By definition(1.13)]
\Rightarrow By Theorem (3.1) we obtaind R is $a b-c l o s e d ~ i d e a l ~ o f ~ Y ~ . ~$
We obtain R is ab - closed ideal of $\mathrm{Y}, \forall \mathrm{b} \in \mathrm{R}$.
Theorem(3.3):
If $\{\mathrm{Ri}, \mathrm{i} \in \rho\}$ is a collection of b -closed ideals of a BCI-algebra Y , hence ($\bigcap_{i \in \rho} R_{i}$) is a b-closed ideal of Y.

Proof:
We must show ($\bigcap_{i \in \rho} R_{i}$) is an ideal.
(1) $0 \in \mathrm{R}_{\mathrm{i}}, \forall \mathrm{i} \in \rho \quad$ [By definition(2.1)]
$\Rightarrow 0 \in\left(\cap_{i \in \rho} R_{i}\right)$
(2) Suppose wo $v \in\left(\bigcap_{i \in \rho} R_{i}\right)$ and $y \in\left(\bigcap_{i \in \rho} R_{i}\right)$
\Rightarrow wo $v \in R i$ and $y \in R i, \forall i \in \rho$
$\Rightarrow \mathrm{w} \in \mathrm{Ri}, \forall \mathrm{i} \in \rho$ [By definition(2.1), Since each Ri is ideal, $\forall \mathrm{i} \in \rho$]
$\Rightarrow \quad \mathrm{w} \in\left(\bigcap_{\mathrm{i} \in \rho} \mathrm{R}_{\mathrm{i}}\right)$
Thus, $\left(\bigcap_{i \in \rho} R_{i}\right)$ is an ideal of Y.
To prove $\left(\bigcap_{i \in \rho} R_{i}\right)$ is a b-closed ideal
Suppose $x \in\left(\bigcap_{i \in \rho} R_{i}\right)$,then $w \in R i, \forall i \in \rho$
\Rightarrow b。 ($0 \circ \mathrm{w}$) $\in \mathrm{Ri}, \forall \mathrm{i} \in \rho$ [By definition(2.9), Since Ri is b-closed ideal, $\forall \mathrm{i} \in \rho$]
$\Rightarrow \mathrm{b} \circ(0 \circ \mathrm{w}) \in\left(\bigcap_{\mathrm{i} \in \rho} \mathrm{R}_{\mathrm{i}}\right)$
($\bigcap_{i \in \rho} R_{i}$) is a b-closed ideal of Y.

International Journal of Engineering and Information Systems (IJEAIS)
ISSN: 2643-640X
Vol. 8 Issue 2 February - 2024, Pages: 22-32
Theorem(3.4):
If $\{\mathrm{Ri}, \mathrm{i} \in \rho$ \} is a collection of b - closed ideals of a BCI - algebra Y, therefore $\left(U_{i \in \rho} R_{i}\right)$ is a b-closed ideal of Y.

Proof:
In order to show that $\left(U_{i \in \rho} R_{i}\right)$ is an ideal:
$1-0 \in R i, \forall i \in \rho \quad$ [By definition(2.1)]
$\Rightarrow 0 \in\left(\bigcup_{i \in \rho} R_{i}\right)$.
2 - Suppose $w \circ v \in\left(\bigcup_{i \in \rho} R_{i}\right)$ and $v \in\left(\bigcup_{i \in \rho} R_{i}\right)$
$\exists R j, R k \in\{R i\} i \in \rho$, where $w \circ v \in R j$ and $v \in R k$,
\Rightarrow either $R j \subseteq R k$ or $R k \subseteq R i \quad$ [Since $\{R i\} i \in \rho$ is a chain]
\Rightarrow either $w \circ v \in R j$ and $v \in R j \quad$ or $\quad w \circ v \in R k$ and $v \in R k$
\Rightarrow either $w \in R j$ or $v \in R k \quad$ [By definition(2.1), Since $R j$ and $R k$ are ideals]
$\Rightarrow w \in\left(\bigcup_{i \in \rho} R_{i}\right)$
$\Rightarrow\left(\bigcup_{i \in \rho} R_{i}\right)$ is an ideal
To show $\left(\bigcup_{i \in \rho} R_{i}\right)$ is $b-$ closed ideal of Y.
let $w \in\left(\bigcup_{i \in \rho} R_{i}\right)$
$\exists R j \in\{R i\} i \in \rho$ where $w \in R j$
$\Rightarrow b \circ(0 \circ w) \in R j \quad[B y$ definition(2.9)]
$\Rightarrow b \circ(0 \circ w) \in\left(\bigcup_{i \in \rho} R_{i}\right)$

Hence $\left(U_{i \in \rho} R_{i}\right)$, is said to be ab-closed ideal of Y.
Proposition(3.5):
If Y be a BCI-algebra, then each p - ideal of Y be an ideal of Y .
Proof:
Suppose R is a p - ideal .
Suppose Y BCI - algebra.
$\Rightarrow Y B H-$ algebra $[B y \operatorname{Remark}(1.12)$, Since each $B C I-$ algebra is a BH - algebra $]$
To prove R is an ideal
$1-0 \in R \quad$ [Bydefinition(2.4) of a p-ideal, Since R is a p-ideal]
2 - Suppose $w, v \in Y$ such that $w \circ v \in R$ and $v \in R$

$$
\begin{gathered}
\text { Choose } k=0, \text { then: } \\
(w \circ k) \circ(v \circ k)=(w \circ 0) \circ(v \circ 0) \\
=w \circ v \quad[\text { By definition }(1.8) \text { of a BH - algebra, Since } w \circ 0=w, \forall w \in Y] \\
\Rightarrow(w \circ k) \circ(v \circ k) \in R \text { and } v \in R
\end{gathered}
$$

$\Rightarrow x \in R \quad$ [By definition(2.4) of a p-ideal]
Hence, R be an ideal of Y.
Theorem(3.6):
If Y be a BCI-algebra, where $Y=Y+$ and R be a $p-i d e a l$ of Y, then R is a b - closed ideal of $Y, \forall b \in R$.
Proof:
Suppose Y BCI - algebra
\Rightarrow Y BH - algebra [By Remark(1.12)Since each BCI-algebra is a BH- algebra]
Assume $b \in R$, since R is a p-ideal \Rightarrow By proposition (3.5) we obtained
R is an ideal of Y. But $b \in R \Rightarrow B y$ Theorem (3.1) we have to

Theorem(3.7):
If R is a p - ideal of Yand Y be a BCI - algebra , then R is ab-closed ideal of $Y, \forall b \in R$.
Proof:
Suppose Y BCI - algebra
\Rightarrow Y BH - algebra [By Remark(1.12),Since each BCI-algebra is a BH- algebra]
Suppose $b \in R$, Since R is a p - ideal of a BCI - algebra Y.
$\Rightarrow R$ be a p - ideal of a BCI - algebra R [By Remark(1.12)Since each BCI algebra is a BH - algebra.]
But, $0 \circ \mathrm{w}=0, \forall \mathrm{w} \in \mathrm{Y} \quad$ [By definition(1.3)]
$\Rightarrow \mathrm{Y}=\mathrm{Y}_{+}$
[By definition(1.13)]
\Rightarrow By Theorem (3.6) we obtained that R represents a b-closed ideal of the BCI-algebra Y .
Thus, R be a b - closed ideal of $\mathrm{Y}, \forall \mathrm{b} \in \mathrm{R}$.
Proposition(3.8):
If Y be a BCI - algebra, then each implicative ideal is an ideal of Y.
Proof:
Suppose Y BCI- algebra
\Rightarrow Y BH-algebra [By Remark(1.12),Since each BCI-algebra is a BH- algebra]
Now, by supposing that R representing an implicative ideal, so in order to have R presenting an ideal:
$1-0 \in \mathrm{R} \quad$ [By definition(2.5) of an implicative ideal ,Since R is an implicative ideal]
2- Let $w, k \in Y$ such that wo $k \in R$ and $k \in R$

> Choose $v=w$, then
> $(w \circ(v \circ w)) \circ k=(w \circ(w \circ w)) \circ k$
> $=(w \circ 0) \circ k \quad[$ By definition (1.8), Since $w \circ w=0, \forall w \in Y]$

$$
\Rightarrow(w \circ(v \circ w)) \circ k \in R \quad \text { and } \quad k \in R
$$

$\Rightarrow w \in R \quad$ [By definition(2.9), Since R is an implicative ideal]
Thus, R is an ideal of Y .
Theorem(3.9):
If R be an implicative ideal of BCI - algebra Y , where $\mathrm{Y}=\mathrm{Y}+$ and , then R be ab-closed ideal of $\mathrm{Y}, \forall \mathrm{b} \in \mathrm{R}$.
Suppose $b \in R$ and since R be an implicative ideal .
we obtained by Proposition (3.8), R is an ideal of Y .
Now but $\mathrm{b} \in \mathrm{R} \Rightarrow$ By Theorem (3.1) we have that R representing a b-closed ideal of the BCI - algebra. .
Thus, R be a b - closed ideal of $\mathrm{Y}, \forall \mathrm{b} \in \mathrm{R}$
Theorem(3.10):
If R be an implicative ideal of BCI - algebra Y,thus R is called $b-$ closed ideal of $Y, \forall b \in R$.
Proof:
Suppose $b \in R$, Since R by imposition be an implicative ideal of a BCI - algebra Y.
$\Rightarrow R$ be an implicative ideal of a BH - algebra Y. [By remark(1.12),(3)]
But, $0 \circ \mathrm{w}=0, \forall \mathrm{w} \in \mathrm{Y}$
[By definition(1.3)]
$\Rightarrow \mathrm{Y}=\mathrm{Y}+$
[By definition(1.13)]
\Rightarrow we obtained R be a b - closed ideal of $\mathrm{Y} . \quad$ [By Theorem (3.9)]
Thus, we have R be ab - closed ideal of $\mathrm{Y}, \forall \mathrm{b} \in \mathrm{R}$.
Proposition(3.11):
Each positive implicative ideal in $\mathrm{BCI}-$ algebra Y is an ideal of Y .
Proof:
Suppose Y BCI - algebra.
\Rightarrow Y BH - algebra . [By Remark(1.12),Since each BCI-algebra is a BH- algebra]
Suppose that R represents a positive implicative ideal, so to have R be an ideal:
$1-0 \in R \quad$ [By definition(2.6),Since R is a positive implicative ideal]
2- Suppose $w, v \in Y$ where $w \circ v \in R$ and $v \in R$

$$
\begin{gathered}
\text { Choose } k=0 . \text { Then } \\
(w \circ v) \circ k=(w \circ v) \circ 0 \\
=(w \circ v) \quad[B y \text { definition }(1.8) \text { of a BH - algebra, Since } w \circ 0=w, \forall w \in Y] \\
\text { And } \\
v \circ k=v \circ 0=v \quad[B y \text { definition }(1.8) \text { of a BH - algebra, Since } w \circ 0=w, \forall w \in Y] \\
\Rightarrow(w \circ v) \circ k \in R \text { and } v \circ k \in R \\
\left.\Rightarrow w \circ k \in R \quad \begin{array}{c}
{[B y \text { definition(2.6), Since } R \text { is an implicative ideal }]} \\
\text { But } w \circ k=w \circ 0=w
\end{array}\right][\text { By definition }(1.8) \text { of a BH - algebra, Since } w \circ 0=w, \forall w \in Y] \\
\Rightarrow w \in R
\end{gathered}
$$

Thus, R is an ideal of Y .
Theorem(3.12):

If R be a positive implicative ideal of Y such that Y be $\mathrm{BCI}-$ algebra , $\mathrm{Y}=\mathrm{Y}+$. Thus, R is $\mathrm{a} \mathrm{b}-\mathrm{closed}$ ideal of Y for all b belongs to R .

Proof:
Assume $b \in R$, since R is a positive implicative ideal
\Rightarrow we obtaind R is an ideal of Y . [By Proposition(3.11)]
But $b \in R$ implies we found R is $a b-c l o s e d ~ i d e a l ~ o f ~ Y . ~[B y ~ T h e o r e m(3.1)] ~$
Thus, R be a b - closed ideal of $\mathrm{Y}, \forall \mathrm{b} \in \mathrm{R}$.
Theorem(3.13):
If R be a positive implicative ideal of Y where $Y b e$ a $B C I$ - algebra, then R is a b - closed ideal of $Y, \forall b \in R$.
Proof:
Suppose $b \in R$, Since R is a positive implicative ideal from a BCI - algebra Y.

$$
\begin{gathered}
\Rightarrow R \text { is said to be a positive implicative ideal of aBH - algebra } Y . \quad[B y \\
\text { remark(1.12), Since each BCI - algebra is a BH - algebra)] } \\
\text { But }, 0 \circ w=0, \forall w \in Y . \\
\Rightarrow Y=Y+. \\
\Rightarrow \text { we obtained } R \text { is a } b-\text { closed ideal of } Y .
\end{gathered}
$$

Hence, R be a b-closed ideal of $Y, \forall b \in R$.
Theorem(3.14):
If Y is a BCI - algebra such that $=Y_{+}$, then Y is $0-$ closed BCI - algebra .
Proof:
Suppose Y BCI- algebra
\Rightarrow Y BH-algebra [By Remark(1.12),Since each BCI-algebra is a BH- algebra]
Suppose R be an ideal of Y
To prove R is 0 -closed ideal of Y .
Suppose $w \in R$
$0 \circ(0 \circ \mathrm{w})=0 \circ 0$
[by definition(1.13),Since $0 \circ w=0, \forall w \in Y+$]
$=0$
[By definition(1.8)Since $w \circ w=0, \forall w \in Y$]

But $0 \in \mathrm{R}$
[By definition(2.2),Since R is an ideal]
$\Rightarrow 0 \circ(0 \circ w)=0 \in R$
$\Rightarrow R$ is $0-$ closed ideal of Y.
Thus, Y is 0 - closed BCI - algebra.
Theorem(3.15):
Each BCI - algebra is 0 - closed BH - algebra
Proof:
Suppose Y be a BCI - algebra
$\Rightarrow Y$ is $B H$ - algebra [Byremark(1.12), each BCI - algebra is a BH - algebra]
But $0 \circ w=0, \forall w \in Y \quad$ [By definition(2.2)]

International Journal of Engineering and Information Systems (IJEAIS)
ISSN: 2643-640X
Vol. 8 Issue 2 February - 2024, Pages: 22-32
$\Rightarrow Y=Y+$
[By definition(1.13) of $Y+$]
\Rightarrow By Theorem(3.14) we obtained
Y is a 0 - closed $B H$ - algebra.

Theorem(3. 16):
If Y be 0-closed BCI-algebra ,then each quasi-associative ideal is closed ideal.
Proof:
Suppose Y BCI - algebra
\Rightarrow Y BH - algebra [By Remark(1.12), Since each BCI - algebra is a BH - algebra]
Suppose R be a quasi - associative ideal of Y.
To prove R be a closed ideal of Y.
Suppose $w \in R$
$\Rightarrow 0 \circ(0 \circ w)=0 \circ w \quad[B y d e f i n i t i o n(2.7)$ of a quasi-associative ideal]
But R be a 0 - closed ideal of Y. [Since Y is a 0 - closed BH - algebra

$$
\Rightarrow \text { each ideal is } 0 \text { - closed ideal.by definition(2.11) of a b-closed BH - algebra] }
$$

$\Rightarrow 0 \circ(0 \circ w) \in R$
$\Rightarrow 0 \circ w \in R$
$[$ Since $0 \circ(0 \circ w)=0 \circ w]$
$\Rightarrow R$ is a closed ideal.
Theorem(3.17):
If Y be a BCI-algebra ,then each quasi-associative ideal is subalgebra.
Proof:
Assume Y BCI - algebra
\Rightarrow Y BH - algebra [By Remark(1.12), Since each BCI - algebra is a BH - algebra]
Assume R be a quasi - associative ideal
Assume $w, v \in R$
To prove $w \circ v \in R$
$0 \circ(0 \circ(w \circ v))=0 \circ((0 \circ w) \circ(0 \circ v)) \quad$ [By proposition $(1.5)]$
$=(0 \circ(0 \circ w)) \circ(0 \circ(0 \circ v))$
[By proposition(1.5)]
$=(0 \circ w) \circ(0 \circ v)$
[By definition(2.7)]
$=0 \circ(w \circ v)$
[By proposition(1.5)]
$\Rightarrow 0 \circ(0 \circ(w \circ v))=0 \circ(w \circ v)$
$\Rightarrow w \circ v \in R$
[By definition(2.7)]
Thus, R is a subalgebra.
Conclusions :
By this paper, we have proved that some theorems and propositions which are related to b - closed ideal of a BCI-algebra, also we introduced a study in some ideal types of a BCI-algebra, with detaild discssions, addition to that we have bind this notion with other kinds of ideal that involved in this paper .

References:

[1] A. B. Saeid, " Fantastic ideal in BCI-algebra", World Applied Sciences Journal 8 (5), Iran, 550-554, 2010.
[2] A. B. Saeid and A. Namdar, "On n-fold Ideals in BCH-algebras and Computation Algorithms", World Applied Sciences Journal 7 (Special Issue for Applied Math): 64-69, 2009.
[3] C. H. Park, "Interval-valued fuzzy ideal in BH-algebras", Advance in fuzzy set and systems 1(3), 231-240, 2006.
[4] C. S. Hoo, "Filters and ideals in BCI-algebra, Math. Japonica 36, 987-997, 1991.
[5] H.M.A.Saeed,The fuzzy closed ideal with respect to an element of a BH-algebra,thesis,M.Sc.University of Kufa,2011.
[6] J. Meng and Y.B. Jun, "BCK-algebras", Kyungmoon, Sa Co. Korea, 1994.
[7] K. H. Dar and M. Akram, "On Endomorphisms of BCH-algebras", Annals of University of Craiova, Comp. Ser. 33: 227-234, 2006.
[8] K. ISEKI, "An algebra related with a propositional calculus", Proc. Japan Acad. 42, 26-29, 1966.
[9] K. ISEKI and A. B. THAHEEM, "A note no BCI-algebra", Math. japonica, 29, 255-258, 1984.
[10] K. ISEKI , " no BCI-algebras", Math. Sem.Notes, 125-130, 8(1980).
[11] M.A. Chaudhry and H. Fakhar-Ud-Din, " Ideals and filters in BCH-algebra", Math. japonica 44, No. 1, 101-112, 1996.
[12] M.A. Chaudhry and H. Fakhar-Ud-Din, "On some classes of BCH-algebra", J. I. M. M. S., 25: 205-211, 2001.
[13] Q. P. Hu and X. Li, "On BCH-algebras", Math. Seminar Notes Kobe University No. 2, Part 2, 11: 313-320, 1983.
[14] Q. Hu and X. Li, "On proper BCH-algebra", Math. Japan, 30(2), 659-661, 1985.
[15] Q. Zhang, Y. B. Jun and E. H. Roh, "On the branch of BH-algebras", Scientiae Mathematicae Japonicae 54(2), 363-367, 2001.
[16] Y. B. Jun, E. H. Roh and H. S. Kim, "On BH-algebras", Scientiae Mathematicae 1(1), 347-354, 1998.
[17] Y. IMAI and K. ISEKI, "On axiom system of propositional calculi XIV, Proc. Japan Acad. 42, 19-20, 1966
[18] Y. L. Liu, J. Meng, X. H. Zhang and Z. Caiyue, "q-Ideals and a-Ideals in BCI-Algebras", Southeast Asian Bull. of Math., 24 : 243-253, 2000.
[19] Y. S. Huang, "BCI-algebras", Science Press,China.2006.

