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Abstract: This paper has examined the dynamic characteristics performance of the state variables of a full state feedback controlled 

satellite dish antenna in distributed mobile telemedicine. The object is to examine the behaviour of the internal variables of industrial 

process or plant when the structure or algorithm of the control technique used is modified or altered. The dynamic equations of a 

dish antenna position control system used in distributed mobile telemedicine nodes were obtained in the form of transfer function 

models in continuous time domain. The transfer function models were transformed into equivalent state space models. The state 

space equations were represented by different features of Simulink used to model the system in MATLAB/Simulink environment. The 

performance of the system was studied in terms of stability, controllability, and observability. Simulations were carried out in 

MATALAB/Simulink environment. The results obtained showed that the characteristics performances of the state variables are 

influenced by changes in the structure and complexity of the control algorithm.  
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1. INTRODUCTION  

In the analysis and design of feedback system in 

traditional control theory, many techniques are taken into 

consideration like root locus and frequency responses [1,2]. 

These techniques are generally based on a simple relationship 

representing the input-output of the mathematical model of 

the process in the form of a transfer function [3]. Even though 

the transfer function expression offers simple and great 

analysis and design methods [1,4] the method does not 

provide the designer with the knowledge of the interior 

structure of the plant [3]. This means that for a given input, 

only the response is depicted without any information 

concerning the internal states of the system provided. There 

are certain limitations to the transfer function technique: a) it 

can only be used to study Linear Time Invariant (LTI) systems 

due to the intricacy that comes with using it in multi-input 

multi-output (MIMO). b) Its  

 

design and analysis is mainly applicable to single input single 

output (SISO) systems.   

In modern control theory, the shortcomings associated 

with the transfer function technique in terms of providing  

 

detailed description of the dynamic features of a plant are 

addressed. The description provided by modern control theory 

considers not only the relationship between the input and 

output but also depicts the internal dynamic variables of the 

system called state variables.  

State variables are mathematical equations usually 

referred to as state space equations. These equations represent 

a set of combined first-order differential equations of internal 

(or state) variables and in concert with a set of algebraic 

equations which integrate the state variables into output 

variables [3]. State variable technique can be used to design 

and analyse linear, nonlinear, time invariant or time varying 

MIMO [1,2]. 

The use of state variable equations in the design and 

analysis of dynamics of a plant has been well studied. A study 

on the transient simulation of transmission line by modelling 

voltage and current distributions as state variables was carried 

out by [5]. Sang et al. [6] presented the analysis and modelling 

of non-volatile memory devices with identified internal state 

variables for dynamic characteristics. A study on using state 

variable technique for the drying section of a paper-making 

machine based mass and energy balance relationships 

established for steam, paper, cylindrical heater wall and 

moisture was presented by Berrada et al. [7]. A solar power 

system was studied by Chattopadhyay et al. [8] using state 
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variable technique. Njoku et al. [1] used state variable method 

to study dynamics of a linearized mechanical system that 

represents idle speed model of engine. 

The objective of this paper is to analyse the dynamic 

characteristics of the internal variable of a telemedicine 

mobile node antenna system using the principle of state space 

variable with full state feedback control. 

 

2. LITERATURE REVIEW 

The state represents a set of variables that summarizes the 

history of the system in an attempt to predict the future 

responses. The state variable is directly a time domain 

technique that offers a basis for modern control theory and 

system optimization. It also serves as a very powerful scheme 

for the analysis and design of linear, and nonlinear, time-

invariant or time varying multi-input-multi-output (MIMO) 

system [1]. Figure 1 depicts a structure of plant model in terms 

of the state variable. Linear Time Invariant (LTI) system can 

be expressed in state space form given by: 

DuCxy

BuAxx




                          

(1) 

where A, B, C and D are the constant matrices such that A is 

the state matrix, B is the input matrix, C is the output matrix, 

and D is the direct transition matrix. 

 
Fig.1. Block diagram representation of state variables [9] 

 

3. SYSTEM MODELLING AND CONFIGURATION 

3.1 State Space Modelling 

In this paper, the plant under consideration is a dish 

antenna whose open loop block diagram is shown in Figure 2 

and the transfer function given by Eq. (2) [10]: 

 

 
 

Fig. 2. Cascaded block diagram of the components of the outdoor dish antenna [11] 
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where V(s) is the input voltage and  is the reference dish 

position in radian. 

However, the system being considered is influenced by 

the time delay in the forward and feedback paths during 

communication. These delays are given by [12]: 








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
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sT
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sT
d1

2

1

e(s)G
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where: 

T1 = Feed forward delay from base station to the node in 

seconds and 

T2 = Feedback delay from the node to base station in seconds. 

Now, assuming that the feed forward time delay is equal to 

feedback time delay, such that T1 = T2 = T. 

Equation (4) can be expressed as: 
Ts

dd2d1 eGGG 
                                                      

(4) 

The maximum and minimum time delay was determined 

to be 0.2502s and 0.2469s.  

The transfer function expressions given by Eq. (2) and 

defines the direct relation between the input and the output. 

Equation (2) provided the knowledge for the input and output 

of the jack actuator and dish antenna position model (that is 

the plant). In this paper, the transfer function is further 

expressed to describe the internal variables of the system 

using state-space representation. This is obtained as follow by 

using the approach by [13].  

Step 1: state space of plant model [1]: 

150.52s62.36s67.56ss

3.76

U(s)

Y(s)
234 

          

(5) 

where Y(s) and U(s) are the output and input of the plant. 

Assuming zero initial conditions, Equation (5) can be 

expressed in the form of Eq. (6): 

U(s)76.3)150.52sX(s

Y(s)62.36sY(s)67.56sY(s)s 234




          

(6) 

Let  y = x1 then Eq. (6) can be resolved as in Eq. (7). 
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Transforming Equation (7) into state space form, gives: 
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The state matrix A is given by: 
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The input matrix B is given by: 




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



3.76
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The output matrix C is given by:  0001C   

The matrix D is given by: .0D   
 

3.2. Properties of System 

This subsection presents four basic properties of a 

system, which are studied in detail from a state-space 

perspective. This is necessarily important because each 

property will have an impact on the control technique used in 

this work. The properties are: stability, steady-state error, 

controllability and observability. 

Stability: is a key property in to understanding the 

dynamic performance of a system. The natural response of a 

system and its stability can be understood from the system 

pole locations. For instance, if the poles of a system are 

located at the left half plane (LHP) of the complex frequency 

such that s = -3 or s = -5±2j, the system either produced 

damped sinusoid or an exponential decay it time response. 

However, when the poles are on the imaginary )( j  axis or 

in the right half plane (RHP) such that s = 3 or s = 3±2j, the 

outcome is unstable or exponentially increasing responses. It 

can be conclusively said that a system whose poles is located 

in the LHP is stable. In this paper the poles of the system are 

obtained using the MATLAB code given by: 

  D)C,B,ss2zp(A,kp,z,          

(10) 

where z, p, k means zero, pole, and gain. The poles, p = 0, -

66.6584, -0.4508±1.4335j. Since the poles are all in the LHP, 

the system is stable. 

Controllability: If it is possible to take every system state 

variable from any initial state to any desired final state in a 

given finite time by a control input, the system is said to be 

controllable. Otherwise the system is uncontrollable. 

Determining whether a system is controllable usually seems 

to be difficult, as a result of the size and complexity of the 

state-space model. In such conditions, a simple test can be 

employed to find out whether a system is controllable. The 

mathematical approach for determining controllability can be 

obtained in [1]. The first thing to do when determining the 

controllability of a system is to form the controllability matrix 

given by: 

 BA....BAABBC 1n2
matrix

        

(11) 

If the controllability matrix is of full rank, a system is said 

to be controllable. For single input single output (SISO) 

systems, this is done so as to verify that the determinant of the 

controllability matrix is non-zero. 
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.300400

0000

Cmatrix            (12) 

Rank = 4        

Since the matrix of the 4th other model is of full rank, that is 

4, the system is completely controllable. 

Observability: If by the measurement of the outputs over 

a finite time interval can result to the complete identification 

of the initial state, the system is said to be completely 

observable. Otherwise the system is not observable. For a 

system to be observable, its output must have an element with 

respect to each state. This means that a link must exist from 

each state to the output. A test on observability can be carried 

out to determine whether it is observable when there is no 

clear evidence. A simple test of observbility can be achieved 

by forming the observability matrix given by: 

 T1n2
matrix CA....CACACO         

(13) 

A system that is observable is one whose observability 

matrix is of full rank. For SISO systems, this is achieved by 

verifying the determinant of the matrix in order to ascertain if 

it is non-zero. 

If the determinant matrix is non-zero, the system is 

observable. In this paper, the observability of the plant model 

of a dish antenna position system is determined by obtaining 

the values of the elements of the observability matrix defined 

by Eq. (13). 
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Since the rank of the observability matrix is 4, the system is 

observable. 

 

3.3 Full State Variable Feedback 

A full state variable feedback is a pole placement design 

strategy in which all desired poles are selected at the 

beginning of the design process. Figure 3.8 shows the closed 

loop plant and control. In order to demonstrate that this 

strategy can place the pole in any desired location, it is 

initially assumed that the reference is zero, and is simply 

expressed by: 
Kxu            

(15) 

where u is the control input, K is the feedback gain, and x is a 

state variable. Substituting Eq. (15) into Eq. (1) gives: 

 xBKAx          (16) 

which has a solution of 
BK)t(Ax(0)ex(t)  . Therefore, by 

properly selecting of gains, K can adjust the response of the 

system as desired. A full state variable feedback system is 

shown in Fig. 3. 

 
Fig. 3 Full state variable feedback system 

 

Calculation of Feedback Gain: In order to determine the 

feedback gain K, the eigenvalues of (A-BK) is obtained. 

Given the state variable feedback matrix ,K such that: 

 4321 KKKKK           

(17) 
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In order to determine the eigenvalues, the expression defined 

by Eq. (19) is used and applied: 

  0BK)(AλIdet           

(19) 

Hence,

  0
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Solving Equation (18) gives: 

   
0K76.3)K76.352.150(

K76.336.62K76.356.67

12

3
2

4
34


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                (21) 

A desired characteristics equation is chosen using: 

  baλλωλ2ζζλE 22
nn

2
ch         

(22) 

Since 0.69ζ  for minimal overshoot, the settling time, 

1s,Ts  and the natural frequency 5.77ωn  , and (a, b) are 

chosen as (16,100), substituting these values into Equation 

(22) gives: 

   
  33.293b7.96333.293aλ

b7.963a33.293λa7.963λλE 234
ch




        (23) 

Solving Equations (21) and (23) gives: 
11.60Ka 7.9633.76K67.56 44    

52.75Kb7.963a33.2933.76K62.36 33   

313.4K7.963b33.293a3.76K150.52 22   

885.5K33.293b3.76K 11   

Therefore, Equation (17) can be written as: 
 11.6052.75313.4885.5K           

(24)                                                                      

Forward path gain: the problem of using full state 

feedback alone is that possibility of tracking a step input is not 

certain. In order to address this problem, a forward path gain 

is implemented as shown in Figure 4.
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Fig. 4 Full state feedback integrating forward path gain 

 

From Figure 4, it can be seen that the control put can be given 

by: 

KxrKu f                         (25) 

where Kf is the forward path gain, r is the desired or reference 

input. Substituting Eq. (25) into Eq. (1), gives: 

   rBxArBKxBKAx CLCLf         

(26) 

where  BKAACL   and .BKB fCL   The transfer 

function of the system can be shown to expressed by: 

  f
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
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(27)  

Using the final value theorem and given a step input as the 

reference signal, then  
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          (28) 

The value of fK was calculated to be 885.5. 

Calculation of observer gain: The reason for implementing 

the observer is to estimate the actual plant so that even if the 

actual states are in no way measured, the ones estimated by 

the observer can be used in the state feedback control. Below 

is the mathematical theory of calculating and selecting 

observer gains. 

From Figure 5, the observer state equation is given by: 

 
Fig. 5 Full state feedback with an observer 
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where x̂KrKu f   and L is the observer gain given by: 

 4321 LLLLL                        (30) 

For an observer, the target is to reduce the error between the 

actual and the estimate states to zero. 
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(33) 

The values of the feedback gains,  4321 KKKKK  , 

were substituted into the characteristics equation defined by 

Eq. (19) so as to obtain the eigenvalues which represent the 

desired closed loop poles, p. The characteristics equation for 

obtaining the eigenvalues is given by: 

03329.481328.904λ260.7λ23.944λλ 234        

(34) 

Solving Eq. (34) the values of the poles, p, of the closed loop 

system are obtained are stated as follows 
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The observer gain L is given by: 

 p,10C,AplaceL                     (35) 
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This section has introduced a technique for studying the 

performance characteristics of internal variables of dish 

antenna for distributed mobile telemedicine nodes using state 

feedback that incorporates a forward path gain and an 

observer.  

 

4 SIMULATION RESULTS 

The characteristics of the internal (state) variables in terms 

of step response performance are presented in this subsection. 

Simulation plots for three case scenarios namely, state variable 

performance responses for full state feedback without forward 

path gain shown in Figure 6, full state feedback with forward 

path gain (or simply full state feedback) shown in Fig. 7, and 

full state full back with an observer shown in Fig. 8. The 

summary of the performance parameter values is presented in 

Table 1.It should be noted that all analysis of the various 

performance response obtained from the simulations 

conducted in this paper were carried out using linear analysis 
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tool (LAT) of the MATLAB/Simulink control design linear 

analysis tool (CDLAT) via linear analysis point (LAP). 

 

 
Fig. 6. State variable performance to a step input for full state 

feedback (no forward path gain) 

 

 
Fig. 7 State variable performance to a step input for full state 

feedback (with forward path gain) 

 

 
Fig. 8. State variable performance to a step input for full state 

feedback with an observer 

Table 1 Analysis of state variable performance to a step input 

Figure Rise time 

(s) 

Time 

to peak 

(s) 

Settling 

time (s) 

Overshoot 

(%) 

Remark 

Fig. 6 x1= 0.42, 

x2 = 0, x3= 

0, x4 = 0 

x1= 

0.945, 

x2 = 

0.392, 

x3= 

0.184, 

x4 

=0.069

2 

x1= 

1.22, x2 

= 1.44, 

x3 = 

1.54, x4 

= 1.22 

x1= 4.9, x2 

= Inf, x3 = 

Inf, x4 = 

inf 

Unit 

step 

respons

e not 

tracked 

Fig. 7 

 

x1= 0.42, 

x2 = 0, x3= 

0, x4 = 0 

 

x1= 

0.945, 

x2 = 

0.392, 

x3= 

0.184, 

x4 

=0.069

2 

x1= 

1.22, x2 

= 1.44, 

x3 = 

1.54, x4 

= 1.22 

x1= 4.9, x2 

= Inf, x3 = 

Inf, x4 = 

inf 

Unit 

step 

respons

e 

tracked 

Fig. 8 x1= 0.39, 

x2 = 2.06e-

12, x3= 

3.39e-15, 

x4 = 

5.11e-15 

x1= 

0.913, 

x2 = 

0.396, 

x3= 

0.183, 

x4 = 

0.0609 

x1= 

1.31, x2 

= 1.54, 

x3= 1.72 

, x4 = 

1.67 

x1= 10, x2 

= 

1.65e+16, 

x3 = 

2.65e+15, 

x4 = 

1.08e+15 

Unit 

step 

respons

e 

tracked 

The analysis on focused on the continuous time domain 

response performance of state variables to unit step input for a 

full state feedback controlled dish antenna positioning control 

system. The time domain parameters considered are rise time, 

time to peak, settling time and percentage overshoot.  Looking 

at Table 1, it is obvious that the values of the state variables 

change with respect to changes in the full state feedback 

controller condition.  With respect to the state variable x1 

which represents the required position to be tracked, Figure 6 
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showed that with only the full state feedback controller 

applied, the required step input was not attained. Whereas in 

Figures 7 and 8 wherein a forward path gain and an observer 

were included, a good step response tracking was attained with 

optimal performance in respect to the considered time domain 

parameters.  

Generally, the results in Table1 revealed that the state 

variable (or internal dynamics) are actually influenced by the 

control loop configuration and complexity of the controller. It 

can be seen that the state variables x1, x2, x3, and x4 show 

varying characteristics performance for various control loop 

structure. This is the actually the essence of the study which is 

aimed at examining the behaviour of the internal variables of 

industrial process or plant when the structure or algorithm of 

the control technique used is modified or altered. The 

knowledge of which will aid proper design and 

implementation of practical control system. 

 

5 CONCLUSION 

This paper has examined the step response performance of 

state variables of full state feedback controlled satellite dish 

antenna positioning system in telemedicine node. The 

significant of this study is that the characteristic performances 

of the state variables which provide information on the interior 

dynamics of the structure of the plant are established. This will 

assist in choosing the appropriate control strategy that will 

meet the required system performance. It has also revealed the 

effectiveness of the full state feedback control method 

implemented in this paper. The study has also provided insight 

and educational knowledge on full state feedback design 

considering complex telecommunication system with fourth 

order dynamic characteristics. 
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