Functions in Discrete Mathematics

Xolmatova Lobar
Bachelor 4th year student, Karshi State University
xolmatovalobar2@gmail.com

Abstract

In discrete mathematics, functions are mathematical relations between sets that map each element in one set to exactly one element in another set. They're often represented by input-output pairs, where each input has a unique output. Functions play a crucial role in various areas like computer science, cryptography, and graph theory, offering a formal way to describe relationships between elements. They're fundamental for understanding and solving problems in discrete mathematics.

Keywords: Function, collection, injective, codomain, element, number,sets

Introduction:

Functions are an important part of discrete mathematics. This article is all about functions, their types, and other details of functions. A function assigns exactly one element of a set to each element of the other set. Functions are the rules that assign one input to one output. The function can be represented as $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$. A is called the domain of the function and B is called the codomain function.

Functions:

- A function assigns exactly one element of one set to each element of other sets.
- A function is a rule that assigns each input exactly one output.
- A function f from A to B is an assignment of exactly one element of B to each element of A (where A and B are nonempty sets).
- A function f from set A to set B is represented as $f: A \rightarrow B$ where A is called the domain of f and B is called as codomain of f.
- If b is a unique element of B to element a of A assigned by function F then, it is written as $f(a)=b$.
- Function f maps A to B means f is a function from A to B i.e. $f: A \rightarrow B$

Domain of a function:

- If f is a function from set A to set B then, A is called the domain of function f .
- The set of all inputs for a function is called its domain.

Codomain of a function:

- If f is a function from set A to set B then, B is called the codomain of function f.
- The set of all allowable outputs for a function is called its codomain.

Pre-image and Image of a function:
A function $f: A \rightarrow B$ such that for each $a \in A$, there exists a unique $b \in B$ such that $(a, b) \in R$ then, a is called the pre-image of f and b is called the image of f.

Types of function:
One-One function (or Injective Function):
A function in which one element of the domain is connected to one element of the codomain.
A function $f: A \rightarrow B$ is said to be a one-one (injective) function if different elements of A have different images in B.

$f: A \rightarrow B$ is one-one

International Journal of Academic Engineering Research (IJAER)
ISSN: 2643-9085
Vol. 8 Issue 4 April - 2024, Pages: 15-24
$\Rightarrow \mathbf{a} \neq \mathbf{b} \Rightarrow \mathbf{f}(\mathbf{a}) \neq \mathbf{f}(\mathrm{b}) \quad$ for all $\mathrm{a}, \mathrm{b} \in \mathrm{A}$
$\Rightarrow \mathbf{f}(\mathbf{a})=\mathbf{f}(\mathbf{b}) \Rightarrow \mathbf{a}=\mathbf{b} \quad$ for all $a, b \in A$

Let $A=\{a, b, c\}$ and $B=\{1,2,3\}$ are two sets

ONE-ONE FUNCTION

Many-One function:
A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a many-one function if two or more elements of set A have the same image in B.
A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is a many-one function if it is not a one-one function.
$f: A \rightarrow B$ is many-one
$\Rightarrow \mathbf{a} \neq \mathbf{b}$ but $f(\mathbf{a})=\mathbf{f}(\mathbf{b}) \quad$ for all $a, b \in A$

Let $A=\{a, b, c\}$ and $B=\{1\}$ are two sets

MANY-ONE FUNCTION

Onto function(or Surjective Function):
A function $f: A->B$ is said to be onto (surjective) function if every element of B is an image of some element of A i.e. $f(A)=B$ or range of f is the codomain of f.

A function in which every element of the codomain has one pre-image.
$f: A \rightarrow B$ is onto if for each $b \in B$, there exists $a \in A$ such that $f(a)=b$.

$$
\text { Let } A=\{a, b, c\} \text { and } B=\{1,2\} \text { are two sets }
$$

ONTO FUNCTION

Into Function:
A function $f: A \rightarrow B$ is said to be an into a function if there exists an element in B with no pre-image in A.
A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is into function when it is not onto.

$$
\text { Let } A=\{a, b, c\} \text { and } B=\{1,2,3\} \text { are two sets }
$$

INTO FUNCTION

One-One Correspondent function(or Bijective Function or One-One Onto Function):
A function which is both one-one and onto (both injective and surjective) is called one-one correspondent(bijective) function. $f: A \rightarrow B$ is one-one correspondent (bijective) if:

- one-one i.e. $f(a)=f(b) \Rightarrow a=b \quad$ for all $a, b \in A$
- onto i.e. for each $b \in B$, there exists $a \in A$ such that $f(a)=b$.

$$
\text { Let } A=\{a, b, c\} \text { and } B=\{1,2,3\} \text { are two sets }
$$

ONE-ONE CORRESPONDENT FUNCTION

One-One Into function:
A function that is both one-one and into is called one-one into function.

$$
\text { Let } A=\{a, b\} \text { and } B=\{1,2,3\} \text { are two sets }
$$

ONE-ONE INTO FUNCTION

Many-one onto function:
A function that is both many-one and onto is called many-one onto function.

$$
\text { Let } A=\{a, b, c\} \text { and } B=\{1,2 \text { \}are two sets }
$$

MANY-ONE ONTO FUNCTION

Many-one into a function:
A function that is both many-one and into is called many-one into function.

Let $A=\{a, b, c, d\}$ and $B=\{1,2,3,4$ \}are two sets

MANY-ONE INTO FUNCTION

Inverse of a function:
Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ be a bijection then, a function $\mathrm{g}: \mathrm{B} \rightarrow \mathrm{A}$ which associates each element $\mathrm{b} \in \mathrm{B}$ to a different element $\mathrm{a} \in \mathrm{A}$ such that $f(a)=b$ is called the inverse of f.
$\mathrm{f}(\mathrm{a})=\mathrm{b} \leftrightarrow \square \mathrm{g}(\mathrm{b})=\mathrm{a}$
Composition of functions :-
Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}$ be two functions then, a function gof: $\mathrm{A} \rightarrow \mathrm{C}$ is defined by
$(\operatorname{gof})(x)=g(f(x))$, for all $x \in A$
is called the composition of f and g.
Note:
Let X and Y be two sets with m and n elements and a function is defined as $f: X->Y$ then,

- Total number of functions $=\mathrm{n}^{\mathrm{m}}$
- Total number of one-one function $={ }^{n} P_{m}$
- Total number of onto functions $=\mathrm{n}^{\mathrm{m}}-{ }^{\mathrm{n}} \mathrm{C}_{1}(\mathrm{n}-1)^{\mathrm{m}}+{ }^{\mathrm{n}} \mathrm{C}_{2}(\mathrm{n}-2)^{\mathrm{m}}-\ldots \ldots \ldots \ldots \ldots+(-1)^{\mathrm{n}-\mathrm{ln}} \mathrm{C}_{\mathrm{n}-1} 1^{\mathrm{m}} \quad$ if $\mathrm{m} \geq \mathrm{n}$.

For the composition of functions f and g be two functions :

- \quad fog \neq gof
- If f and g both are one-one function then fog is also one-one.
- If f and g both are onto function then fog is also onto.
- If f and fog both are one-one function then g is also one-one.
- If f and fog both are onto function then it is not necessary that g is also onto.
- $(f o g)^{-1}=g^{-1} \mathrm{of}^{-1}$
- $\mathrm{f}^{-1} \mathrm{of}=\mathrm{f}^{-1}(\mathrm{f}(\mathrm{a}))=\mathrm{f}^{-1}(\mathrm{~b})=\mathrm{a}$
- $\quad \mathrm{fof}^{-1}=\mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{~b})\right)=\mathrm{f}(\mathrm{a})=\mathrm{b}$

Conclusion:

In conclusion, functions in discrete mathematics are foundational tools for describing relationships between elements of sets. They provide a formal way to represent mappings between sets, ensuring that each input corresponds to exactly one output.
Understanding functions is essential for tackling a wide range of problems across various fields, making them a fundamental concept in discrete mathematics.

References

1.G. Agnarson and R. Greenlaw, Graph Theory: Modelling, Applications and Algorithm, Pearson Education.
2.R. B. Bapat, Graphs and Matrices, Hindustan Book Agency, New Delhi, 2010.
3.D. M. Cvetkovic, Michael Doob and Horst Sachs, Spectra of Graphs: theory and applications, Academic Press, New York, 1980

