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Abstract: This paper presents state-space modelling and control of two-phase hybrid stepping motor (2-PHSM) for robot grinding 

using linear quadratic regulator (LQR). The objective of the study is to use state-space modelling approach to model 2-PHSM and 

subsequently designed an optimal control system rather than the commonly used transfer function model due to its limitations in 

modern control theory. Initially, state-space model of the 2-PHSM was obtained from transfer function using direct decomposition 

method and this was followed by LQR design. The Designed LQR was introduced into the control system for the 2-PHSM in robot 

grinding. With the system modelled and simulated in MATLAB, the results obtained by varying the Q matrix of optimal controller 

revealed that desired step input was achieved with negligible steady state error of 0.01 and 0.02, which agrees with 2% criterion. 

In both cases the system maintained good stability with 4.14% overshoot.  
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1. INTRODUCTION  

In the mathematical modelling of electrical systems, 

several methods are used to describe their dynamic 

characteristics. One approach that is commonly used is the 

transfer function. This is because the transfer function model 

offers simple and powerful analysis and design approaches, 

and is usually used in the design and analysis of feedback 

system involving root locus and frequency response 

techniques [1,2]. However, in the transfer function method, 

mathematical equation is used to establish a linear relationship 

between the input and the output of the system without 

providing any information regarding the components 

responsible for the dynamic behaviour of the system. There are 

some other limitations to the application of transfer function 

such as the fact that its use is usually applicable to wherein the 

initial conditions must be defined under zero initial conditions. 

In addition, it is only applicable to linear time-invariant (LTI) 

systems and confines generally to single-input single-output 

(SISO) systems [2]. The application of transfer function 

modelling multiple-input multiple-output systems makes the 

design and analysis process complicated [1].  

With only the knowledge of the output revealed for a given 

input without the information regarding the internal (or state) 

variables of the system, a situation could arise whereby the 

output of a system is stable but some of the elements of the 

system may likely exceed their defined values [1]. This 

challenge is addressed in modern control theory. 

 

 

Modern control systems such as optimal control methods 

use mathematical representation called state space modelling 

that provides the information regarding the internal states of 

the system. It is suitable for analysis of both LTI and nonlinear 

time-invariant or time-varying systems. It is also good method 

for MIMO systems.  

In this paper, the advantage of state space modelling is used 

to represent the dynamic of stepping motor positioning system 

in robot grinding. Furthermore, utilizing this method of 

modelling, a linear quadratic regulator (LQR), which is an 

optimal control system, is designed in robot grinding process 

that uses two-phase hybrid stepper motor (2-PHSM). 

2. CONCEPT OF STATE SPACE MODELLING 

The basic idea of state space modelling is to represent the 

dynamics of a system using differential equations that provide 

information concerning not only about the output for a given 

input command signal but also how the internal components of 

the system respond to the introduction of signal. This way a 

more clarity is provided and the design is equipped with the 

information on the overall behaviour of the system. This 

therefore enables the compensation to system such as 

controller to be properly selected and designed.  

This approach has been widely used. It has been used in the 

state feedback control of satellite antenna and temperature 

control in data centre [3,4]. Linear quadratic control and 

integral control techniques for Single, two and three area load 

frequency control (ALFC) power systems have been achieved 

using state space modelling approach [5]. Dynamic analysis 

and modelling of two-mass system was performed using state 

model together with a modified proportional integral 

derivative (PID) controller in [6]. The mathematical model 

based on state-space modelling was used in designing an agile 

two-wheeled robot with machine vision [7]. 

State-space modelling is a time domain method that 

provides basis for modern control theory and system 

optimisation, which also functions as an effective technique 

for linear and nonlinear time invariant system design and 
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analysis [1]. The block diagram description of the variables of 

a plant model is shown in Figure 1.  

 

Fig. 1. Block diagram description of state space system 

The mathematical expression of a LTI system in state space 

form is given by: 









DuCxy

BuAxx
                        (1) 

where A is the state matrix, B is the input matrix, C is the 

output matrix, and D is the transition matrix. 

3. THE ROBOTIC GRINDING PROCESS AND SYSTEM DESIGN 

This section will begin with a brief description of the 

grinding process utilizing 2-PHSM in robotic grinding. The 2-

PHSM provides the mechanical motion for the grinding 

process.  The motor is used in milling process and provides 

appropriate torque together with better noise, vibration, and 

cost performance [8]. The schematic diagram of the robot 

grinding process (milling machine) is shown in Figure 2. The 

figure shows that the normal, Nf  and the tangential force, Tf

are the forces for milling process [8].  

The mathematical modelling of a two-phase hybrid stepper 

motor and the design of LQR control system are presented in 

subsequent subsections.  For the mathematical modelling, the 

transfer function model of 2-PHSM is transformed to its state-

space equivalent model. This approach is commonly used in 

control systems engineering such that state-space model can 

be transformed into transfer function model as well as in [9] 

and [10] vice versa. 

 

Fig. 2 Servo system of robot grinding process [8] 

3.1 Mathematical Model of Two-Phase Hybrid Stepper 

Motor 

The two-phase hybrid stepper motor in robotic grinding 

whose dynamic is represented in terms of transfer function in 

[8,11] is further modelled in state-space form using direct 

decomposition method in this subsection. The plant model in 

transfer function is given by [8,11]: 

s 7500s 650000s 19799s

135000000s 28350000s 270000
G(s)
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2
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             (2) 

Applying direct decomposition, the state variable )s(X1 is 

defined by taking the numerator of Eq. (2) as one, and this is 

written as: 

  )s(U 10000)s(X  s7500s 650000s 19799s 1
234    (3) 

where the transfer function )s(U)s(Y)s(G  , and )s(Y , 

U(s), )S(X1  are respectively the system response, the control 

input and state variable respectively. Writing Eq. (3) form as: 
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The state variables are now defined in state-space form as 

follows: .xxx ;xxx ;xxx  ;xx 41131121111  

Thus the resulting state-space equation is given by: 
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Expressing Eq. (6) in time domain in terms of differential 

equation gives: 

111 x13500x2835x27)t(y                                 (7) 

Equation (7) further expressed in state variable form as in Eq. 

(8) and this reveals the dependence of the output on the system 

internal variable, which are not revealed using transfer 

function. 

123 x13500x2835x27)t(y                                (8) 

The matrix representation of the state space variables with 

respect to the output is given by: 
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Now, considering Eq. (1), A, B, C, and D matrices are defined 

from the modelled state-space. 
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3.2 Design of LQR System 

The designed robot grinding process control using LQR 

controller is presented in this subsection. As a result of the 

stability offered by LQR technique, it has been widely used 

besides PID controller in several control application and is 

employed in modern optimal control theory [12]. The LQR is 

an optimal control system whose objective is to minimize the 

quadratic cost function defined by [13]: 

dt )]t(Ru)t(u)t(Qx)t(x[
2
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0

TT




                              (10)  

where Q and R are the state and control law matrices 

respectively. Usually, Q is varied while R is kept constant 

during design.  

There are three steps to designing a LQR control system: 

the first is to determine the Q and R matrices, the second is to 

find the Ricati coefficient matrix P, and the third step is to 

determine the control law gain matrix K. 

The Ricati coefficient matrix P is the unique symmetric 

matrix of the Ricati equation given by [12,14]: 

0QPBPBRPAPA T1T          (11) 

The value of R was fixed as 1, while the Q matrix was 

varied and yielding corresponding values of P using MATLAB 

program.  

,

9.1000

09.100

009.10

0009.1

Q ,

8.1000

08.100

008.10

0008.1

Q 21







































  

,

2000

0200

0020

0002

Q3

















































i0000.03889.2

i0000.00027.0

i0000.00000.0

i0000.00000.0

*4e0.1P1  





























i0000.03889.2

i0000.00027.0

i0000.00000.0

i0000.00000.0

*4e0.1P2  





























i0000.03889.2

i0000.00027.0

i0000.00000.0

i0000.00000.0

*4e0.1P3  

The system is taken to zero state in optimal manner by the 

input and it is called the feedback control law of the optimal 

controller that minimises the cost function defined by: 

Kxu                                      (12) 

where,  

PBRK T1                                      (13) 

It is the gain matrix of the optimal control law and is 

determined using the MATLAB syntax: ).R,Q,B,A(lqrK 

With respect to different values of Q matrix, different K values 

were computed.  

 4118.04802.05941.123416.1K1   

 4326.04920.07782.123784.1K2   

 4532.05036.09553.124142.1K3   

The block diagram of LQR control system is shown in 

Figure 3.   
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Fig. 3 Block diagram model of LQR control system 

4.  RESULTS AND DISCUSSION 

The results obtained by tuning the Q matrix for are 

presented in this section. With the Q matrix tuned, different 

optimal gain matrix were obtained resulting in different 

control action on the system. The system response was tagged 

sys1, sys2, and sys3 with respect to the each control command 

applied. The various graphs obtained with respect to each step 

response of the system for varying Q value are shown in Fig. 

4-6. A combination of the responses is shown in Fig. 7 for 

comparison. Table 1 is the numerical performance analysis of 

the responses generated by the system for a given Q value. 

 

Fig. 4 Step response for Q1 (sys1) 

 

Fig. 5 Step response for Q2 (sys2) 

 

Fig. 6 Step response for Q3 (sys3) 

 

Fig. 7 Comparison of LQR control system for varying Q 

matrix 

 

Table 1 Numerical analysis of system response 

 

System 

Rise 

time 

(s) 

Peak 

time 

(s) 

Settling 

time 

(s) 

Overshoot 

(%) 

Final 
value 

Sys1 

(Q1) 

15.1 31.1 41.2 4.14 1.01 

Sys2 

(Q2) 

14.9 30.6 40.7 4.14 0.98 

Sys3 

(Q3) 

14.7 30.3 40.2 4.14 0.96 

The numerical analysis as shown in Table 1 revealed that 

the LQR was able to provide good and stable transient and 

steady state response performance for the grinding process. 

With the initial value of the Q matrix (Q1), the system (sys1) 

response indicated rise time of 15.1 s, peak time of 31.1 s, 
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settling time of 41.2 s, and overshoot of 4.14% and a final 

value of 1.01. For Q2, the step response of the system (sys2) 

was slightly improved compare with sys1 in terms of rise time, 

peak time, and settling time. Similarly, with Q3, the third 

scenario showed that the response of the system (sys3) was the 

best in terms of rise time, peak time, and settling time. 

However, the peak percentage overshoot remains the same in 

all cases. Also, while sys1 achieved final value of 1.01 with 

steady state error of 0.01, sys2 yielded final value of 0.98 with 

steady state error of 0.02, and sys3 offered final value of 0.96 

with steady state error of 0,04.  

Considering the numerical analysis, the system sys1 yield 

the finest performance followed by sys2. The steady state error 

performance of sys1 and sys2 meets the 2% criterion 

considered during simulation. Contrary performance was 

provided by sys3, which yielded a final value of 0.96. This 

results in steady state error of 0.04 and this does not meet the 

2% criterion for the simulation conducted. Thus, sys1 and sys2 

are ideally suitable for robot grinding control process 

considering the 2% criterion.  

5. CONCLUSION 

In this paper, an optimal control system based on LQR has 

been designed for the control of two-phase hybrid stepping 

motor (2-PHSM) in robot grinding process. The dynamic of 

the 2-PHSM was initially established in transfer function s-

domain representation. Direct decomposition technique was 

applied to model the system dynamic in state space form. 

Using the parameters of the state-space model such as the state 

matrix, the input matrix, and output matrix, the quantities 

guiding the optimal control performance of the LQR were 

determined. With the design of the LQR controller, the Q 

matrix was designed with three different values. Simulation 

results conducted with the designed LQR system indicated that 

it yielded good response performance.  
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