
International Journal of Academic Engineering Research (IJAER)

ISSN: 2643-9085

Vol. 8 Issue 5 May - 2024, Pages: 40-48

www.ijeais.org/ijaer

40

From Software Development Lifecycle to Machine Learning

Lifecycle
Marine Alraqdi, Shahad Alqureisha, Reham Alzowaid, Munerah Altalasi, Maram Alsuhaibani, Aisha Al-Maalwy and

Omer Alrwais

College of Computer and Information Sciences,

King Saud University, Riyadh, Kingdom of Saudi Arabia

Abstract- Development life cycles are important for developing any system since they include the methodologies and models needed

to confirm users understand the design, meet their needs, and ensure the project is on track. Software Development Life Cycle

(SDLC) is one of the traditional methods of development software. It lists all the process and task necessary for developing software.

But with the rapid development of machine learning that becoming vital in several industries, new methods for life cycle development

needed to meet demand, such as Machine learning Life Cycle (MLLC). The main reason for needing (MLLC) due to many differences

between machine learning applications and traditional information software. This paper deal with description on how SDLC differs

from MLLC at different stages of the development life cycle. In this paper, we first provide brief discussion about SDLC, followed

by the definition and importance of MLLC. Finally, we provide a comparison between SDLC and MLLC at different stages of the

development life cycle.

Keywords: Software Development Life Cycle, SDLC, Machine Learning Life Cycle, MLLC, Phases

I. INTRODUCTION

System development life cycle (SDLC) considered as one of the

most robust methodologies that has been used in the past ten

years. It handled and managed different problems regardless

with their complexity, but recently it became difficult to use the

SDLC methodology to handle "intelligent" applications and

machines since it needs more simulations and intelligence.

Recently, Machine learning (ML) has been used and emerged in

many fields since it can be easily used as ML components, and

ML framework which enhances the productivity with preserving

the quality at the same time since the employee or the user would

enter the training set or the data that would be used as an

inference to predict and solve the problems. Organizations

started using the machine learning methods and techniques in

applications that needs or deals with the artificial intelligence.

At the beginning organizations were struggled because they

were not having a methodology that was compatible with

Machine Learning. Then the experts and researchers designed

Machine Learning Life Cycle (MLLC) methodology to handle

machine learning and artificial intelligence applications and

frameworks [1].

SDLC focuses on the shallowed representation of the developed

system were the MLLC focuses on designing a model that could

automate and achieve tasks faster since it was trained by the set

of data that has been entered by the system's expert which helps

in designing the model and that is one of the first stages in

MLLC. In fact, there are many differences between SDLC and

MLLC that are helping the organizations and the experts to

define which one is the suitable methodology due to the desired

tasks.

In this review paper, the first part is talking about the definition

of SDLC then the second apart is illustrating MLLC, the third

part is discussing why MLLC is important then the last and main

part of the paper which is the difference between SDLC and

MLLC in details.

II. WHAT IS SDLC?

When an organization develops software, it needs a highly

structured life cycle, which is important for placing process

plans, principles, and specifications. Its main purpose is to define

all activities related to the software development process, called

the software development life cycle (SDLC). SDLC is an

iterative process that includes the methods and standards

required to build an information system. It brings value to the

organization by addressing all necessary business requirements

in the software development life cycle [2]. The first software

development life cycle was presented by Herbert Benington in

1956. The first thoughts started around sequence of steps that

used in development of software. Taking in consideration, the

"software development" initially it formed only by coding. As

programming come more sophisticated, development work

requires more structured phases as the basis for project

management [3]. As shown in figure.1 the software lifecycle

models usually include some or all of this phases [4], which will

be discussed later in this paper:

 Planning

 Requirement Analysis

 Designing

 Coding

 Documentation

 Testing

 Maintenance

International Journal of Academic Engineering Research (IJAER)

ISSN: 2643-9085

Vol. 8 Issue 5 May - 2024, Pages: 40-48

www.ijeais.org/ijaer

41

Figure.1 SDLC Phases [7]

According to needs, these phases and related activities can be

achieved through different ways. Such these ways known as

software Development Lifecycle Model (SDLC). These models

provide how should developed software through two types. First,

the descriptive model: Provides a describe the history of how

was developed particular software system. On the other hand,

the prescriptive model used as basis for understanding and

improving processes of software development or constructing

models that based on it.[4] In order to be successful in the

software development process, each process model follows a

specific life cycle. The following is an example of the SDLC

model: [5]

 Waterfall model

 Spiral model

 RAD Model

 Prototyping Model

 Shaped Model

III. WHAT IS MLLC?

MLLC is an abbreviation of the Machine Learning Lifecycle. In

[8], authors described Machine learning as the extraction of

automated models from data. In addition, authors mentioned that

the machine learning life cycle contains four phases: Data

Management, Model Learning, Model Verification, and Model

Deployment. They used the machine learning workflow term for

the first three phases, which includes the activities in which the

machine is taught, and models are produced. The fourth phase

includes the activities to deploy the ML models in operational

systems with the components obtained from the traditional

systems engineering process.

According to [9], authors have mentioned another division of

MLDLC (Machine Learning, Development Life Cycle) stages,

as it was divided into five core stages:

1. Collect Data.

2. Data Refinement.

3. Model Training.

4. Execute Model.

5. Model Refinement.

The first and second stages are data collection, validation, and

documentation. In the third and fourth stages, the appropriate

model is determined by analyzing the model and its suitability

for the project. At the end, the model is deployed after

confirming and testing the model and evaluating the validity of

the results. The MLDLC (Machine Learning, Development Life

Cycle) is an iterative process as shown in the figure 2.

figure 2: MLLC phases [9]

There are several methodologies for MLLC, each methodology

works best with specific types of data or projects. Some

examples of MLLC methodologies:

 CRISP-DM Methodology

CRISP-DM stands for “CRoss-Industry Standard Process for

Data Mining” which commonly used in data mining and data

analysis. It is an iterative process that contains six stages [12,13]

There is no specific way to impose movement between the

stages, the movement between them depends on what the work

requires [14]. The six different phases are: (Business

Understanding, Data Understanding, Data Preparation,

Modeling, Evaluation, and Deployment) [12,13]. This

methodology is most suitable for application in data mining

projects when knowledge of the problem is insufficient [15].

 SEMMA Methodology

This methodology developed by SAS Institute [14]. It is a non-

iterative process, unlike the previous methodology, as it focuses

on procedures rather than results [12]. This methodology is not

considered a data mining method but rather a tool to aid in the

mining process [14]. It contains four stages that make up the

word SEMMA, which are (Sample, Explore, Modify, Model and

Assess) [12,14]. This methodology deals with huge data to

discover previously unknown patterns [12].

International Journal of Academic Engineering Research (IJAER)

ISSN: 2643-9085

Vol. 8 Issue 5 May - 2024, Pages: 40-48

www.ijeais.org/ijaer

42

 Team Data Science Process (TDSP) Methodology

This methodology is classified as an agile and iterative process

which used in the field of data science and also used in the work

of smart applications and predictive analytics. Its life cycle is

similar to the CRISP-DM life cycle, as it includes five stages:

(Business Understanding, Data Acquisition and Understanding,

Modeling, Deployment, and Customer Acceptance) [12].

IV. WHY MLLC IS IMPORTANT?

The importance to develop lifecycle specific for machine

learning programs comes from the importance and criticality of

machine learning program itself. There are studies explaining

the importance of applying the machine learning in several areas

such as in paper [8], authors mentioned the importance of

applying machine learning in safety-critical systems by making

them able to understand the environment in which those systems

operate and making these systems able to determine their

response to the external changes that occur in their work

environment. Also, it is considered an essential aspect as

mentioned in [9] which says that Machine learning have an

important role on the BPR (Business Process Re-engineering)

which is an approach that aims to add improvements by raising

the efficiency and effectiveness of the processes followed within

the organizations. BPR detects and change processes to improve

the Software Engineering Management (SEM).

According to [1], which focused the search about the differences

between ML and non-ML development. Among its findings, the

software development process consists of multiple practices and

also includes people from different fields with varied

experiences. So, it is not like a homogeneous mass.

In addition, [10] have talked about the applying of machine

learning algorithms in software development. They mentioned

that it has proven important in several areas, including when the

field of the problem is not well-understood with poorly human’s

knowledge, when the field has a huge database must be explored,

and in the domains where the programs must be adapted to the

conditions of their environment. According to [11] they

discussed the issue of applying machine learning specifically in

the areas of software development and maintenance by using

machine learning algorithms. Through their research, they found

that people's awareness of applying machine learning in this area

has increased due to the benefits they have obtained, also the

ability to work with machine learning techniques and software

engineering tools together. Whereas machine learning

techniques have the ability to design and develop software

artifacts based on its mathematical and logical strength.

V. How Machine Learning Life Cycle is different

from System Development Life Cycle?

Software development life cycle may have some similarity with

the Machine learning Lifecycle, and it can be used as a right

starting point for building machine learning program. However,

there are several criteria that are related to model management

in Machine learning life cycle which makes ML programs and

traditional software vary on their basics. As a result, the

development of ML-based software applications may face some

challenges that results on major technical costs when planning

to follow software development life cycle methodologies with

its related traditional abstractions, software design principles and

practices. Consequently, specific lifecycle, frameworks and

tools have been researched on the recent decades for managing

the deployment and development of machine learning program.

[8,16]

The typical characteristics that make MLLC different than

SDLC are the following:

 Data science is less about program development and

more about analyzing and getting insights from the data

[12].

 The ML Lifecycle is data-driven because the model, the

output of training is dependent on the data it was trained

on. However, traditional software systems building, or

compilation are data independent.

 Unlike the software engineering lifecycle, even the

most experienced and skilled engineers will not have a

clear insight about the structure and results of the final

program because of the ML program are experimental,

combinatorial, and data driven.

 In ML program, context is extremely critical factor, so

there might be a huge space of possibilities that differs

based on the context. As a result, it will be necessary to

understand which data artifacts were used to train

which models, and with what configurations [16].

In the following points, we have identified the major challenges

more specifically for the most important phases of software

development life cycle in regard of Machine learning

applications to help the reader get better insight about the

reasons for emerging machine learning life cycle and the need

for guidelines for best practices in collaborative research in the

context of for machine learning applications.

1. Software requirements:

As mentioned, [36] the SDLC requirements engineering means

analyzing, validating, specifying, and eliciting requirements that

represent a software system’s intended objective.

Data is at the core of any application of machine learning (ML).

The first stage of any ML cycle is data management. This stage

is responsible for the acquisition of the data supporting the

synthesis of machine-learned models. This data can then be used

“to predict future data, or to perform other kinds of decision

making under uncertainty” as stated in paper [17]. For some

scenarios, it is possible that data samples are either unavailable,

too costly, time consuming, or even dangerous. In this case, the

augmentation methods put forth in papers [18, 19] are used to

procure more data samples and add them to the collected data

sets. Additionally, the data collected from multiple sources may

be heterogeneous in nature, and therefore preprocessing, as

International Journal of Academic Engineering Research (IJAER)

ISSN: 2643-9085

Vol. 8 Issue 5 May - 2024, Pages: 40-48

www.ijeais.org/ijaer

43

suggested in papers [20,21], may be required to produce

consistent data sets. This is often required for training and

verification purposes.

ML system requirements are heavily data driven. As paper [17]

has noted, the ML system requirements are far more uncertain

than those of the non-ML systems. Research from paper [1]

outlines that ML systems aid in streamlining decision making

processes within organizations. Rather than functional

descriptions, it provides you with a more conceptual description

of an organization’s goals, after taking into account the data that

has been gathered from the ML systems. Because the ML

systems are so heavily data-driven, this means that the

combination of different data results can result in a wide variety

of different results.

While the non-ML software systems usually require functional

requirements, ML system requirements are comprised mainly of

quantitative measures. Information from paper [11] suggests

that distinct types of quantitative measures would be leveraged

to define requirements, e.g., accuracy, precision, recall, F

measure and normalized discounted cumulative gain (nDCG).

Paper [1] proposes that the target scores for quantitative

measures could vary from one application to the next. In places

where safety is of the highest value, the accuracy of the ML

systems is of the greatest importance. In an environment such as

this, higher scores of quantitative measures are both desired and

expected for safety reasons.

Requirements for ML systems typically involve a large number

of preliminary experiments, which varies from the requirements

of non-ML systems. As paper [1] has noted, business

stakeholders might suggest leveraging a number of emerging

machine learning algorithms to solve their business problems.

The largest consequence of this is that it is then necessary that

the requirement specialists already have a strong background in

machine learning. The other consequence is that the requirement

validation process involves a larger number of preliminary

experiments, as outlined in paper [1]. Those preliminary

experiments are conducted by software engineers that set out to

validate and select machine learning algorithms from different

sources.

As paper [1] has suggested, it is imperative that take into

consideration the possible degradation in the lifespan of the ML

systems over time. The findings from papers [1, 17, 11]

emphasize that there are two very important requirements of a

ML system: firstly, that they should be capable of becoming

aware of any degradation of their own performance. Secondly,

if degradation in performance occurs, the ML system needs to

be able to perceive that degradation and be able to adapt to it.

The way that the ML system would be able to adapt to it is either

by sending new data to the learning algorithm, or it must use

brand new data to train a new model.

2. Software design:

The non-ML software systems architecture always described by

software design where it represents "how software is

decomposed and organized into components" [22]. While in ML

systems the architecture and design of model done in model

learning stage, it typically starts by selecting the type of model

according to type of problem, structure and volume of training

data and good personal experience [17].

As noted in [1], the architecture of ML systems differs than the

architecture of non-ML software systems. ML architectures

consist of data collection, data cleaning, feature engineering,

data modeling, model execution and model evaluation [23].

Generally, this architecture relatively fixed in a lot of ML

systems [1]. While non-ML software systems implements

different software components structures and also generate the

descriptions of these components behavior like: drawing data

flow diagram and activity diagram for these components [1,17].

The main issue for data design is the generation of huge amount

of data [22,36]. The distributed architectural style is the better

solution of these issue [1,27] which may lead to complexity in

architectural design of ML systems [22].

ML systems consist of different components each component

with its own function but all of these components are dependent

on each other [1,17]. For example: the performance of model

highly dependent on pre-processing of data, if it is done weakly

that lead to failure of produced model. So, pre-processing of data

considered as the most important stage in ML systems that effect

on the performance of model [22]. If there is more than one

model, often each model work separately without any dependent

on another model [24]. In contrast, the high dependency occurs

between components of non-ML software systems [10]. From

that we can conclude the components of non-ML software

systems are highly coupled than the components of ML systems

[1].

As mentioned in [9] the detailed design of ML systems

considered more flexible than non-ML software systems. For

each model of ML systems, we can use different numbers of

algorithms [22] as such each algorithm can be used in different

models [1,17]. As a result, the construction of a good model with

detailed design can be applied in multiple iterations until reach

to a proper model [9] which are taken time and considered as

time consuming [22].

3. Software Construction:

Usually, software construction mostly refers to coding and

debugging [22]. Coding in non-ML software systems done in

coding phase where it responsible about translating the design of

the software into code by using particular programming

language [8]. While coding in ML systems involves data

processing, feature analysis and data modeling by using data and

algorithms [1,36]. Non-ML software systems highly depends

on coding and it needs high workload to perform the codes

[1,8,26]. In contrast, ML systems highly depends on data and its

International Journal of Academic Engineering Research (IJAER)

ISSN: 2643-9085

Vol. 8 Issue 5 May - 2024, Pages: 40-48

www.ijeais.org/ijaer

44

workload of coding is low as compared to non-ML software

systems [9,17]. In non-ML software systems code can be reused

significantly between different software systems [1] to increase

productivity and reduce time and cost of development [25]. The

code in ML systems considered as low little reused between ML

systems because ML systems significantly emphasis on

performance. Data considered as the basic effecter on the

performance of model [1]. Libraries in ML systems can be

reused also commonly between different models [36]. The data

also in ML systems can be reused from external domain [36].

Debugging generally related to find bugs and errors [8]. In non-

ML software systems debugging responsible about fix bugs and

errors in the code [26]. While in ML systems debugging

responsible about performance improvement. The performance

of ML systems cannot be evaluated until the data model is

finished and finalized [25]. From that we can know the

importance of finalizing data model in the ML systems

construction [1].

During to the multiple iterative training for data modeling

[17,22,36], training a high volume of data require a long time to

complete training [1]. So, [25,36] suggested that the data should

be divided into multiple datasets with different size. The training

start with small dataset then take a large dataset after reaching a

good result from training of small datasets to save time of

training, improve training efficiency and mitigate risk may

occurred from incomplete training.

The practice of debugging in non-ML software systems done in

step-by-step execution of program by using different

methodologies that depend on determining breakpoints [25].

The aim of debugging of ML systems is "to translate ideas from

developer's head into code" in more straightforward way [1].

The bugs are considered as a result of debugging process. Bugs

differs between ML systems and non-ML software systems.

Many bugs can be found in code of non-ML software systems

[26] while the bugs in ML systems is a data bug [36]. Also, bugs

in ML systems can be generated as a result from the integration

of two frameworks with different order of dimensions of data

[1]. Bugs in ML systems are hardly diagnosing, the developers

must be going in each line of code and attempt to find the causes

of bugs [25]. While in non-ML software systems diagnosis of

bugs is straightforward and easier than ML systems [20,26].

4. Software Testing:

In SDLC, software testing means checking if a program for

specified inputs gives correctly and expected results. Software

testing is a critical component of software quality assurance,

especially for life-critical software such as flight control testing

which can be highly expensive. Software testing is a process of

executing a program with the goal of finding errors. So, testing

means that one inspects behavior of a program on a set of test

cases i.e., a set of inputs, execution preconditions, and expected

outcomes developed for a particular objective, such as to

exercise a particular program path or to verify compliance with

a specific requirement, for which valued inputs always exist

[27]. However, the testing of ML systems poses new challenges

for software testing community. Although software quality is

important in both ML and non-ML systems, the practice of

testing appears to differ significantly [1]. As a result, new

guidelines are needed to help ML developers cope with the

challenges they face to validate the ML programs [28].

Some of the main challenges is that traditional software systems

are constructed deductively by writing down the rules that

govern the behavior of the system as program code. However,

with ML, these rules are inferred from training data which means

they are generated inductively resulting in systems that are

fundamentally challenging to test because they do not have

complete specifications or even source code corresponding to

some of their critical behaviors. In fact, ML models learn from

the input data in an adaptive and iterative manner. The model

verification stage of the ML lifecycle is concerned with the

provision of auditable evidence that a model will continue to

satisfy its requirements when exposed to inputs which are not

present in the training data. Consequently, the inductive nature

of ML programs makes it difficult to reason about their behavior

[29] and the generated rules might even be unknown to the

developers. Thus, it is harder to identify the erroneous system

behaviors and to detect the source of the bugs [28].

Moreover, ML systems lack a reliable explicit oracle to detect

what is the correct output should be for arbitrary input. As a

result, it will be difficult to detect subtle errors, faults, defects,

or anomalies in the ML applications [30]. In addition, machine

learning programs do not have control flow like traditional

programs and cannot be tested with traditional software testing

techniques which rely on explicit oracle and program control

flow.

Another difference is that in traditional software testing it is

possible only to show the presence of bugs but not their absence.

Usually when input or output equivalence classes are applied to

developing test cases so, the expected output for a given input is

known in advance. In ML, the problem is how to devise test

cases that are likely to show bugs, and how one can know

whether a test is revealing a bug, given that we do not know what

the output should be in the general case [31]. The functionality

of ML systems depends on the set of data input to them and a

minor change in the training data can have major influence on

the behavior of the system and the results of the learning process

[28].

According to [1] in ML programs, the testing outputs are

expected to be a range rather than a single value[1]. Compared

with traditional software, the dimension and potential testing

space of a ML programs is much larger. Current existing

software development techniques must be revisited and adapted

to this new reality [29].

International Journal of Academic Engineering Research (IJAER)

ISSN: 2643-9085

Vol. 8 Issue 5 May - 2024, Pages: 40-48

www.ijeais.org/ijaer

45

Furthermore, ML algorithms might sometimes exhibit

robustness to some bugs and produce reasonable outcomes by

compensating for noisy data or implementation errors. Thus,

bugs in ML application can be tricky to detect and fix.

Furthermore, testing of ML applications may involve large scale

training data and manual labeling of such data which is a highly

cost task. Moreover, a random selection of subsets of data is

likely to fail in identifying many cases [28].

One significant difference also exists in the reproducibility of

test results. In contrast to non-ML software systems, the testing

results of ML systems is hard to reproduce because of several

sources of randomness. As the outcomes of machine learning

models are stochastic in nature there might not be unique results

to compare and verify machine learning applications [28]. Test

case generation for ML systems is more challenging, compared

to non-ML systems. In addition, automated testing tools are not

used as frequently as non-ML systems [1] such as the existing

unit testing frameworks PyUnit for Python cannot be readily

used to test ML applications [28].

All these issues make the testing and fixing of erroneous

behavior in ML applications a very challenging task and

different than the software systems. According to [30], such

systems have been classified as “non-testable” by traditional

methods because it is a hard and complex process to explain the

model behavior. As a result, some researchers leading to the

requirement of developing novel strategies to test machine

learning applications. Several techniques are recently proposed

in the literature for testing ML models such as the evaluation of

the model accuracies with the evaluation data set that must be

complete enough to represent all possible use-case scenarios

[28]. In addition, these techniques can be used to analyze and

test the scalability, generality, and robustness of ML program

[30].

5. Software Maintenance and configuration management

As mentioned in [32], software maintenance is about the

activities required to provide the effective support to software.

Maintenance activities are performed during the pre-delivery

stage and during the postdelivery stage. Pre-delivery activities is

about the planning for post-delivery operations, maintainability,

and determination for transition activities. Postdelivery activities

include software modification, training, and operating or

interfacing to a help desk.

The ML program model management phase focus on the

maintenance, deployment and monitoring of ML models which

is a challenging task in building ML program. ML models as

mentioned before are data-driven and are based on different

assumptions on the distributions and patterns of data. Therefore,

initial characteristics of data may not hold due to frequent

changes in the data which might affect the model behavior [28].

ML systems are highly predicted to degrade in performance

across time and in provide constantly robust results. Thus, most

ML systems usually support automatic maintenance. Once

performance degradation occurs, ML systems is designed to

recognize the degradation and trains new data models in an

online or offline way using the latest emerged data. “Health

factors” or quantitative indicators are often used to check the

status of a machine learning system as part of ML monitoring

process. The indicators help machine learning system monitor

its performance in the specific application context [1]. In fact,

robust, continuous monitoring models will help in detecting

changes and carefully adapt to changing conditions.

In machine learning programs, one of the major threads is that

uncertain events might occur in the deployment phase because

the environment of machine learning production might largely

differ from the environment the ML models were trained and

evaluated. In many cases, the ML models may be frequently

retrained with concept drift which means the data characteristics

may depend on some hidden context, not given explicitly in the

form of predictive feature at the time the model have been built,

ex: the patterns of customers’ buying preferences may change

with time. As a result, the behavior of the model will change

independently without considering the real-world environment

changes [32,33]. Therefore, ML post-deployment monitoring

of models is important and ML systems needs more monitoring

efforts more than traditional software. Monitoring in machine

learning applications includes:

 Data monitoring: monitoring the data characteristics

provided to the model because it could negatively

impact the quality of a model’s predictions. Monitoring

tools for data dependencies, automatic data validation

and cleaning during runtime, and concept drift

adaptation must be implemented.

 Operation environment monitoring: machine

learning production environment might differ from the

environment the ML models were trained and

evaluated which leads to add new functional modules

to the application. Over time, operation environment

might add some challenges such as compatibility,

portability and scalability that needs to be considered.

 Model monitoring: monitoring the internals of the

model and its performance including decisions on

model retraining, adversarial settings, and backwards

compatibility of trained models.

 Runtime Monitoring: Selection of the metrics used

for monitoring, live monitoring of system behavior that

allows automated responses without direct human

intervention, and dynamic monitoring for runtime

verification and certification [8, 30].

To apply changes to the machine learning models with the

objective of maintaining the application, some procedures are

needed to be implemented to control the change process.

Software configuration management is a supporting-software

life cycle process that benefits project management,

development and maintenance activities, quality assurance

activities, as well as the customers and users of the product [32].

However, configuration management for ML systems involves

International Journal of Academic Engineering Research (IJAER)

ISSN: 2643-9085

Vol. 8 Issue 5 May - 2024, Pages: 40-48

www.ijeais.org/ijaer

46

a larger amount of content compared to non-ML software. One

reason is that machine learning models include not only code but

also data, model files, model dependencies, hyperparameters,

and parameters that must be considered on the configuration

management [1,28]. Machine learning is all about data. The

amount of effort it takes to discover source, manage, and version

data is inherently more complex and different than doing the

same with software code [32]. In addition, it is important to keep

track of the model versions, dataset, and configurations to allow

reproducibility of ML models and easier management of ML

workflow. Model reproducibility helps us to analyze and

compare model behavior and performance and supports

deployment or roll out decisions. We defined policies to version

data, keep track of models and configurations for comparative

analysis of our ML models [28].

In fact, all previously mentioned challenges on ML model

management and configuration management for ML

applications needs to be considered which leads to new tools and

techniques to be designed[32].

6. Software Engineering Processes and Management

The developmental lifecycles for an application that is not ML

would not be adequate when applied to ML systems as the need

for data-oriented or model-oriented is not considered, this is

especially the case when managing lifecycles [36].

They are both very different from each other in terms of the

process involved when developing them. A paper [9] suggests

considering the importance of communication with every

stakeholder, regarding the capabilities of machine learning.

Another paper [20] mentions the importance of data processing

if one wishes to successfully carry out the entire process. The

data visualized in paper [9] helps understand how the features

are distributed and how they correlate with each other. They also

help to identify any trend or pattern that may exist within the

data. These steps aim to determine how various aspects can be

balanced using a trial and error method. Even the most

sophisticated machine learning programs use their mistakes as

something to learn from.

The addition of any ML component into software requires a few

actions that must be taken first. The development of an ML

system must first be guided using software that is altered

depending on what the development team requires [35]. Data

lifecycles involve a variety of steps that are critically and

compellingly designed so that every project would be successful

[20]. Thus, Agility becomes something that is extremely

essential when deciding on an approach as a result of the

evolution and the increased demand within the ML system

industry that fosters newer ideas and innovations. ML models

and their lifecycles help provide a second example of the

efficient integration of processes that help with the success of

the project [9]. Apart from the two lifecycles mentioned, each

team would also require assistance on several aspects, including:

Engineering processes, data-handling, tests, as well as generally

maintaining the same work process.

The uncertainty attributed to the various ML process makes it

difficult to provide an accurate estimation of the labor required

and make a plan of the same [34]. There can be instances where

teams aren’t allowed to find out the achievability of their target

quantities till there is a final ML model [36]. Since estimation is

not possible, an impatient would be likely to begin the

cancellation of the developments for ML components although

it would have an intermediate result that shows a great deal of

progress.

The papers [9] and [20] not that real-world applications for ML

projects within companies would face a great dealing of

difficulty when developing, deploying, and operating in a way

that complies with the privacy-policies for those organizations

as well as their legal framework. Such a demand would be

challenging from a technical as well as a management

perspective.

VI. CONCLUSION

In this paper we focused on defining the SDLC and MLLC

terminologies then illustrating the differences between ML

development and non-ML development in details by defining the

differences according to ML development steps. Apparently,

machine learning is the new methodology that would adapt with

the new technologies. This decade is depending on big data and

data science, which makes MLLC useful since it is data driven

and deals with uncertainty which helps in avoiding risks,

damages and increase the business profits as well. Machine

learning algorithms and applications are already existing in our

phones. In the future, understanding and having knowledge

about the machine learning would be one of our life's basics.

REFERENCES

[1] Z. Wan, X. Xia, D. Lo and G. C. Murphy, "How does

Machine Learning Change Software Development Practices?,"

in IEEE Transactions on Software Engineering, doi:

10.1109/TSE.2019.2937083.

[2] Murch, R. (n.d.). The software development lifecycle - a

complete guide. Retrieved March 20, 2021, from

https://books.google.com.sa/books?id=Q7utBQAAQBAJ&lpg

=PA11&hl=ar&pg=PA16#v=onepage&q&f=false

[3] Kneuper, R. (2017). Sixty years of software development life

Cycle Models. IEEE Annals of the History of Computing,39(3),

41-54. doi:10.1109/mahc.2017.3481346

[4] Rastogi, V. (2015). Software Development Life Cycle

Models- Comparison, Consequences. International Journal of

Computer Science and Information Technologies.

[5] Ragunath, P., Velmourougan, S., Davachelvan, P.,

Kayalvizhi, S., & Ravimohan, R. (2010). Evolving A New

Model (SDLC Model-2010) For Software Development Life

https://books.google.com.sa/books?id=Q7utBQAAQBAJ&lpg=PA11&hl=ar&pg=PA16#v=onepage&q&f=false
https://books.google.com.sa/books?id=Q7utBQAAQBAJ&lpg=PA11&hl=ar&pg=PA16#v=onepage&q&f=false

International Journal of Academic Engineering Research (IJAER)

ISSN: 2643-9085

Vol. 8 Issue 5 May - 2024, Pages: 40-48

www.ijeais.org/ijaer

47

Cycle (SDLC). IJCSNS International Journal of Computer

Science and Network Security.

[6] Sujit, K., & Pushkar, D. (2013). SOFTWARE

DEVELOPMENT LIFE CYCLE (SDLC) ANALYTICAL

COMPARISON AND SURVEY ON TRADITIONAL AND

AGILE METHODOLOGY. National Monthly Refereed Journal

of Research in Science and Technology.

[7] SDLC - software development life cycle - JAVATPOINT.

(n.d.). Retrieved March 22, 2021, from

https://www.javatpoint.com/software-engineering-software-

development-life-cycle

[8] Paterson, C., Calinescu, R., & Ashmore, R. (2021). Assuring

the Machine Learning Lifecycle: Desiderata, Methods, and

Challenges. ACM Computing Surveys.

[9] Bhavsar, K., Shah, V., & Gopalan, S. (2020). Machine

Learning: A Software Process Reengineering in Software

Development Organization. International Journal of

Engineering and Advanced Technology (IJEAT), 9(2), 4492-

4500.

[10] Zhang, D. (2000, June). Applying machine learning

algorithms in software development. In Proceedings of the 2000

Monterey workshop on modeling software system structures in a

fastly moving scenario (pp. 275-291).

[11] Zhang, D., & Tsai, J. J. (2003). Machine learning and

software engineering. Software Quality Journal, 11(2), 87-119.

[12] Karamitsos, I., Albarhami, S., & Apostolopoulos, C.

(2020). Applying DevOps practices of continuous automation

for machine learning. Information, 11(7), 363.

[13] Wirth, R., & Hipp, J. (2000, April). CRISP-DM: Towards a

standard process model for data mining. In Proceedings of the

4th international conference on the practical applications of

knowledge discovery and data mining (Vol. 1). London, UK:

Springer-Verlag.

[14] Dåderman, A., & Rosander, S. (2018). Evaluating

frameworks for implementing machine learning in signal

processing: A comparative study of CRISP-DM, semma and

kdd.

[15] Palacios, H. J. G., Pantoja, G. A. H., Navarro, A. A. M.,

Puetaman, I. M. A., & Toledo, R. A. J. (2016, September).

Comparativa entre crisp-dmy semma para la limpieza de datos

en productos modis en un estudio de cambio de cobertura y uso

del suelo: Comparative between crisp-dm and semma for data

cleaning of modis products in a study of land use and land cover

change. In 2016 IEEE 11th Colombian Computing Conference

(CCC) (pp. 1-9). IEEE.

[16] Garcia, R., Sreekanti, V., Yadwadkar, N., Crankshaw, D.,

Gonzalez, J. E., & Hellerstein, J. M. (2018). Context: The

missing piece in the machine learning lifecycle. In KDD CMI

Workshop.

[17] Ashmore, Rob, Radu Calinescu, and Colin Paterson.

"Assuring the machine learning lifecycle: Desiderata, methods,

and challenges." arXiv preprint arXiv:1905.04223 (2019).

[18] German Ros, Laura Sellart, Joanna Materzynska, et al.

2016. The synthia dataset: A large collection of synthetic images

for semantic segmentation of urban scenes. In IEEE Conf. on

computer vision and pattern recognition. 3234–3243.

[19] Sebastien CWong, Adam Gatt, Victor Stamatescu, and

Mark D McDonnell. 2016. Understanding data augmentation for

classification: when to warp?. In Int. Conf. on digital image

computing: techniques and applications. IEEE, 1–6.

[20] SB Kotsiantis, Dimitris Kanellopoulos, and PE Pintelas.

2006. Data preprocessing for supervised leaning. Int. Journal of

Computer Science 1, 2 (2006), 111–117.

[21]Shichao Zhang, Chengqi Zhang, and Qiang Yang. 2003.

Data preparation for data mining. Applied artificial

intelligence17, 5-6 (2003), 375–381.

[22] Kumeno, F. (2019). Sofware engneering challenges for

machine learning applications: A literature review. Intelligent

Decision Technologies, 13(4), 463-476.

[23] Washizaki, H., Uchida, H., Khomh, F., & Guéhéneuc, Y.

G. (2019, December). Studying software engineering patterns

for designing machine learning systems. In 2019 10th

International Workshop on Empirical Software Engineering in

Practice (IWESEP) (pp. 49-495). IEEE.

[24] Werkt, P. (2019, September 05). Software engineering for

machine learning applications. Retrieved April 14, 2021, from

https://fontysblogt.nl/software-engineering-for-machine-

learning-applications/

[25] Fisher, D., DeLine, R., Czerwinski, M., & Drucker, S.

(2012). Interactions with big data analytics. interactions, 19(3),

50-59.

[26] Istyaq, S., & Zargar, A. (2010). Debugging, Advanced

Debugging and Runtime Analysis. IJCSE) International Journal

on Computer Science and Engineering, 2(02), 246-249.

[27] Bourque, P., Dupuis, R., Abran, A., Moore, J. W., & Tripp,

L. (2004). Guide to the software engineering body of knowledge.

[28] Rahman, M. S., Rivera, E., Khomh, F., Guéhéneuc, Y. G.,

& Lehnert, B. (2019). Machine learning software engineering in

practice: An industrial case study. arXiv preprint

arXiv:1906.07154.

[29] Braiek, H. B., & Khomh, F. (2020). On testing machine

learning programs. Journal of Systems and Software, 164,

110542.

https://www.javatpoint.com/software-engineering-software-development-life-cycle
https://www.javatpoint.com/software-engineering-software-development-life-cycle

International Journal of Academic Engineering Research (IJAER)

ISSN: 2643-9085

Vol. 8 Issue 5 May - 2024, Pages: 40-48

www.ijeais.org/ijaer

48

[30] Sherin, S., & Iqbal, M. Z. (2019). A systematic mapping

study on testing of machine learning programs. arXiv preprint

arXiv:1907.09427.

[31] Murphy, C., Kaiser, G. E., & Arias, M. (2007). An approach

to software testing of machine learning applications.

[32] Kumeno, F. (2019). Sofware engneering challenges for

machine learning applications: A literature review. Intelligent

Decision Technologies, 13(4), 463-476.

[33] Tsymbal, A. (2004). The problem of concept drift:

definitions and related work. Computer Science Department,

Trinity College Dublin, 106(2), 58.

[34] Arpteg, A., Brinne, B., Crnkovic-Friis, L., & Bosch, J.

(2018, August). Software engineering challenges of deep

learning. In 2018 44th Euromicro Conference on Software

Engineering and Advanced Applications (SEAA) (pp. 50-59).

IEEE.

[35] Ishikawa, F., & Yoshioka, N. (2019, May). How do

engineers perceive difficulties in engineering of machine-

learning systems?-questionnaire survey. In 2019 IEEE/ACM

Joint 7th International Workshop on Conducting Empirical

Studies in Industry (CESI) and 6th International Workshop on

Software Engineering Research and Industrial Practice

(SER&IP) (pp. 2-9). IEEE.

[36] Giray, G. (2020). A Software Engineering Perspective on

Engineering Machine Learning Systems: State of the Art and

Challenges. arXiv preprint arXiv:2012.07919.

