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Abstract- Development life cycles are important for developing any system since they include the methodologies and models needed 

to confirm users understand the design, meet their needs, and ensure the project is on track. Software Development Life Cycle 

(SDLC) is one of the traditional methods of development software. It lists all the process and task necessary for developing software. 

But with the rapid development of machine learning that becoming vital in several industries, new methods for life cycle development 

needed to meet demand, such as Machine learning Life Cycle (MLLC). The main reason for needing (MLLC) due to many differences 

between machine learning applications and traditional information software. This paper deal with description on how SDLC differs 

from MLLC at different stages of the development life cycle. In this paper, we first provide brief discussion about SDLC, followed 

by the definition and importance of MLLC. Finally, we provide a comparison between SDLC and MLLC at different stages of the 

development life cycle. 
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I. INTRODUCTION 

System development life cycle (SDLC) considered as one of the 

most robust methodologies that has been used in the past ten 

years. It handled and managed different problems regardless 

with their complexity, but recently it became difficult to use the 

SDLC methodology to handle "intelligent" applications and 

machines since it needs more simulations and intelligence. 

Recently, Machine learning (ML) has been used and emerged in 

many fields since it can be easily used as ML components, and 

ML framework which enhances the productivity with preserving 

the quality at the same time since the employee or the user would 

enter the training set or the data that would be used as an 

inference to predict and solve the problems. Organizations 

started using the machine learning methods and techniques in 

applications that needs or deals with the artificial intelligence. 

At the beginning organizations were struggled because they 

were not having a methodology that was compatible with 

Machine Learning. Then the experts and researchers designed 

Machine Learning Life Cycle (MLLC) methodology to handle 

machine learning and artificial intelligence applications and 

frameworks [1]. 

SDLC focuses on the shallowed representation of the developed 

system were the MLLC focuses on designing a model that could 

automate and achieve tasks faster since it was trained by the set 

of data that has been entered by the system's expert which helps 

in designing the model and that is one of the first stages in 

MLLC. In fact, there are many differences between SDLC and 

MLLC that are helping the organizations and the experts to 

define which one is the suitable methodology due to the desired 

tasks. 

In this review paper, the first part is talking about the definition 

of SDLC then the second apart is illustrating MLLC, the third 

part is discussing why MLLC is important then the last and main 

part of the paper which is the difference between SDLC and 

MLLC in details. 

II. WHAT IS SDLC? 

When an organization develops software, it needs a highly 

structured life cycle, which is important for placing process 

plans, principles, and specifications. Its main purpose is to define 

all activities related to the software development process, called 

the software development life cycle (SDLC). SDLC is an 

iterative process that includes the methods and standards 

required to build an information system. It brings value to the 

organization by addressing all necessary business requirements 

in the software development life cycle [2]. The first software 

development life cycle was presented by Herbert Benington in 

1956. The first thoughts started around sequence of steps that 

used in development of software. Taking in consideration, the 

"software development" initially it formed only by coding. As 

programming come more sophisticated, development work 

requires more structured phases as the basis for project 

management [3]. As shown in figure.1 the software lifecycle 

models usually include some or all of this phases [4], which will 

be discussed later in this paper:                                            

 Planning  

 Requirement Analysis   

 Designing                                                                  

 Coding 

 Documentation 

 Testing  

 Maintenance 
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Figure.1 SDLC Phases [7] 

According to needs, these phases and related activities can be 

achieved through different ways. Such these ways known as 

software Development Lifecycle Model (SDLC). These models 

provide how should developed software through two types. First, 

the descriptive model: Provides a describe the history of how 

was developed particular software system. On the other hand, 

the prescriptive model used as basis for understanding and 

improving processes of software development or constructing 

models that based on it.[4] In order to be successful in the 

software development process, each process model follows a 

specific life cycle. The following is an example of the SDLC 

model: [5]   

 Waterfall model  

 Spiral model 

 RAD Model     

 Prototyping Model  

 Shaped Model  

III. WHAT IS MLLC? 

MLLC is an abbreviation of the Machine Learning Lifecycle. In 

[8], authors described Machine learning as the extraction of 

automated models from data. In addition, authors mentioned that 

the machine learning life cycle contains four phases: Data 

Management, Model Learning, Model Verification, and Model 

Deployment. They used the machine learning workflow term for 

the first three phases, which includes the activities in which the 

machine is taught, and models are produced. The fourth phase 

includes the activities to deploy the ML models in operational 

systems with the components obtained from the traditional 

systems engineering process. 

According to [9], authors have mentioned another division of 

MLDLC (Machine Learning, Development Life Cycle) stages, 

as it was divided into five core stages: 

1. Collect Data. 

2. Data Refinement. 

3. Model Training. 

4. Execute Model. 

5. Model Refinement. 

The first and second stages are data collection, validation, and 

documentation. In the third and fourth stages, the appropriate 

model is determined by analyzing the model and its suitability 

for the project. At the end, the model is deployed after 

confirming and testing the model and evaluating the validity of 

the results. The MLDLC (Machine Learning, Development Life 

Cycle) is an iterative process as shown in the figure 2. 

 

figure 2: MLLC phases [9] 

 

There are several methodologies for MLLC, each methodology 

works best with specific types of data or projects. Some 

examples of MLLC methodologies: 

 CRISP-DM Methodology 

CRISP-DM stands for “CRoss-Industry Standard Process for 

Data Mining” which commonly used in data mining and data 

analysis. It is an iterative process that contains six stages [12,13] 

There is no specific way to impose movement between the 

stages, the movement between them depends on what the work 

requires [14]. The six different phases are: (Business 

Understanding, Data Understanding, Data Preparation, 

Modeling, Evaluation, and Deployment) [12,13]. This 

methodology is most suitable for application in data mining 

projects when knowledge of the problem is insufficient [15]. 

 SEMMA Methodology 

This methodology developed by SAS Institute [14]. It is a non-

iterative process, unlike the previous methodology, as it focuses 

on procedures rather than results [12]. This methodology is not 

considered a data mining method but rather a tool to aid in the 

mining process [14]. It contains four stages that make up the 

word SEMMA, which are (Sample, Explore, Modify, Model and 

Assess) [12,14]. This methodology deals with huge data to 

discover previously unknown patterns [12]. 
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 Team Data Science Process (TDSP) Methodology 

This methodology is classified as an agile and iterative process 

which used in the field of data science and also used in the work 

of smart applications and predictive analytics. Its life cycle is 

similar to the CRISP-DM life cycle, as it includes five stages: 

(Business Understanding, Data Acquisition and Understanding, 

Modeling, Deployment, and Customer Acceptance) [12]. 

IV. WHY MLLC IS IMPORTANT? 

The importance to develop lifecycle specific for machine 

learning programs comes from the importance and criticality of 

machine learning program itself. There are studies explaining 

the importance of applying the machine learning in several areas 

such as in paper [8], authors mentioned the importance of 

applying machine learning in safety-critical systems by making 

them able to understand the environment in which those systems 

operate and making these systems able to determine their 

response to the external changes that occur in their work 

environment. Also, it is considered an essential aspect as 

mentioned in [9] which says that Machine learning have an 

important role on the BPR (Business Process Re-engineering) 

which is an approach that aims to add improvements by raising 

the efficiency and effectiveness of the processes followed within 

the organizations. BPR detects and change processes to improve 

the Software Engineering Management (SEM). 

According to [1], which focused the search about the differences 

between ML and non-ML development. Among its findings, the 

software development process consists of multiple practices and 

also includes people from different fields with varied 

experiences. So, it is not like a homogeneous mass. 

In addition, [10] have talked about the applying of machine 

learning algorithms in software development. They mentioned 

that it has proven important in several areas, including when the 

field of the problem is not well-understood with poorly human’s 

knowledge, when the field has a huge database must be explored, 

and in the domains where the programs must be adapted to the 

conditions of their environment. According to [11] they 

discussed the issue of applying machine learning specifically in 

the areas of software development and maintenance by using 

machine learning algorithms. Through their research, they found 

that people's awareness of applying machine learning in this area 

has increased due to the benefits they have obtained, also the 

ability to work with machine learning techniques and software 

engineering tools together. Whereas machine learning 

techniques have the ability to design and develop software 

artifacts based on its mathematical and logical strength. 

V. How Machine Learning Life Cycle is different 

from System Development Life Cycle? 

Software development life cycle may have some similarity with 

the Machine learning Lifecycle, and it can be used as a right 

starting point for building machine learning program. However, 

there are several criteria that are related to model management 

in Machine learning life cycle which makes ML programs and 

traditional software vary on their basics. As a result, the 

development of ML-based software applications may face some 

challenges that results on major technical costs when planning 

to follow software development life cycle methodologies with 

its related traditional abstractions, software design principles and 

practices. Consequently, specific lifecycle, frameworks and 

tools have been researched on the recent decades for managing 

the deployment and development of machine learning program. 

[8,16]  

The typical characteristics that make MLLC different than 

SDLC are the following:  

 Data science is less about program development and 

more about analyzing and getting insights from the data 

[12]. 

 The ML Lifecycle is data-driven because the model, the 

output of training is dependent on the data it was trained 

on. However, traditional software systems building, or 

compilation are data independent.  

 Unlike the software engineering lifecycle, even the 

most experienced and skilled engineers will not have a 

clear insight about the structure and results of the final 

program because of the ML program are experimental, 

combinatorial, and data driven. 

 In ML program, context is extremely critical factor, so 

there might be a huge space of possibilities that differs 

based on the context. As a result, it will be necessary to 

understand which data artifacts were used to train 

which models, and with what configurations [16]. 

In the following points, we have identified the major challenges 

more specifically for the most important phases of software 

development life cycle in regard of Machine learning 

applications to help the reader get better insight about the 

reasons for emerging machine learning life cycle and the need 

for guidelines for best practices in collaborative research in the 

context of for machine learning applications.  

1. Software requirements: 

As mentioned, [36] the SDLC requirements engineering means 

analyzing, validating, specifying, and eliciting requirements that 

represent a software system’s intended objective.  

Data is at the core of any application of machine learning (ML). 

The first stage of any ML cycle is data management. This stage 

is responsible for the acquisition of the data supporting the 

synthesis of machine-learned models. This data can then be used 

“to predict future data, or to perform other kinds of decision 

making under uncertainty” as stated in paper [17]. For some 

scenarios, it is possible that data samples are either unavailable, 

too costly, time consuming, or even dangerous. In this case, the 

augmentation methods put forth in papers [18, 19] are used to 

procure more data samples and add them to the collected data 

sets. Additionally, the data collected from multiple sources may 

be heterogeneous in nature, and therefore preprocessing, as 
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suggested in papers [20,21], may be required to produce 

consistent data sets. This is often required for training and 

verification purposes.  

ML system requirements are heavily data driven. As paper [17] 

has noted, the ML system requirements are far more uncertain 

than those of the non-ML systems. Research from paper [1] 

outlines that ML systems aid in streamlining decision making 

processes within organizations. Rather than functional 

descriptions, it provides you with a more conceptual description 

of an organization’s goals, after taking into account the data that 

has been gathered from the ML systems. Because the ML 

systems are so heavily data-driven, this means that the 

combination of different data results can result in a wide variety 

of different results.  

While the non-ML software systems usually require functional 

requirements, ML system requirements are comprised mainly of 

quantitative measures. Information from paper [11] suggests 

that distinct types of quantitative measures would be leveraged 

to define requirements, e.g., accuracy, precision, recall, F 

measure and normalized discounted cumulative gain (nDCG). 

Paper [1] proposes that the target scores for quantitative 

measures could vary from one application to the next. In places 

where safety is of the highest value, the accuracy of the ML 

systems is of the greatest importance. In an environment such as 

this, higher scores of quantitative measures are both desired and 

expected for safety reasons. 

Requirements for ML systems typically involve a large number 

of preliminary experiments, which varies from the requirements 

of non-ML systems. As paper [1] has noted, business 

stakeholders might suggest leveraging a number of emerging 

machine learning algorithms to solve their business problems. 

The largest consequence of this is that it is then necessary that 

the requirement specialists already have a strong background in 

machine learning.  The other consequence is that the requirement 

validation process involves a larger number of preliminary 

experiments, as outlined in paper [1]. Those preliminary 

experiments are conducted by software engineers that set out to 

validate and select machine learning algorithms from different 

sources. 

As paper [1] has suggested, it is imperative that take into 

consideration the possible degradation in the lifespan of the ML 

systems over time. The findings from papers [1, 17, 11] 

emphasize that there are two very important requirements of a 

ML system: firstly, that they should be capable of becoming 

aware of any degradation of their own performance. Secondly, 

if degradation in performance occurs, the ML system needs to 

be able to perceive that degradation and be able to adapt to it. 

The way that the ML system would be able to adapt to it is either 

by sending new data to the learning algorithm, or it must use 

brand new data to train a new model. 

2. Software design: 

The non-ML software systems architecture always described by 

software design where it represents "how software is 

decomposed and organized into components" [22]. While in ML 

systems the architecture and design of model done in model 

learning stage, it typically starts by selecting the type of model 

according to type of problem, structure and volume of training 

data and good personal experience [17]. 

As noted in [1], the architecture of ML systems differs than the 

architecture of non-ML software systems. ML architectures 

consist of data collection, data cleaning, feature engineering, 

data modeling, model execution and model evaluation [23]. 

Generally, this architecture relatively fixed in a lot of ML 

systems [1]. While non-ML software systems implements 

different software components structures and also generate the 

descriptions of these components behavior like: drawing data 

flow diagram and activity diagram for these components [1,17]. 

The main issue for data design is the generation of huge amount 

of data [22,36]. The distributed architectural style is the better 

solution of these issue [1,27] which may lead to complexity in 

architectural design of ML systems [22]. 

ML systems consist of different components each component 

with its own function but all of these components are dependent 

on each other [1,17]. For example: the performance of model 

highly dependent on pre-processing of data, if it is done weakly 

that lead to failure of produced model. So, pre-processing of data 

considered as the most important stage in ML systems that effect 

on the performance of model [22]. If there is more than one 

model, often each model work separately without any dependent 

on another model [24]. In contrast, the high dependency occurs 

between components of non-ML software systems [10]. From 

that we can conclude the components of non-ML software 

systems are highly coupled than the components of ML systems 

[1]. 

As mentioned in [9] the detailed design of ML systems 

considered more flexible than non-ML software systems. For 

each model of ML systems, we can use different numbers of 

algorithms [22] as such each algorithm can be used in different 

models [1,17]. As a result, the construction of a good model with 

detailed design can be applied in multiple iterations until reach 

to a proper model [9] which are taken time and considered as 

time consuming [22]. 

3. Software Construction: 

Usually, software construction mostly refers to coding and 

debugging [22]. Coding in non-ML software systems done in 

coding phase where it responsible about translating the design of 

the software into code by using particular programming 

language [8]. While coding in ML systems involves data 

processing, feature analysis and data modeling by using data and 

algorithms [1,36].  Non-ML software systems highly depends 

on coding and it needs high workload to perform the codes 

[1,8,26]. In contrast, ML systems highly depends on data and its 
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workload of coding is low as compared to non-ML software 

systems [9,17]. In non-ML software systems code can be reused 

significantly between different software systems [1] to increase 

productivity and reduce time and cost of development [25]. The 

code in ML systems considered as low little reused between ML 

systems because ML systems significantly emphasis on 

performance. Data considered as the basic effecter on the 

performance of model [1]. Libraries in ML systems can be 

reused also commonly between different models [36]. The data 

also in ML systems can be reused from external domain [36]. 

Debugging generally related to find bugs and errors [8]. In non-

ML software systems debugging responsible about fix bugs and 

errors in the code [26]. While in ML systems debugging 

responsible about performance improvement. The performance 

of ML systems cannot be evaluated until the data model is 

finished and finalized [25]. From that we can know the 

importance of finalizing data model in the ML systems 

construction [1]. 

During to the multiple iterative training for data modeling 

[17,22,36], training a high volume of data require a long time to 

complete training [1]. So, [25,36] suggested that the data should 

be divided into multiple datasets with different size. The training 

start with small dataset then take a large dataset after reaching a 

good result from training of small datasets to save time of 

training, improve training efficiency and mitigate risk may 

occurred from incomplete training. 

The practice of debugging in non-ML software systems done in 

step-by-step execution of program by using different 

methodologies that depend on determining breakpoints [25]. 

The aim of debugging of ML systems is "to translate ideas from 

developer's head into code" in more straightforward way [1]. 

The bugs are considered as a result of debugging process. Bugs 

differs between ML systems and non-ML software systems. 

Many bugs can be found in code of non-ML software systems 

[26] while the bugs in ML systems is a data bug [36]. Also, bugs 

in ML systems can be generated as a result from the integration 

of two frameworks with different order of dimensions of data 

[1]. Bugs in ML systems are hardly diagnosing, the developers 

must be going in each line of code and attempt to find the causes 

of bugs [25]. While in non-ML software systems diagnosis of 

bugs is straightforward and easier than ML systems [20,26]. 

4. Software Testing: 

In SDLC, software testing means checking if a program for 

specified inputs gives correctly and expected results. Software 

testing is a critical component of software quality assurance, 

especially for life-critical software such as flight control testing 

which can be highly expensive. Software testing is a process of 

executing a program with the goal of finding errors. So, testing 

means that one inspects behavior of a program on a set of test 

cases i.e., a set of inputs, execution preconditions, and expected 

outcomes developed for a particular objective, such as to 

exercise a particular program path or to verify compliance with 

a specific requirement, for which valued inputs always exist 

[27]. However, the testing of ML systems poses new challenges 

for software testing community. Although software quality is 

important in both ML and non-ML systems, the practice of 

testing appears to differ significantly [1]. As a result, new 

guidelines are needed to help ML developers cope with the 

challenges they face to validate the ML programs [28].  

Some of the main challenges is that traditional software systems 

are constructed deductively by writing down the rules that 

govern the behavior of the system as program code. However, 

with ML, these rules are inferred from training data which means 

they are generated inductively resulting in systems that are 

fundamentally challenging to test because they do not have 

complete specifications or even source code corresponding to 

some of their critical behaviors. In fact, ML models learn from 

the input data in an adaptive and iterative manner. The model 

verification stage of the ML lifecycle is concerned with the 

provision of auditable evidence that a model will continue to 

satisfy its requirements when exposed to inputs which are not 

present in the training data. Consequently, the inductive nature 

of ML programs makes it difficult to reason about their behavior 

[29] and the generated rules might even be unknown to the 

developers. Thus, it is harder to identify the erroneous system 

behaviors and to detect the source of the bugs [28]. 

Moreover, ML systems lack a reliable explicit oracle to detect 

what is the correct output should be for arbitrary input. As a 

result, it will be difficult to detect subtle errors, faults, defects, 

or anomalies in the ML applications [30]. In addition, machine 

learning programs do not have control flow like traditional 

programs and cannot be tested with traditional software testing 

techniques which rely on explicit oracle and program control 

flow.  

Another difference is that in traditional software testing it is 

possible only to show the presence of bugs but not their absence. 

Usually when input or output equivalence classes are applied to 

developing test cases so, the expected output for a given input is 

known in advance. In ML, the problem is how to devise test 

cases that are likely to show bugs, and how one can know 

whether a test is revealing a bug, given that we do not know what 

the output should be in the general case [31]. The functionality 

of ML systems depends on the set of data input to them and a 

minor change in the training data can have major influence on 

the behavior of the system and the results of the learning process 

[28]. 

According to [1] in ML programs, the testing outputs are 

expected to be a range rather than a single value[1]. Compared 

with traditional software, the dimension and potential testing 

space of a ML programs is much larger. Current existing 

software development techniques must be revisited and adapted 

to this new reality [29]. 
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Furthermore, ML algorithms might sometimes exhibit 

robustness to some bugs and produce reasonable outcomes by 

compensating for noisy data or implementation errors. Thus, 

bugs in ML application can be tricky to detect and fix. 

Furthermore, testing of ML applications may involve large scale 

training data and manual labeling of such data which is a highly 

cost task. Moreover, a random selection of subsets of data is 

likely to fail in identifying many cases [28]. 

One significant difference also exists in the reproducibility of 

test results. In contrast to non-ML software systems, the testing 

results of ML systems is hard to reproduce because of several 

sources of randomness. As the outcomes of machine learning 

models are stochastic in nature there might not be unique results 

to compare and verify machine learning applications [28]. Test 

case generation for ML systems is more challenging, compared 

to non-ML systems. In addition, automated testing tools are not 

used as frequently as non-ML systems [1] such as the existing 

unit testing frameworks PyUnit for Python cannot be readily 

used to test ML applications [28]. 

All these issues make the testing and fixing of erroneous 

behavior in ML applications a very challenging task and 

different than the software systems. According to [30], such 

systems have been classified as “non-testable” by traditional 

methods because it is a hard and complex process to explain the 

model behavior. As a result, some researchers leading to the 

requirement of developing novel strategies to test machine 

learning applications. Several techniques are recently proposed 

in the literature for testing ML models such as the evaluation of 

the model accuracies with the evaluation data set that must be 

complete enough to represent all possible use-case scenarios 

[28]. In addition, these techniques can be used to analyze and 

test the scalability, generality, and robustness of ML program 

[30]. 

5. Software Maintenance and configuration management  

As mentioned in [32], software maintenance is about the 

activities required to provide the effective support to software. 

Maintenance activities are performed during the pre-delivery 

stage and during the postdelivery stage. Pre-delivery activities is 

about the planning for post-delivery operations, maintainability, 

and determination for transition activities. Postdelivery activities 

include software modification, training, and operating or 

interfacing to a help desk. 

The ML program model management phase focus on the 

maintenance, deployment and monitoring of ML models which 

is a challenging task in building ML program. ML models as 

mentioned before are data-driven and are based on different 

assumptions on the distributions and patterns of data. Therefore, 

initial characteristics of data may not hold due to frequent 

changes in the data which might affect the model behavior [28]. 

ML systems are highly predicted to degrade in performance 

across time and in provide constantly robust results. Thus, most 

ML systems usually support automatic maintenance. Once 

performance degradation occurs, ML systems is designed to 

recognize the degradation and trains new data models in an 

online or offline way using the latest emerged data. “Health 

factors” or quantitative indicators are often used to check the 

status of a machine learning system as part of ML monitoring 

process. The indicators help machine learning system monitor 

its performance in the specific application context [1]. In fact, 

robust, continuous monitoring models will help in detecting 

changes and carefully adapt to changing conditions.  

In machine learning programs, one of the major threads is that 

uncertain events might occur in the deployment phase because 

the environment of machine learning production might largely 

differ from the environment the ML models were trained and 

evaluated. In many cases, the ML models may be frequently 

retrained with concept drift which means the data characteristics 

may depend on some hidden context, not given explicitly in the 

form of predictive feature at the time the model have been built, 

ex: the patterns of customers’ buying preferences may change 

with time. As a result, the behavior of the model will change 

independently without considering the real-world environment 

changes [32,33]. Therefore, ML post-deployment monitoring 

of models is important and ML systems needs more monitoring 

efforts more than traditional software. Monitoring in machine 

learning applications includes: 

 Data monitoring: monitoring the data characteristics 

provided to the model because it could negatively 

impact the quality of a model’s predictions. Monitoring 

tools for data dependencies, automatic data validation 

and cleaning during runtime, and concept drift 

adaptation must be implemented.  

 Operation environment monitoring: machine 

learning production environment might differ from the 

environment the ML models were trained and 

evaluated which leads to add new functional modules 

to the application. Over time, operation environment 

might add some challenges such as compatibility, 

portability and scalability that needs to be considered. 

 Model monitoring: monitoring the internals of the 

model and its performance including decisions on 

model retraining, adversarial settings, and backwards 

compatibility of trained models.  

 Runtime Monitoring: Selection of the metrics used 

for monitoring, live monitoring of system behavior that 

allows automated responses without direct human 

intervention, and dynamic monitoring for runtime 

verification and certification [8, 30].  

To apply changes to the machine learning models with the 

objective of maintaining the application, some procedures are 

needed to be implemented to control the change process. 

Software configuration management is a supporting-software 

life cycle process that benefits project management, 

development and maintenance activities, quality assurance 

activities, as well as the customers and users of the product [32]. 

However, configuration management for ML systems involves 
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a larger amount of content compared to non-ML software. One 

reason is that machine learning models include not only code but 

also data, model files, model dependencies, hyperparameters, 

and parameters that must be considered on the configuration 

management [1,28]. Machine learning is all about data. The 

amount of effort it takes to discover source, manage, and version 

data is inherently more complex and different than doing the 

same with software code [32]. In addition, it is important to keep 

track of the model versions, dataset, and configurations to allow 

reproducibility of ML models and easier management of ML 

workflow. Model reproducibility helps us to analyze and 

compare model behavior and performance and supports 

deployment or roll out decisions. We defined policies to version 

data, keep track of models and configurations for comparative 

analysis of our ML models [28].  

In fact, all previously mentioned challenges on ML model 

management and configuration management for ML 

applications needs to be considered which leads to new tools and 

techniques to be designed[32]. 

6.  Software Engineering Processes and Management 

The developmental lifecycles for an application that is not ML 

would not be adequate when applied to ML systems as the need 

for data-oriented or model-oriented is not considered, this is 

especially the case when managing lifecycles [36]. 

They are both very different from each other in terms of the 

process involved when developing them. A paper [9] suggests 

considering the importance of communication with every 

stakeholder, regarding the capabilities of machine learning. 

Another paper [20] mentions the importance of data processing 

if one wishes to successfully carry out the entire process. The 

data visualized in paper [9] helps understand how the features 

are distributed and how they correlate with each other. They also 

help to identify any trend or pattern that may exist within the 

data. These steps aim to determine how various aspects can be 

balanced using a trial and error method. Even the most 

sophisticated machine learning programs use their mistakes as 

something to learn from. 

The addition of any ML component into software requires a few 

actions that must be taken first. The development of an ML 

system must first be guided using software that is altered 

depending on what the development team requires [35]. Data 

lifecycles involve a variety of steps that are critically and 

compellingly designed so that every project would be successful 

[20]. Thus, Agility becomes something that is extremely 

essential when deciding on an approach as a result of the 

evolution and the increased demand within the ML system 

industry that fosters newer ideas and innovations. ML models 

and their lifecycles help provide a second example of the 

efficient integration of processes that help with the success of 

the project [9]. Apart from the two lifecycles mentioned, each 

team would also require assistance on several aspects, including: 

Engineering processes, data-handling, tests, as well as generally 

maintaining the same work process. 

The uncertainty attributed to the various ML process makes it 

difficult to provide an accurate estimation of the labor required 

and make a plan of the same [34]. There can be instances where 

teams aren’t allowed to find out the achievability of their target 

quantities till there is a final ML model [36]. Since estimation is 

not possible, an impatient would be likely to begin the 

cancellation of the developments for ML components although 

it would have an intermediate result that shows a great deal of 

progress. 

The papers [9] and [20] not that real-world applications for ML 

projects within companies would face a great dealing of 

difficulty when developing, deploying, and operating in a way 

that complies with the privacy-policies for those organizations 

as well as their legal framework. Such a demand would be 

challenging from a technical as well as a management 

perspective. 

VI. CONCLUSION  

In this paper we focused on defining the SDLC and MLLC 

terminologies then illustrating the differences between ML 

development and non-ML development in details by defining the 

differences according to ML development steps. Apparently, 

machine learning is the new methodology that would adapt with 

the new technologies. This decade is depending on big data and 

data science, which makes MLLC useful since it is data driven 

and deals with uncertainty which helps in avoiding risks, 

damages and increase the business profits as well. Machine 

learning algorithms and applications are already existing in our 

phones. In the future, understanding and having knowledge 

about the machine learning would be one of our life's basics. 
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