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1.  INTRODUCTION 

  Georgia Benkart, an American scientist, introduced the notion of inner ideals (see [3]) in 1976. According to Benkart’s 

definition, one can say that an inner ideal is a subspace V of a Lie algebra L, with the property [V, [V, L]] ⊆ V , where 

[V, [V, L]] = span {[v1, [v2, ℓ]] : v1, v2 ∈ V, ℓ ∈ L} 

An inner ideal V is called commutative if [V, V ] = 0. She demonstrated that a strong correlation exist between elements in 

Lie algebras that are ad-nilpotents with inner ideal [4]. An accomplishment of Benkart’s results is done in [5] by Benkart and 

Fernandiz Lopes and a generalization of there results is done in [6] by Brox, Fernandez Lopez and Gomez Lozano in 2016 to 

the case of centrally closed prime rings with involution of characteristic not 2, 3 or 5. 

It can be seen from [9] and [11] that in Lie algebra the role of inner ideals is equivalent to that of the one sided ideals in 

associative algebras. Therefore, Artin’s theory can be generalized if one takes into account the inner ideals of Lie algebras. It 

was proved in [8] that an Artinian Lie algebra is a Lie algebra that has the property that every decreasing inner ideals chain 

must be terminates. In [1, Proposition 2], it was proved that every one-sided ideal of the finite dimensional associative algebra 

A admits Levi decomposition and can be generated by an idempotent if some minimal conditions are met. The same results 

was obtained for inner ideals by Baranov and Shlaka in [2], where they showed that every inner ideal of the Lie algebra [A, A] 

admits Levi decomposition and can be generated by idempotent pair (if satisfied some minimal conditions). These results 

were recently Generalized in [14] for the case of a sub-algebra of finite dimensional algebra. Further generalization is done in 

[10] and [16] for the infinite dimensional Lie sub-algebras of associative algebras. Abelian non-Jordan Lie inner ideals we 

also been studied in 2022 (see [15] for more details). Further motivation for studying inner ideals comes from [9], where 

Fern´andez L´opez et al showed that when L is an arbitrary non- degenerate Lie algebras over an abelian ring F together with 

two and three convertible, then for every nonzero commutative inner ideal V of finite length of L is complemented by an 

commutative inner ideal [9]. 

The classification of the real five-dimensional Lie algebras is given by Schöbel in [13]. He classified them in terms of the 

derived sub-algebra of these Lie algebras. Keep in mind that a derived sub-algebra L′ of L is the set 

L′ = [L, L] = span {[ℓ1, ℓ2] | ℓ1, ℓ2 ∈ L} . 

In [12] Saeed and Shlaka studied inner ideals of the four-dimensional Lie algebras over the real fields with two-dimensional 

derived. They proved that one, two and three- dimensional non-trivial inner ideals exist in every four-dimensional Lie algebra 

with 2-dimensional derived. Prior to that (see [17]) they classify inner ideals of the two and three-dimensional Lie algebras. 

In this paper, we use techniques similar to [12] to study inner ideals of the real five-dimensional Lie algebras with 2-

dimensional derived. Suppose that L is a five- dimensional Lie algebra over the real field with 1-dimensional derived. If L 

commu- tative, then it is easy to see that every 1, 2, 3 and 4-dimensional subspace of L is an inner ideal. Suppose now that L 

is non-commutative, then we get the following results, which is one of our main results: 

Theorem 1.1: Let L be a five dimensional Lie algebra over the real field R with 2- dimensional derived L′. Then L contains a 

commutative and non-commutative I-ideal. 

Recall that if L is 5-dimensional with 2-dimensional derived, then by Theorem2.6 and Theorem2.7  L is either L1 or L2. Thus, 

to prove the theorem we need to consider all of the cases. 
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2.  PRELIMINARIES 

Definition 2.1 [7]: Let L be a vector space over any field F with a bilinear form L × L → L, where (ℓ1, ℓ2) → [ℓ1, ℓ2], for all ℓ1, ℓ2 

∈ L. Then L is called a Lie algebra over F , if the following conditions are satisfied: 

(1) [ℓ1, ℓ2] = 0 for all ℓ1, ℓ2 ∈ L. 

(2) [ℓ1, [ℓ2, ℓ3]] + [ℓ2, [ℓ3, ℓ1]] + [ℓ3, [ℓ1, ℓ2]] = 0 for all ℓ1, ℓ2, ℓ3 ∈ L. 

Definition 2.2 [7]: The subspace B of a Lie algebra L is said to be a Lie sub-algebra of L, if [b1, b2] ∈ B for all b1, b2 ∈ B. 

Definition 2.3 [7]: The derived of a Lie algebra L is the set L′ = span{[a, b] | a, b ∈ L}, where L′ is a Lie sub algebra of L. 

Definition 2.4 [7]: The center of L is the set Z = {x ∈ L | [x, y] = 0, ∀y ∈ L}. 

Definition 2.5 [2]: Let V be a subspace of L. Then V is said to be an inner ideal of L when [ V, [ V, L ]] ⊆ V . We denote by I-

ideal to be an inner ideal of L. The inner ideal V is said to be commutative if [ V, V ] = 0. 

Note that in every Lie algebra L, we have L, {0} are inner ideals of L called the trivial inner ideals. Recall that every ideal I of L is 

inner ideal, because [ I, [ I, L]] = [ I, I ] ⊆ I, but the inverse is not true. Since L is five-dimensional, the dimension of L′ may be 1, 

2, 3, 4 or 5. In [13] Schöbel classified the real n-dimensional Lie algebras by relating the dimensional of L′. For the dimensional of 

L′ is 2, we have the following result, for the proof see [13, Theorem 1 ]. 

Theorem 2.6 [13]: Suppose that L is a real n-dimensional Lie algebra with a two- dimensional derived L′, such that L′ ⊈ Z Then L 

= L4 ⊕ Z1 , where L4 is a 4-dimensional real Lie algebra with 2-dimensional derived algebra and L′ ⊈ Z4, Zn is the n-dimensional 

center of L. 

Theorem 2.7 [13]: Suppose that L is a real 4-dimensional Lie algebra with a two- dimensional derived L′, such that dim ( L′ ∩ Z ) 

= 1, and let {x1, x2, x3, x4} be a basis of L. Then L is one of the following two standard forms. 

L1 : [x2, x4] = x1, [x3, x4] = x2, and otherwise is zero. 

L2 : [x2, x4] = x2, [x3, x4] = x1, and otherwise is zero. 

3. Inner Ideals of The Five Dimensional Lie Algebra 

Throughout this section, we prove some results related to inner ideal of the 5- dimensional real Lie algebra with 2-dimensional 

derived. Our aim is to prove the following theorem. 

Proposition 3.1: Suppose that L = L1 and L′ ⊆ Z. Then the following is hold. 

1. L contains a 1-dimensional I-ideal which is not ideal. 

2. L contains a 2-dimensional commutative I-ideal which is not ideal . 

3. L contains a 3-dimensional commutative I-ideal which is not ideal. 

4. L contains a 3-dimensional non-commutative I-ideal which is not ideal. 

5. L contains a 3-dimensional non-commutative I-ideal which is not sub-algebra. 

6. L contains a 4-dimensional commutative I-ideal. 

7. L contains a 4-dimensional non-commutative I-ideal which is not ideal. 

8. L contains a 4-dimensional non-commutative I-ideal which is not sub-algebra. 

Proof: By Theorems 2.6 and 2.7, there is a basis {x1, x2, x3, x4, z} of L1 with the Lie multiplication [x2, x4] = x1, [x3, x4] = x2 and 

otherwise is zero. Let ℓ ∈ L. Then ℓ = β1x1 + β2x2 + β3x3 + β4x4 + β5z for some β1, β2, β3, β4, β5 ∈ R. 

1) We claim that the 1-dimensional subspace V = span {x2} is an I-ideal of L. We need to show that [V, [V, L]] ⊆ V . Let x, 

y ∈ V. Then x = α1x2, y = α2x2 for some α1, α2 ∈ R. Since 

[x, [y, ℓ]]  =  [x, [α2x2, β1x1 + β2x2 + β3x3 + β4x4 + β5z]] =  [α1x2, α2β4x1] = 0 ∈ V, 

[V, [V, L]] ⊆ V . Therefore, V is an I-ideal of L. 

Now we need to show that V is not ideal. Since 

[x, ℓ]  =  [α1x2, β1x1 + β2x2 + β3x3 + β4x4 + β5z] = α1β4x1 ∉V, 

V is not ideal of L, as required. 

2) We claim that the 2-dimensional subspace V = span {x2, z} is an I-ideal of L. We need to show that [V, [V, L]] ⊆ V . Let 

x, y ∈ V. Then x = α1x2 +α2z, y = α3x2 +α4z for some α1, α2, α3, α4 ∈ R. Since 

[x, [y, ℓ]]  =  [x, [α3x2 + α4z, β1x1 + β2x2 + β3x3 + β4x4 + β5z]] 

=  [α1x2 + α2z, α3β4x1] = 0 ∈ V, 

[V, [V, L]] ⊆ V . Therefore, V is an I-ideal of L. 
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Now we need to show that V is commutative. Since 

[x, y] = [α1x2 + α2z, α3x2 + α4z] = 0 Therefore, V is a commutative I-ideal of L. 

It remains to us show that V is not ideal. Since 

[x, ℓ]  =  [α1x2 + α2z, β1x1 + β2x2 + β3x3 + β4x4 + β5z] = α1β4x1 ∉ V, 

Therefore, V is not ideal of L. 

3) We claim that the 3-dimensional subspace V = span {x1, x3, z} is an I-ideal of L. We need to show that [V, [V, L]] ⊆ V . 

Let x, y ∈ V. Then x = α1x1 + α2x3 + α3z, y = α4x1 + α5x3 + α6z for some α1, α2, α3, α4, α5, α6 ∈ R. Since 

[x, [y, ℓ]]  =  [x, [α4x1 + α5x3 + α6z, β1x1 + β2x2 + β3x3 + β4x4 + β5z]] 

=  [α1x1 + α2x3 + α3z, α5β4x2] = 0 ∈ V, 

[V, [V, L]] ⊆ V . Therefore, V is an I-ideal of L. 

Now we need to show that V is commutative. Since 

[x, y]  =  [α1x1 + α2x3 + α3z, α4x1 + α5x3 + α6z] = 0  

Therefore, V is a commutative I-ideal of L. 

It remains to us show that V is not ideal. Since 

[x, ℓ]  =  [α1x1 + α2x3 + α3z, β1x1 + β2x2 + β3x3 + β4x4 + β5z] = α2β4x2 ∉ V, 

Therefore, V is not ideal of L. 

4) We claim that the 3-dimensional subspace V = span {x1, x3, x4} is an I-ideal of L. We need to show that [V, [V, L]] ⊆ V . 

Let x, y ∈ V. Then x = α1x1 + α2x3 + α3x4, y = α4x1 + α5x3 + α6x4 for some α1, α2, α3, α4, α5, α6 ∈ R. Since 

[x, [y, ℓ]]  =  [x, [α4x1 + α5x3 + α6x4, β1x1 + β2x2 + β3x3 + β4x4 + β5z]] 

=  [α1x1 + α2x3 + α3x4, α5β4x2 − α6β2x1 − α6β3x2] 

=  (−α3α5β4 + α3α6β3)x1 ∈ V, 

[V, [V, L]] ⊆ V . Therefore, V is an I-ideal of L. 

Now we need to show that V is a non-commutative. Since 

[x, y]  =  [α1x1 + α2x3 + α3x4, α4x1 + α5x3 + α6x4] 

=  (α2α6 − α3α5)x2 ≠ 0 

Therefore, V is a non-commutative I-ideal of L, as required. 

It remains to us show that V is not ideal. Since 

[x, ℓ]  =  [α1x1 + α2x3 + α3x4, β1x1 + β2x2 + β3x3 + β4x4 + β5z] 

=  (α2β4 − α3β3)x2 − α3β2x1 ∉ V, 

Therefore, V is not ideal of L. 

5) By (4) we note that for all x, y ∈ V, then [x, y] ∉ V . So V is not sub-algebra of L. 

6) We claim that the 4-dimensional subspace V  = span {x1, x2, x3, z} is an I-ideal of L. We need to show that [V, [V, L]] ⊆ 

V . Let x, y ∈ V. Then x = α1x1+α2x2+α3x3+α4z, y = α5x1 + α6x2 + α7x3 + α8z for some α1, α2, α3, α4, α5, α6, α7, α8 ∈ R. Since 

[x, [y, ℓ]]  =  [x, [α5x1 + α6x2 + α7x3 + α8z, β1x1 + β2x2 + β3x3 + β4x4 + β5z]] 

=  [α1x1 + α2x2 + α3x3 + α4z, α6β4x1 + α7β4x2] = 0 ∈ V, 

[V, [V, L]] ⊆ V . Therefore, V is an I-ideal of L. 

Now we need to show that V is commutative. Since 

[x, y]  =  [α1x1 + α2x2 + α3x3 + α4z, α5x1 + α6x2 + α7x3 + α8z] = 0 

Therefore, V is a commutative I-ideal of L, as required. 

7) We claim that the 4-dimensional subspace V  = span {x1, x3, x4, z} is an I-ideal of L. We need to show that [V, [V, L]] ⊆ 

V . Let x, y ∈ V. Then x = α1x1+α2x3+α3x4+α4z, y = α5x1 + α6x3 + α7x4 + α8z for some α1, α2, α3, α4, α5, α6, α7, α8 ∈ R. Since 

[x, [y, ℓ]]  =  [x, [α5x1 + α6x3 + α7x4 + α8z, β1x1 + β2x2 + β3x3 + β4x4 + β5z]] 

=  [α1x1 + α2x3 + α3x4 + α4z, α6β4x2 − α7β2x1 − α7β3x2] 

=  (−α3α6β4 + α3α7β3)x1 ∈ V, 

[V, [V, L]] ⊆ V . Therefore, V is an I-ideal of L. 

It remains to show that [x, y]≠0 Since 

[x, y]  =  [α1x1 + α2x3 + α3x4 + α4z, α5x1 + α6x3 + α7x4 + α8z] 

=  (α2α7 − α3α6)x2≠ 0 

Therefore, V is a non-commutative I-ideal of L, as required. 

It remains to us show that V is not ideal. Since 

[x, ℓ]  =  [α1x1 + α2x3 + α3x4 + α4z, β1x1 + β2x2 + β3x3 + β4x4 + β5z] 

=  (α2β4 − α3β3)x2 − α3β2x1 ∉ V 

Therefore, V is not ideal of L. 

8) By (7) we note that for all x, y ∈ V, then [x, y] ∉ V . So V is not sub-algebra of L. □ 

Remark 3.2: Theorem 3.1, is not true if we state that every 1, 2, 3and4-dimensional subspace is an I-ideal because L = L1 contains 

a 1, 2, 3and4-dimensional subspace which is not I-ideal. As one can see in the following examples. 
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Example 3.3: Recall that we fix a basis {x1, x2, x3, x4, z} of L1 with the Lie mul- tiplication [x2, x4] = x1, [x3, x4] = x2 and otherwise 

is zero.  Let ℓ ∈ L.  Then ℓ = β1x1 + β2x2 + β3x3 + β4x4 + β5z for some β1, β2, β3, β4, β5 ∈ R. 

1) We claim that the 1-dimensional subspace V = span {x4} is not an I-ideal of L. Let x, y ∈ V. Then x = α1x4, y = α2x4 for 

some α1, α2 ∈ R. Since 

[x, [y, ℓ]]  =  [x, [α2x4, β1x1 + β2x2 + β3x3 + β4x4 + β5z]] 

=  [α1x4, −α2β2x1 − α2β3x2] = α1α2β3x1 ∉ V, 

[V, [V, L]] ⊈ V , Therefore V is not an I-ideal of L.  

2) We claim that the 2-dimensional subspace V = span {x3, x4} is not an I-ideal of L. Let x, y ∈ V. Then x = α1x3 + α2x4, y = 

α3x3 + α4x4 for some α1, α2, α3, α4 ∈ R. Since 

[x, [y, ℓ]]  =  [x, [α3x3 + α4x4, β1x1 + β2x2 + β3x3 + β4x4 + β5z]] 

=  [α1x3 + α2x4, α3β4x2 − α4β2x1 − α4β3x2] =  (−α2α3β4 + α2α4β3)x1 ∉ V, 

[V, [V, L]] ⊈ V , Therefore V is not an I-ideal of L. 

3) We claim that the 3-dimensional subspace V = span {x2, x4, z} is not an I-ideal of L. Let x, y ∈ V. Then x = α1x2 + α2x4 + 

α3z, y = α4x2 + α5x4 + α6z for some α1, α2, α3, α4, α5, α6 ∈ R. Since 

[x, [y, ℓ]]  =  [x, [α4x2 + α5x4 + α6z, β1x1 + β2x2 + β3x3 + β4x4 + β5z]] 

=  [α1x2 + α2x4 + α3z, α4β4x1 − α5β2x1 − α5β3x2] =  α2α5β3x1 ∉ V, 

[V, [V, L]] ⊈ V , Therefore V is not an I-ideal of L. 

4) We claim that the 4-dimensional subspace V = span {x2, x3, x4, z} is not an I- ideal of L. Let x, y ∈ V. Then x = α1x2 +α2x3 

+α3x4 +α4z, y = α5x2 +α6x3 +α7x4 +α8z for some α1, α2, α3, α4, α5, α6, α7, α8 ∈ R. Since 

[x, [y, ℓ]]  =  [x, [α5x2 + α6x3 + α7x4 + α8z, β1x1 + β2x2 + β3x3 + β4x4 + β5z]] 

=  [α1x2 + α2x3 + α3x4 + α4z, α5β4x1 + α6β4x2 − α7β2x1 − α7β3x2] 

=  (−α3α6β4 + α3α7β3)x1 ∉ V, 

[V, [V, L]] ⊈ V , Therefore V is not an I-ideal of L. 

Proposition 3.4: Suppose that L = L2 and L′ ⊆ Z. Then the following is hold. 

1. L contains a 1-dimensional I-ideal which is not ideal. 

2. L contains a 2-dimensional commutative I-ideal which is not ideal . 

3. L contains a 2-dimensional non-commutative I-ideal which is not ideal. 

4. L contains a 3-dimensional commutative I-ideal which is not ideal. 

5. L contains a 3-dimensional non-commutative I-ideal which is not ideal. 

6. L contains a 3-dimensional non-commutative I-ideal which is not sub-algebra. 

7. L contains a 4-dimensional commutative I-ideal. 

8. L contains a 4-dimensional non-commutative I-ideal which is not ideal. 

9. L contains a 4-dimensional non-commutative I-ideal which is not sub-algebra. 

Proof: By Theorems 2.6 and 2.7, there is a basis {x1, x2, x3, x4, z} of L2 with the Lie multiplication [x2, x4] = x2,[x3, x4] = x1 and 

otherwise is zero. Let ℓ ∈ L. Then ℓ = β1x1 + β2x2 + β3x3 + β4x4 + β5z for some β1, β2, β3, β4, β5 ∈ R. 

1) We claim that the 1-dimensional subspace V = span {x3} is an I-ideal of L. We need to show that [V, [V, L]] ⊆ V . Let x, 

y ∈ V. Then x = α1x3, y = α2x3 for some α1, α2 ∈ R. Since 

[x, [y, ℓ]]  =  [x, [α2x3, β1x1 + β2x2 + β3x3 + β4x4 + β5z]] =  [α1x3, α2β4x1] = 0 ∈ V, 

[V, [V, L]] ⊆ V . Therefore, V is an I-ideal of L. 

Now we need to show that V is not ideal. Since 

[x, ℓ]  =  [α1x3, β1x1 + β2x2 + β3x3 + β4x4 + β5z] = α1β4x1 ∉ V, 

V is not ideal of L, as required. 

2) We claim that the 2-dimensional subspace V = span {x3, z} is an I-ideal of L. We need to show that [V, [V, L]] ⊆ V . Let 

x, y ∈ V. Then x = α1x3 +α2z, y = α3x3 +α4z for some α1, α2, α3, α4 ∈ R. Since 

[x, [y, ℓ]]  =  [x, [α3x3 + α4z, β1x1 + β2x2 + β3x3 + β4x4 + β5z]] 

=  [α1x3 + α2z, α3β4x1] = 0 ∈ V, 

[V, [V, L]] ⊆ V . Therefore, V is an I-ideal of L. 

Now we need to show that V is commutative. Since 

[x, y] = [α1x3 + α2z, α3x3 + α4z] = 0. Therefore, V is a commutative I-ideal of L. 

It remains to us show that V is not ideal. Since 

[x, ℓ]  =  [α1x3 + α2z, β1x1 + β2x2 + β3x3 + β4x4 + β5z] = α1β4x1 ∉ V, 

Therefore, V is not ideal of L. 

3) We claim that the 2-dimensional subspace V = span {x2, x4} is an I-ideal of L. We need to show that [V, [V, L]] ⊆ V .  Let 

x, y ∈ V. Then x = α1x2 + α2x4, y = α3x2 + α4x4 for some α1, α2, α3, α4 ∈ R. Since 
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[x, [y, ℓ]]  =  [x, [α3x2 + α4x4, β1x1 + β2x2 + β3x3 + β4x4 + β5z]] 

=  [α1x2 + α2x4, α3β4x2 − α4β3x1] = −α2α3β4x2 ∈ V, 

[V, [V, L]] ⊆ V . Therefore, V is an I-ideal of L. 

Now we need to show that V is a non-commutative. Since 

[x, y] = [α1x2 + α2x4, α3x2 + α4x4] = (α1α4 − α2α3)x2 ≠ 0 Therefore, V is a non-commutative I-ideal of L. 

It remains to us show that V is not ideal. Since 

[x, ℓ]  =  [α1x2 + α2x4, β1x1 + β2x2 + β3x3 + β4x4 + β5z] 

=  (α1β4 − α2β2)x2 − α2β3x1 ∉ V, 

Therefore, V is not ideal of L. 

4) We claim that the 3-dimensional subspace V = span {x2, x3, z} is an I-ideal of L. We need to show that [V, [V, L]] ⊆ V . 

Let x, y ∈ V. Then x = α1x2 + α2x3 + α3z, y = α4x2 + α5x3 + α6z for some α1, α2, α3, α4, α5, α6 ∈ R. Since 

[x, [y, ℓ]]  =  [x, [α4x2 + α5x3 + α6z, β1x1 + β2x2 + β3x3 + β4x4 + β5z]] 

=  [α1x2 + α2x3 + α3z, α4β4x2 + α5β4x1] = 0 ∈ V, 

[V, [V, L]] ⊆ V . Therefore, V is an I-ideal of L. 

Now we need to show that V is commutative. Since 

[x, y]  =  [α1x2 + α2x3 + α3z, α4x2 + α5x3 + α6z] = 0  

Therefore, V is a commutative I-ideal of L. 

It remains to us show that V is not ideal. Since 

[x, ℓ]  =  [α1x2 + α2x3 + α3z, β1x1 + β2x2 + β3x3 + β4x4 + β5z] 

=  α1β4x2 + α2β4x1 ∉ V, 

Therefore, V is not ideal of L. 

5) We claim that the 3-dimensional subspace V = span {x2, x3, x4} is an I-ideal of L. We need to show that [V, [V, L]] ⊆ V . 

Let x, y ∈ V. Then x = α1x2 + α2x3 + α3x4, y = α4x2 + α5x3 + α6x4 for some α1, α2, α3, α4, α5, α6 ∈ R. Since 

[x, [y, ℓ]]  =  [x, [α4x2 + α5x3 + α6x4, β1x1 + β2x2 + β3x3 + β4x4 + β5z]] 

=  [α1x2 + α2x3 + α3x4, α4β4x2 + α5β4x1 − α6β2x2 − α6β3x1] 

=  (−α3α4β4 + α3α6β2)x2 ∈ V, 

[V, [V, L]] ⊆ V . Therefore, V is an I-ideal of L. 

Now we need to show that V is a non-commutative. Since 

[x, y]  =  [α1x2 + α2x3 + α3x4, α4x2 + α5x3 + α6x4] 

=  (α2α6 − α3α5)x1 + (α1α6 − α3α4)x2≠0  

Therefore, V is a non-commutative I-ideal of L, as required. 

It remains to us show that V is not ideal. Since 

[x, ℓ]  =  [α1x2 + α2x3 + α3x4, β1x1 + β2x2 + β3x3 + β4x4 + β5z] 

=  (α1β4 − α3β2)x2 + (α2β4 − α3β3)x1 ≠ V, 

Therefore, V is not ideal of L. 

6) By (5) we note that for all x, y ∈ V, then [x, y] ∉ V . So V is not sub-algebra of L. 

7) We claim that the 4-dimensional subspace V  = span {x1, x2, x3, z} is an I-ideal of L. We need to show that [V, [V, L]] ⊆ 

V . Let x, y ∈ V. Then x = α1x1+α2x2+α3x3+α4z, y = α5x1 + α6x2 + α7x3 + α8z for some α1, α2, α3, α4, α5, α6, α7, α8 ∈ R. Since 

[x, [y, ℓ]]  =  [x, [α5x1 + α6x2 + α7x3 + α8z, β1x1 + β2x2 + β3x3 + β4x4 + β5z]] 

=  [α1x1 + α2x2 + α3x3 + α4z, α6β4x2 + α7β4x1] = 0 ∈ V, 

[V, [V, L]] ⊆ V . Therefore, V is an I-ideal of L. 

Now we need to show that V is commutative. Since 

[x, y]  =  [α1x1 + α2x2 + α3x3 + α4z, α5x1 + α6x2 + α7x3 + α8z] = 0  

Therefore, V is a commutative I-ideal of L, as required. 

8) We claim that the 4-dimensional subspace V  = span {x2, x3, x4, z} is an I-ideal of L. We need to show that [V, [V, L]] ⊆ 

V . Let x, y ∈ V. Then x = α2x1+α2x3+α3x4+α4z, y = α5x2 + α6x3 + α7x4 + α8z for some α1, α2, α3, α4, α5, α6, α7, α8 ∈ R. Since 

[x, [y, ℓ]]  =  [x, [α5x2 + α6x3 + α7x4 + α8z, β1x1 + β2x2 + β3x3 + β4x4 + β5z]] 

=  [α1x2 + α2x3 + α3x4 + α4z, α5β4x2 + α6β4x1 − α7β2x2 − α7β3x1] 

=  (−α3α5β4 + α3α7β2)x2 ∈ V, 

[V, [V, L]] ⊆ V . Therefore, V is an I-ideal of L. 

It remains to show that [x, y]≠ 0 Since 

[x, y]  =  [α1x2 + α2x3 + α3x4 + α4z, α5x2 + α6x3 + α7x4 + α8z] 

=  (α2α7 − α3α6)x1 + (α1α7 − α3α5)x2≠ 0  

Therefore, V is a non-commutative I-ideal of L, as required. 

It remains to us show that V is not ideal. Since 

[x, ℓ]  =  [α1x2 + α2x3 + α3x4 + α4z, β1x1 + β2x2 + β3x3 + β4x4 + β5z] 
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=  (−α3β3 + α2β4)x1 + (α1β4 − α3β2)x2 ∉ V 

Therefore, V is not ideal of L. 

9) By (8) we note that for all x, y ∈ V, then [x, y] ∉ V . So V is not sub-algebra of L. □ 

Remark 3.5: Theorem 3.4, is not true if we state that every 1, 2, 3and4-dimensional subspace is an I-ideal because L = L2 contains 

a 1, 2, 3and4-dimensional subspace which is not I-ideal. As one can see in the following examples. 

Example 3.6. Recall that we fix a basis {x1, x2, x3, x4, z} of L2 with the Lie mul- tiplication [x2, x4] = x2,[x3, x4] = x1 and otherwise 

is zero. Let ℓ ∈ L. Then ℓ = β1x1 + β2x2 + β3x3 + β4x4 + β5z for some β1, β2, β3, β4, β5 ∈ R. 

1) We claim that the 1-dimensional subspaceV = span {x4} is not an I-ideal of L. Let x, y ∈ V. Then x = α1x4, y = α2x4 for 

some α1, α2 ∈ R. Since 

[x, [y, ℓ]]  =  [x, [α2x4, β1x1 + β2x2 + β3x3 + β4x4 + β5z]] 

=  [α1x4, −α2β2x2 − α2β3x1] = α1α2β2x2 ∉ V, 

[V, [V, L]] ⊈ V , Therefore V is not an I-ideal of L. 

2) We claim that the 2-dimensional subspace V = span {x3, x4} is not an I-ideal of L. Let x, y ∈ V. Then x = α1x3 + α2x4, y = 

α3x3 + α4x4 for some α1, α2, α3, α4 ∈ R. Since 

[x, [y, ℓ]]  =  [x, [α3x3 + α4x4, β1x1 + β2x2 + β3x3 + β4x4 + β5z]] 

=  [α1x3 + α2x4, α3β4x1 − α4β2x2 − α4β3x1] = α2α4β2x2 ∉ V, 

[V, [V, L]] ⊈ V , Therefore V is not an I-ideal of L. 

3) We claim that the 3-dimensional subspace V = span {x1, x4, z} is not an I-ideal of L. Let x, y ∈ V. Then x = α1x1 + α2x4 + 

α3z, y = α4x1 + α5x4 + α6z for some α1, α2, α3, α4, α5, α6 ∈ R. Since 

[x, [y, ℓ]]  =  [x, [α4x1 + α5x4 + α6z, β1x1 + β2x2 + β3x3 + β4x4 + β5z]] 

=  [α1x1 + α2x4 + α3z, −α5β2x2 − α5β3x1] = α2α5β2x2 ∉ V, 

[V, [V, L]] ⊈ V , Therefore V is not an I-ideal of L. 

4) We claim that the 4-dimensional subspace V = span {x1, x3, x4, z} is not an I- ideal of L. Let x, y ∈ V. Then x = α1x1 +α2x3 

+α3x4 +α4z, y = α5x1 +α6x3 +α7x4 +α8z for some α1, α2, α3, α4, α5, α6, α7, α8 ∈ R. Since 

[x, [y, ℓ]]  =  [x, [α5x1 + α6x3 + α7x4 + α8z, β1x1 + β2x2 + β3x3 + β4x4 + β5z]] 

=  [α1x1 + α2x3 + α3x4 + α4z, α6β4x1 − α7β2x2 − α7β3x1] = α3α7β2x2 ∉ V, 

[V, [V, L]] ⊈ V , Therefore V is not an I-ideal of L. 

Now we are ready to prove Theorem 1.1. Recall that L is either L1 or L2. We need to show that L contains a commutative and non-

commutative I-ideal. 

Proof for Theorem 1.1:  

If L = L1, by the Proposition 3.1, L contains a commutative and non-commutative I-ideal. 

If L = L2, by the Proposition 3.4, L contains a commutative and non-commutative I-ideal. 
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