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Abstract: The search aims to solve the problems of the second-order linear boundary value and the second boundary condition of 

infinity (∞). The research uses the finite difference method to determine approximate values. 
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1. Introduction 

      L. Fox (in 1947) tried.to add conditions to solve ordinary and partial. differential equations. using numerical methods, such as 

the finite. difference method, to obtain the most. accurate results[1].In )1975(, V. Pereyra and E.G. Sewell supported the 
development of grid selection for using the convergence of finite differences to irregular grids in boundary value problems [2].In 
1981, R.D. Skeel reported on general techniques for obtaining accurate results for solving differential equations that can be used 
computationally [3]. In 1985, S. Gupta explained finite difference methods using the Runge-Kutta method and its laws for solving 
differential equations with two-point boundary conditions. S. Gupta described a diversified system and a specific differential 
solution using implicit methods[4]. In 1996, Jeffr. Cash solved initial value problems using the Runge-Kutta method [5]. In 2001, 
Jeffr. Cash discovered a new algorithm to solve nonlinear.boundary value problems., and the best results were reached[6]. 

2. Two-point boundary value problems[8] 

      The article discusses the finite difference method for solving D.E where 

 f(x) = y″   0 < x < 1                                                                            (1)  
We need initial conditions 𝑦0 (x) =a  and boundary conditions y(ꚙ)=B(x) so this problem is called 2-point  BVP.  With the 
expectation of a value at two different points, such that 𝑦𝑛+1  is an approximation of the solution  𝑦𝑛,  
we obtain a set of algebraic equations 
 y″=𝑦𝑛+1 -2𝑦𝑛+𝑦𝑛−1 )/ℎ2                                                                 (2) 
(h represents the distance between the points from the algebraic conditions).  
To know the extent to which y is able to approximate the function y(x), we know that the difference approximation  The 
central 𝑦𝑛 ,  provides an accurate approximation of degree 2 for𝑦𝑛−1, knowing that the values of 𝑦𝑛  are at each point 
and calculating a complete set of discrete values, and this is more complicated, as we find that applying the y function 
to the discrete values gives the required values for  𝑦𝑛, hoping to give it a small error rate. 

3. Deferred correction 

Over the following years, some scientists have applied new techniques to a variety of questions in Differential.and 
integral equations. This method is used for numerical solutions to first-order two-point nonlinear.boundary 
value.problems  Lindberg. The basic idea of deferred correction was introduced by the scientist L. Fox, who assumed 
different forms of error improvement[2]. The scientist Lindberg developed in particular. We will provide a brief 
description of this method. 

𝑦′= F (x, y) , d  x  w ,  
(y(d),y(w))  0                                                                          (3)     
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Let to be ϴ𝑝 formula of Runge-Kutta the rank P It is used for division (3)and so the result is a non-linear equation  
ϴ𝑝  =0                                                                                        (4) 
Lindberg's idea of reducing error is based on assumptions 𝛳𝑝+𝑟 the formula Runge – Kutta  of order p+r. 

ϴ𝑝 (η)̄ = - ϴ𝑝+𝑟(ƞ)                                                                    (5) 

- 𝛳𝑝+𝑟  is the local truncation error formula for the lowest-order formula 𝛳𝑝 
In this strategy, we want the answer to be more exact in terms of convergence. 
 
 
 
 
 
 

4. Algorithm 
4 .1.  An algorithm for solving linear boundary value problems with (ꚙ) boundary conditions                             
    𝑦″ = f𝑛(x) y𝑛(x)+ g𝑛(x)     of second order.    
 The Boundary conditions is  
y (d)=D 
y (ꚙ)= W       

1. change the second Boundary conditions 
y (ꚙ)= W     
y(ꚙ )            W,  w              ꚙ 
y(𝑤𝑁)=W 

 𝑤(𝑁)= a+(N+1)h 

             chose ϵ is the value very small. 

2.  Now we will use the finite difference method 

               (𝑦𝑛+1  -2𝑦𝑛+𝑦𝑛−1) / ℎ2 =   𝑓𝑛(x) 𝑦𝑛(x)+ 𝑔𝑛(x) 

h is The distances.between the two places. 
𝑦𝑛+1  -2𝑦𝑛+𝑦𝑛−1 = ℎ2(𝑓𝑛 𝑦𝑛+ 𝑔𝑛) 
𝑦𝑛+1  -2𝑦𝑛+𝑦𝑛−1 = ℎ2𝑓𝑛 𝑦𝑛+ℎ2 𝑔𝑛  
𝑦𝑛+1  =2𝑦𝑛-𝑦𝑛−1+ℎ2𝑓𝑛 𝑦𝑛+ℎ2 𝑔𝑛 
𝑦𝑛+1  = (2 +ℎ2𝑓𝑛 )𝑦𝑛 -𝑦𝑛−1+ℎ2 𝑔𝑛                                          (3)        when   n =1,2,3,………… 
We enter values n into equation (3)  when  n=1 we get. 
𝑦2  = (2 +ℎ2𝑓1 )𝑦1 –𝑦0+ℎ2 𝑔1  
𝑦𝑛+1 = (2 +ℎ2𝑓1 )𝑦1 –𝑦0+ℎ2 𝑔1 
𝑦1= (𝑦𝑛+1+𝑦0- ℎ2𝑔1)/ (2 +ℎ2𝑓1) 
When n=2 we get  
𝑦3 = (2 +ℎ2𝑓2 )𝑦2- 𝑦1+ℎ2 𝑔2 
𝑦2=(𝑦3 + 𝑦1 -ℎ2 𝑔2)/ (2 +ℎ2𝑓2 ) 
𝑦2 =(𝑦𝑛+1 + 𝑦𝑛 -ℎ2 𝑔2)/ (2 +ℎ2𝑓2 ) 

3. We continue to solve until we get results less than ϵ 

|𝑦(𝑛)
(𝑁+1)

 − 𝑦(𝑛)
(𝑁)

 | < ϵ 

4. Break 

 

5. Applications 
Example: 
𝑦″= 2y- sin(x) 
Boundary conditions     y (0)=1 ,y(∞)=0, ϵ =10−10     , h=0.5 
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y (x)= sin(x) 
−𝑦𝑛+1 +2𝑦𝑛−𝑦𝑛−1 

ℎ2  +2𝑦𝑛 = sin (x) 

−𝑦𝑛+1  + 2𝑦𝑛 − 𝑦𝑛−1 + 0.5 𝑦𝑛 = 0.25 sin (
𝑛

2
) 

𝑦𝑛+1= 2.5 𝑦𝑛 − 𝑦𝑛−1 − 0.25 sin (
𝑛

2
)                                                   (4) 

𝑤ℎ𝑒𝑛 n = 1,2,3 ……… we substitute into the equation (4) 

𝑦2= 2.5 𝑦1 − 𝑦0 − 0.25 sin (
1

2
)  

               Put 𝑦0 = 1 , 𝑦2= 0          (given in the question) 

0= 2.5 𝑦1 − 1 − 0.25 sin (
1

2
)  

𝑦1 = 
1+0.25 sin (

1

2
) 

2.5 
  = 0.40087 

𝑦3= 2.5 𝑦2 − 𝑦1 − 0.25 sin (
2 

2
)  

𝑦3= 2.5 (2.5 𝑦1 − 𝑦0 − 0.25 sin (
1

2
))  − 𝑦1 − 0.25 sin (1)  

𝑦3 = 6.25 𝑦1 −2.5𝑦0 − 0.625 sin (
1

2
) −𝑦1 − 0.25 sin (1)  

𝑦3 = 5.25 𝑦1 −2.5 − 0.625 sin (
1

2
)  − 0.25 sin (1)  

0 = 5.25 𝑦1 −2.5 − 0.625 sin (
1

2
)  − 0.25 sin (1)  

𝑦1 =  
2.5+0.25 sin (1)+0.625 sin (

1

2
)    

5.25 
 = 0.47805  

|0.47805   −  0.40087 | < 10−10 
 
|0.07718| > 10−10 
We continue solving until we reach  n = 9 
𝑏𝑁+1= a+(n+1)/h 

𝑏(10) =0 + (10)( (
1

2
) = 5 

We get Boundary Condition  y(0)=1, y(5)  0 
  When we advance the solution, we obtain the best approximation of the solution. 
Now we plot the result using MATLAB 
 
 
 
 
 

 

 
 

 



International Journal of Engineering and Information Systems (IJEAIS) 

ISSN: 2643-640X 

Vol. 8 Issue 5 May - 2024, Pages: 53-57 

www.ijeais.org/ijeais 

56 

 
Figur-1- 

6.conclusion 

The finite difference method solved second-order linear boundary value problems with a second boundary condition. The 
MATLAB application was utilized. 
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