Characteristic of Compact sets in S^* -Orlicz Space

Dhuha Abdulameer Kadhim1 and Zeinab Hassan Abood Author2

*I*University of Kufa, College of Education for Women, Department of Mathematics , <u>dhuhaa.ebada@uokufa.edu.iq</u>
2University of Karbala, College of Administration and Economics, Department of Statistics zainab.hasan@uokerbala.edu.iq

Abstract: This paper is devoted to a study of the general properties of the compact sets in S^* -Orlicz space, where $S^* = S^*[0,1]$ is the ring of all real measurable functions on [0,1].

Keywords: converges in measure, compact set, S*-Orlicz space, equiabsolutely continuous norms

1. INTRODUCTION

Throughout this paper, m, μ , D, $\|\kappa(x, \theta)\|_F$ and E_F , denote the strictly positive measure, the integral constructed by the measure m, bounded closed set in S^* , the norm of the characteristic function and the set of closure bounded functions in L_F^* , respectively.

For every $x \in L_F$, we set $\rho(x,F) = \mu(F(x))$, note that $\rho(x,F) \in S^*$. [9]

Recall that uniformly integrable is a subset M of L^1 (Lebesgue space) such that for given $\varepsilon > 0$ there exists $\delta > 0$, therefore $\bigvee(\mu(|f|) : f \in M) < \varepsilon$ whenever $\mu(B) < \delta$. Alternatively M is bounded and uniformly integrable if and only if given $\varepsilon > 0$, there exists N > 0 so $\bigvee\{\mu(|f|) : |f| > c, f \in M\} < \varepsilon$ where $c \ge N$.

2. BASIC CONCEPTS

Definition 2.1 : [1]

Let $f: [0, \infty) \rightarrow [0, \infty)$ be a monotone increasing, right continuous function with

- 1. f(0) = 0
- 2. $\lim_{t \to \infty} f(t) = \infty$
- 3. f(t) > 0 whenever t > 0, then the function defined by

$$F(u) = \int_{0}^{|u|} f(t)dt$$

is said to be an N-function.

An alternative view of N-functions gives by the following proposition.

Proposition 2.2 :[2,11]

The function F is continuous, even and convex if and only if F is an N-function with

1. $\lim_{u \to 0} \frac{F(u)}{u} = 0;$

2.
$$\lim_{u \to \infty} \frac{F(u)}{u} = \infty;$$

3. $F(u) > 0$ if $u > 0$.

Remark 2.3 :[6]

Define g(s) for $s \ge 0$ as $g(s) = \sup_{f(t) \le s} t$.

Note that
$$g(0) = 0$$
, $\lim_{s \to \infty} g(s) = \infty$. Also, we have $g(f(t)) \ge t$ and $f(g(s)) \ge s$.

Now,

$$F(u) = \int_{0}^{|u|} f(t)dt$$

and

$$G(v) = \int_{0}^{|v|} g(s) ds$$

are N-functions and one complements each other. Furthermore it is clear that the complement of G is F.[1]

Accordingly, we define an alternative for the complementary N-function G by [1,2]:

$$G(v) = \max\{u|v| - F(u): u \ge 0\}$$

Definition 2.4 :[7]

An N-function *F* is called belong to Δ_2 -condition if there exists a constant *c* such that

$$cF(2u) \le cF(u) \ \forall u > 0.$$

Proposition 2.5:[4]

The function F(u) satisfies the Δ_2 -condition if and only if

$$F(au) \leq c(a)F(u)$$
 for any $a > 1$.

Note [5]: We shall denote by $C_{\infty}(Q(\nabla))$ the set of all continuous functions on the Stone compactum $Q(\nabla)$ which can take the values $\pm \infty$ on nowhere dense sets from $Q(\nabla)$. Let $L_1(m)$ be

the set of all integrable by the measure m elements from $C_{\infty}(Q(\nabla))$.

Definition 2.6 :[5]

Assume *G* is the complementary N-function to F(u).

Set
$$L_F^* = L_F^*(\nabla, m) = \{x \in C_\infty(Q(\nabla)) : xy \in L_1(m)\}.$$

for all $y \in L_G$. If $x \in L_F$ and $y \in L_G$, then it follows from the Young inequality $|xy| \le F(x) + G(y)$, that $xy \in L_1(m)$, it means, that $L_F \subset L_F^*$.

Proposition 2.7 :[8]

For every $x \in L_F^*$, we have

$$\bigvee_{y\in A(G)} |\mu(xy)| < \infty,$$

where $A(G) = \{ y \in L_G : \mu(G(y)) \le 1 \}.$

The Orlicz norm on L_F^* defined as

$$\|x\|_F = \bigvee_{y \in A(G)} |\mu(xy)|,$$

for all $x \in L_F^*$.

It follows from the definition of the Orlicz norm that the following usual axioms are satisfied [6]:

- 1. $||x||_F = 0$ if and only if, x = 0 almost everywhere ;
- 2. $\|\alpha x\|_F = |\alpha| \|x\|_F$;
- 3. $||x_1 + x_2||_F \le ||x_1||_F + ||x_2||_F$.

Thus, the set L_F^* becomes a normed linear space which is called an S^* - Orlicz space.

Remark 2.8 :[6]

A collection \mathcal{K} of functions f(x) with equiabsolutely continuous integrals if for given $\varepsilon > 0$ there exists h > 0 so that $\mu(|f(x)|) < \varepsilon$ whenever $m(\theta) < h$.

Theorem (Vallée Poussin's) 2.9:[6]

Let h(y) $(0 \le x < \infty)$ be a monotonically increasing function which satisfies the condition

$$\lim_{n\to\infty}\frac{h(y)}{y}=\infty.$$

Suppose, for the functions h(y) of some collection \mathcal{K} , the integrals of the function h[|f(x)|] are uniformly bounded:

$$\mu[h(|f(x)|)] \le A < \infty \quad (f(x) \in \mathcal{K}).$$

Then the collection ${\mathcal K}$ has equiabsolutely continuous integrals.

3. THE IMPORTANT RESULTS

The important results concerning with the characteristic of compact sets in S^* -Orlicz space are investigated.

Firstly, the following information are needs.

Definition 3.1:[10]

A collection $\mathcal{K} \subset L_F^*$ is sad to be has equiabsolutely continuous norms if $\forall \varepsilon > 0, \exists \delta > 0$ such that $\|\kappa(x, \theta)\|_F < \varepsilon$ whenever $m(\theta) < \delta$.

Remark 3.2: [6]

 $\mathcal{K} \subset E_F$, If \mathcal{K} is a compact set in E_F , then it as equiabsolutely continuous norms.

Definition 3.3: [6]

Let f(x) be a function which is summable on D. The function

$$f_r(x) = \frac{1}{Z_r} \underset{T_r(x)}{\mu} (f(t)) \qquad (x \in D),$$

Where $T_r(x)$ is the n-dimensional sphere with radius r and center at the point $x \in D$ and Z_r is the volume of this sphere, is called a Steklov function.

We denote the sphere with radius r and center at the zero of the n-dimensional space by T_0 .

Theorem 3.4:[3]

A function $f \in E_F$ if and only if $f \in L_F^*$ has absolutely continuous norm.

Lemma 3.5: [3]

The collection $\{F(x) : x \in \mathcal{K}\}$ is uniformly integrable in L^1 . if and only if $F \in \Delta_2$ and $\mathcal{K} \subset L_F^*$ then the set \mathcal{K} has equiabsolutely continuous norms

Lemma 3.6:

A necessary and sufficient condition that a sequence of functions $f_n \in E_F$ (n = 1, 2, ...), which converges in measure, converge in norm is that it have equiabsolutely continuous norms.

Proof:

Let $f_n \in E_F$ be a sequence (n = 1, 2, ...), converges in measure and has equiabsolutely continuous norms.

Assume $\varepsilon > 0$ is positive number, we denote by θ_{mn} the $D\{|f_n - f_m| > \alpha\}$, where $\alpha = \varepsilon/\{3m(D)G^{-1}(\frac{1}{m(D)})\}$, and let $\delta > 0$ be a number such that

$$\|f_n\kappa(x,\theta)\|_F < \frac{\varepsilon}{3} \qquad (n = 1,2,\dots)$$

whenever $m(\theta) < \delta$.

Since the sequence f_n (n = 1, 2, ...) converges in measure, and we can find n_0 such that $m(\theta_{mn}) < \delta$ for $n, m > n_0$.

For $n, m > n_0$, we have

 $\begin{aligned} \|f_n - f_m\|_F &\leq \|(f_n - f_m)\kappa(x, \theta_{mn})\|_F + \|(f_n - f_m)\kappa(x, D/\theta_{mn})\|_F &\leq \|f_m\kappa(x, \theta_{mn})\|_F + \|f_m\kappa(x, \theta_{mn})\|_F + \alpha \|\kappa(x, D)\|_F \end{aligned}$

< ε.

This means that the sequence f_n converges in L_F^* .

Theorem 3.7:

If the collection $\mathcal{K} \subset E_F$ is compact in the sense of convergence in measure and has equiabsolutely continuous norms, then the collection \mathcal{K} is compact in L_F^* .

Proof:

From each sequence of the collection \mathcal{K} we can select a subsequence which converges in measure. Also, from (lemma 3.6), we get this subsequence converges with respect to the norm in L_F^* .

Theorem 3.8:

A collection \mathcal{K} of functions in the space E_F is compact if and only if the following properties are satisfied:

i)
$$||f||_F \leq A, f(x) \in \mathcal{K};$$

ii) For arbitrary $\varepsilon > 0$, a $\delta > 0$ such that $d(h, 0) < \delta$ implies

that $||f(x+h) - f(x)||_F < \varepsilon$ for all $f(x) \in \mathcal{K}$.

Proof:

Suppose \mathcal{K} is a compact collection of functions in E_F . Then, for this collection we can construct an $(\frac{\varepsilon}{3})$ net consisting of continuous functions $f_1(x), f_1(x), \dots, f_n(x)$. We denote by *c* the norm of the characteristic function of the entire set *D* in the space L_F^* .

Let $\delta > 0$ be a number such that

$$|f_i(x+h) - f_i(x)| < \frac{\varepsilon}{3c} \qquad (i = 1, 2, \dots, n)$$

Whenever $d(h, 0) < \delta$.

It is clear that

$$\|f_i(x+h) - f_i(x)\|_F \le \frac{\varepsilon}{3}$$
 $(i = 1, 2, ..., n)$ (*)

Let f(x) be an arbitrary function in \mathcal{K} . We can find a function $f_{i_0}(x)$ such that $\|f - f_{i_0}\|_F < \varepsilon/3$. From (*) and $(\|f(x+s)\|_F = \|f\|_F)$, we have

$$\|f(x+h) - f(x)\|_{F} \le \|f(x+h) - f_{i_{0}}(x+h)\|_{F} + \\ + \|f_{i_{0}}(x+h) - f_{i_{0}}(x)\|_{F} + \|f_{i_{0}}(x) - f(x)\|_{F} < \varepsilon$$

Conversely, Suppose $f(x) \in \mathcal{K}$ and $f_r(x)$ is the corresponding Steklov function. Then

$$|f(x) - f_r(x)| \le \frac{1}{Z_r} \mu(|f(x) - f(t)|)$$

It follows, for $g(x) \in L_G$, $\rho(g, G) = \mu(G(g)) \le 1$, then

$$\mu(|f_r(x) - f(x)|g(x)) \le \frac{1}{Z_r} \prod_{T_{r(x)}} \mu[\mu(|f(t) - f(x)|g(x)],$$

Since the order of integration and making a change in variables, we obtain

$$\mu(|f(x) - f_r(x)|g(x)) \le \frac{1}{Z_r} [\mu(\mu(|f(x+s) - f(x)|g(x)]) \\ \le \frac{1}{Z_r} [\mu(||f(x+s) - f(x)||_F)],$$

It follows from the theorem [7, page 97], then the converse is satisfies.

4. References

- J. Alexopoulos (2004). A brief Introduction to Nfunctions and Orlicz function Spaces, Kent State Univ., Stark Campus, 13-17.
- [2] J. Alexopoulos (1997). On Subspaces of Non-Reflexive Orlicz Spaces, Kent State Univ.
- [3] J. Alexopoulos (1992). De La Vallee Poussin's Theorem and Weakly Compact Sets in Orlicz Spaces, Illinois Math. And Science Academy.
- [4] N. Carothers (2000). A short Course on Banach Space Theory, Bowling Green State Univ.
- [5] S. L. Gubta and N. Rani (1970). Fundamental Real Analysis, Delhi.
- [6] M. A. Krasnoselskii and Ya. B. Rutickii (1961).Convex Functions and Orlicz Spaces, Noorhoff Ltd, Groningen.
- [7] L. Ning, Ye Yonggang (2010). Weak Orlicz Space and its Convergence Theorems, Wahan Univ., China
- [8] M. Stone (1937). Applications of the Theory of the Boolean Ring to General Topology, Trans. Amer. Math., Soc. Vol.41,375-481.
- [9] B. Z. Vulikh (1961). Introduction to the Theory of Partially Ordered Space, Moscow, p 407.
- [10] J. Wang (2002). Sequentially Compact Sets in a Class of Generalized Orlicz Spaces, Comment. Math., Univ. Carolin.
- [11] Ni X. Yin, C. Qian and Y. Chen (2009). On the Uniformly Convexity of N-Functions, Universidad Tecnica Federico Santa Maria.