On Some Properties of A BCC-algebra

Mohsin Shalan Abdulhussein

Faculty of Mathematical Sciences, University of Kufa, Najaf, Iraq

mohsins.alakayshee@uokufa.edu.ig

ABSTRACT— In this paper, we are studying the properties of the BCC-algebra, closed ideal and completely closed ideal.

KEYWORDS— Bcc-Algebra, completely closed ideal.

INTRODUCTION:

In 1966, Imai and Iski [8, 9] dened two classes of algebras are called BCK-algebras and BCIalgebras as algebras connected with some logics. In 1984, Komori [9] and [7] introduced so-called the BCC-algebras, to solve some problems on BCK-algebras. In [2] redened the notion of BCCalgebras by using a dual form of the ordinary algebra. Further study of BCC-algebras was continued in [1, 3, 5, 6, 7]. In this paper, we are studying the properties of the BCC-algebra, closed ideal and completely closed ideal...

1.PRELIMINARIES:

Definition (1.1)[12]: A BCC-algebra X is an abstract algebra (X, *, 0) of type (2, 0) satisfying the following axioms: (i) ((x * y) * (z * y)) * (x * z) = 0. (ii) x * x = 0, (iii) x * 0 = x, (iv) $x * y = y * x = 0 \implies x = y$. (v) 0 * x = 0is called a BCC-algebra. A BCC-algebra with the condition is called a *BCK-algebra*. **Definition**(1.2)[12]: A non-empty subset A of a BCC-algebra X is called a BCK-ideal if (vii) $0 \in A$. (viii) $x * y \in A$ and $y \in A$ imply $x \in A$, and a BCC-ideal if it satisfies (vii) and (ix) $(x * y) * z \in A$ and $y \in A$ imply $x * z \in A$.

Putting z = 0, we can see that a BCC-ideal is a BCK-ideal. The converse is not true (cf. [6]). This means that a BCC-ideal is a BCK-ideal with some additional property.

Example(1.3):

Consider the set $G = \{0, a, b, c, d\}$ with the operation * defined by the following table:

*	0	а	b	с	d
0	0	0	0	0	0
а	а	0	а	0	0
b	b	b	0	0	0
с	с	с	а	0	0
d	d	с	d	с	0

Then (G, *, 0) is a BCC-algebra, The subset $A = \{0, a\}$ is a BCK-ideal of this BCC-ideal since $(d * a) * c \in A$ and $d * c \notin A$. Definition (1.4)[6]:

A nonempty subset S of a BCC-algebra X is called a **BCC-Subalgebra** or **Subalgebra** of X if $x^*y \in S$ for all x, $y \in S$. Example(1.5):

Let X be the BCC-algebra **Example(1.3)** Then the set $S = \{0,a\}$ is a Subalgebra of a BCC-algebra X. Since $a*0=a\in S$ and $0*0 = 0 \in S$, $0*a=0\in S$, $a*a=0\in S$.

Definition (1.6)[6]:

Let X be a BCC-algebra and I be a subset of X. Then I is called a BCC-ideal of X if it satisfies following conditions:

1) 0∈I,

2) $x^*y \in I$ and $y \in I \Longrightarrow x \in I$,

3) $x \in I$ and $y \in X \Rightarrow x^*y \in I$, $I^*X \subseteq I$.

2.Main results

In this section, we review some a new definitions and Proposition of Bcc-algebras, that we results in our work. **Definition (2.1):**

A BCC-algebra (X,*,0) is said to be positive implicative if it satisfies for all x ,y and $z \in X$, $(x^*z)^*(y^*z)=(x^*y)^*z$. Example(2.2):

Let $X = \{0,a,b,c,d\}$ be a set with the following table:

*	0	а	b	с	d
0	0	0	0	0	0
a	а	0	а	0	0
b	b	b	0	0	0
с	с	с	а	0	0
d	d	с	d	с	0

Then (X, *, 0) is a positive implicative BCC-algebra.

Definition (2.3):

1. A BCC-algebra (X,*,0) is said to be 0-commutative if:

 $x^{\ast}(0^{\ast}y) {=} y^{\ast}(0^{\ast} x)$ for all x , $y \in X.$

2. A non-empty subset N of Bcc-algebra X is said to be normal of X if :

 $(x*a)*(y*b) \in N$ for any x*y, $a*b \in N$, $\forall x$, y, a, $b \in X$.

Theorem (2.4):

Every normal subset N of a BCC-algebra X is a subalgebra of X. **Proof:**

If x , $y \in N$, then x*0, y*0 $\in N$. Since N is normal,

 $x*y=(x*y)*(0*0)\in N$. Thus N is a subalgebra of X.

<u>Remark:</u> The converse of above theorem does not hold. Indeed, $N=\{0,c\}$ is a subalgebra of X, but it is not normal, since $c^{*}0,b^{*}b \in N$, but $(c^{*}b)^{*}(0^{*}b)=a \notin N$.

Definition (2.5):

A BCC-algebra X satisfying in condition $0*x=0 \Rightarrow x=0$ is called a

P-semisimple BCC-algebra.

Example(2.6):

Consider the BCC-algebra **Example**(1.5) X is a **p-semisimple** BCC-algebra since $0*x = 0 \Rightarrow x = 0$.

Definition (2.7):

1. Let X be a BCC-algebra. Then the set $X += \{x \in X: 0^*x=0\}$ is called the **BCA-part of X**. 2. Let X be a BCC-algebra. Then the set $med(X) = \{x \in X: 0^*(0^*x)=x\}$ is called the **medial part** of X. **Example(2.8):**

Consider the BCC-algebra **Example**(1.5) The set med (X)= $\{0\}$ is a medial part of a BCC-algebra X, since 0*(0*0)=0*0=0

Remark:

Let X and Y be Bcc-algebras. A mapping $f:X \rightarrow Y$ is called

a homomorphism if $f(x^*y)=f(x)^*f(y)$ for any $x, y \in X$.

a homomorphism f is called a monomorphism (resp., epimorphism) if it

is injective (resp., surjective). A bijective homomorphism is called an

isomorphism. Two BH-algebras X and Y are said to be isomorphic,

written $X \cong Y$, if there exists an isomorphism $f{:}X {\rightarrow} Y$. For any

homomorphism f:X \rightarrow Y, the set {x \in X:f(x)=0} is called the kernel of

f, denoted by Ker(f), and the set $\{f(x):x \in X\}$ is called the image of f,

denoted by Im(f). Notice that f(0)=0 for any homomorphism f.

Definition (2.9):

A mapping $f:X \rightarrow X$ on a Bcc-algebra (X,*,0) is called a Bcc-endomorphism if it is a homomorphism.

Definition (2.10):

Let X be a BCC-algebra. For a fixed $a \in X$, we define a map Ra :X \rightarrow X such that Ra(x)=x*a for all $x \in X$, and call Ra a right map on X. The set of all right maps on X is denoted by R(X). A left map La is defined by a similar way, and the set of all left maps on X is denoted by L(X).

Definition (2.11):

Let I be a nonempty subset of a Bcc-algebra X. Then I is called an ideal of X if it satisfies:

1) 0∈I.

2) $x^*y \in I$ and $y \in I$ imply $x \in I$.

Definition (2.12):

Let X be a BCC-algebra and I be a subset of X. Then I is called a BCC-ideal of X if it satisfies following conditions:

1) 0∈I,

2) $x^*y \in I$ and $y \in I \Longrightarrow x \in I$,

3) $x \in I$ and $y \in X \Longrightarrow x^*y \in I$, $I^*X \subseteq I$.

Definition (2.13):

An Bcc-ideal I in Bcc-algebra X is said to be closed Bcc-ideal if it also is sub-algebra.

Proposition (2.14):

Let f be isomorphism from a Bcc-algebra X into a Bcc-algebra Y. If I is closed Bcc-ideal in X, then f(I) is closed Bcc-ideal in **Proof** :

Let $a, b \in f(I)$ such that a = f(x), b = f(y), when $x, y \in I$

Since a * b = f(x) * f(y) = f(x * y)

Since I is closed Bcc-ideal, then $x * y \in I$, thus $f(x * y) \in f(I)$

Then f(I) is closed Bcc-ideal.

Proposition (2.15):

Let f be epimorphism from a Bcc-algebra X into a Bcc-algebra Y. If J is closed Bcc-ideal in Y, then $f^{-1}(J)$ is closed Bcc-ideal in. **Proof :**

Let x, $y \in f^{-1}(J)$, since f(x), $f(y) \in J \& J$ is closed Bcc-ideal Then $f(x) * f(y) \in J$, thus $f(x * y) \in J$

Then $x * y \in f^{-1}(J)$, thus $f^{-1}(J)$ is closed Bcc-ideal.

Definition (2.16):

Let I and J be two subset of X such that $I \subseteq J$. Then I is said to be closed with respect to J if $x * y \in J$, $\forall y \in I$, $y \neq 0$, then $x * y \in I$. **Proposition (2.17):**

The union of family of closed with respect to J is closed with respect to J.

Proof :

Let { Ii : $i \in \Delta$ } be a family of closed with respect to J and

Let $x * y \in J$, $\forall y \in \bigcup i \in \Delta$ Ii, $y \neq 0$, since $\forall i \in \Delta$, Ii is closed with respect to J then $\exists j \in \Delta$ such

that $x \ast y \in J, \forall \ y \in Ij, y \neq 0,$ then $x \ast y \in Ij$

Thus $x * y \in \bigcup_{i \in \Delta} I_i$, then $\bigcup_{i \in \Delta} I_i$ is closed with respect to.

Proposition (2.18):

Let I be Bcc-ideal and $\emptyset \neq I \subseteq J$, if I is closed with respect to J, then J is Bcc-ideal . **Proof:** Let $x * y \in J$, $\forall y \in J$, $Y \neq 0$ Since $I \subseteq J$, then $x * y \in J$, $\forall y \in I$, $y \neq 0$.

International Journal of Engineering and Information Systems (IJEAIS) ISSN: 2643-640X Vol. 8 Issue 6 June - 2024, Pages: 1-4

vol. 8 Issue 6 June - 2024, Pages: 1-4

Since I is closed with respect to J, then $x * y \in I$, $\forall y \in I$, $y \neq 0$, since I is Bcc-ideal, thus

 $x \in I$, consequently $x \in J$, then J is Bcc-ideal.

Proposition (2.19):

Let X be a Bcc-algebra and I is Bcc-ideal if X is implicative with respect to I, then I is ideal .

Proof:

Let $x * y \in I$, $y \in I$ such that $y \neq 0$

Since $(x * (x * y)) * y = 0 \in I$, $\forall y \in I$, $y \neq 0$ Since I is Bcc-ideal, then $x * (x * y) \in I$ Since x * (x * y) = x, thus $\in I$, then I is ideal.

Proposition (2.20):

Let X be a commutative BCK-algebra has at lest two element. If X is implicative with respect to I .Then X = I has only two elements .

Proof:

Let x, $y \in X$ such that $x \neq 0$, $y \neq 0$, since X is implicative with respect to I, then x * (x * y) = x & y * (y * x) = y But X is commutative, then x = y.

Definition (2.21):

An ideal I of a BCC-algebra X is called a **normal ideal** if $x^*(x^*y) \in I$ implies $y^*(y^*x) \in I$, for all x, $y \in X$. Example(2.22):

Let X={0,a,b,c}. The following table shows the BCC-algebra structure on X.

*	0	a	b	c
0	0	0	0	0
a	a	0	0	a
b	b	b	0	0
с	c	с	b	0

The set $I = \{0,a\}$ is a normal ideal.

References

[1] I.M. Dudek, W.A. Dudek, Remarks on BCI-algebras, *Prace Naukowe WSP w Czesto- chowie* (Ser. Matematyka) 2 (1996) 63-70.

[2] W.A. Dudek, On proper BCC-algebras, Bull. Inst. Math. Acad. Sinica 20 (1992) 137-150.

[3] W.A. Dudek, Remarks on the axioms system for BCI-algebras, *Prace Naukowe WSP w Czestochowie* (Ser. Matematyka) 2 (1996) 46-61.

[4] W.A. Dudek, Unsolved problems in BCK-algebras, East Asian Math. J. 17 (2001) 115-128.

[5] W.A. Dudek, X.H. Zhang, On atoms in BCC-algebras, *Discussiones Math.* 15 (1995) 81-85.

[6] W.A. Dudek, X.H. Zhang, On ideals and congruences in BCC-algebras, CzechoslovakMath. J. 48 (123) (1998) 21-29.

[7] W.A. Dudek, X.H. Zhang, Initial segments in BCC-algebras, Math. Moravica 4 (2000) 27-34.

[8] Y. Imai, K. Iséki, On axiom system of propositional calculi XIV, Proc. Japan Acad. 42 (1966) 19-22.

[9] K. Iséki, An algebra related with a propositional calcuus, Proc. Japan Acad. 42 (1966) 26-29.

[10] Y. Komori, The variety generated by BCC-algebras is finitely based, Reports Fac. Sci. Shizuoka Univ. 17 (1983) 13-16.

[11] Y. Komori, The class of BCC-algebras is not a variety, Math. Japonica 29 (1984) 391-394.

[12] W. A. Dudek, B. Karamdin, Sh. A. Bhatti, Algebra Colloquium 18 (Spec 1) (2011) 899-914