On The Interval-valued Bifuzzy ψ -ideals of ψ -algebra

Nabaa Hasoon Jabir

Department of Mathematics, Faculty of Education for Girls, University of Kufa, Iraq
nabaah.al-saedi@uokufa.edu.iq

Abstract: The concept tripolar fuzzy subset is a generalization of fuzzy subset. In this paper, the concept bifuzzy ψ -ideals, bifuzzy sub-commutative bifuzzy ψ -ideals and sub-implicative fuzzy ψ -ideals of ψ -algebras are introduced and several properties are investigated. Also, the relations between fuzzy bifuzzy ψ -ideals, sub-commutative bifuzzy ψ -ideals and sub-implicative bifuzzy ideals are given. The image and the preimage of fuzzy ψ -algebras, bifuzzy ψ -ideals sub-commutative bifuzzy ψ -ideals and sub-implicative bifuzzy ψ -ideals under homomorphism of ψ -algebras are defined and how the image and the preimage of them are studied.

Keywords: ψ -algebra, bifuzzy ψ -ideals, ψ - subalgebra, fuzzy ψ -subalgebra, interval-valued bifuzzy ψ -ideal.

1. Introduction

In 1965, L.A. Zadeh introduced the notion of fuzzy subset, [1]. In 1976, K. Is´eki and S. Tanaka studied the notion of BCK-algebra, [2]. In 1991, O.G. Xi studied the notion of fuzzy BCK-algebra, [3]. In 2006, A.B. Saoid introduced fuzzy QS-algebra with interval-valued membership function, [4]. Also, T. Priya and T. Ramachandran introduced anti-fuzzy ideals of CI-algebra and its lower level cuts, [5]. Jun[6,7] studied the notion of cubic set as generalization of fuzzy set and interval-valued fuzzy set. In 2015, A.T. Hameed introduced the idea of SA-algebras. She stated some concepts related to it such as SA-subalgebra, SA-ideal, fuzzy SA-subalgebra and fuzzy SA-ideal of SA-algebra. She introduced the concept of homomorphisms on SA-algebra and fuzzy homomorphisms on SA-algebra, [9]. In 2023, A.T. Hameed and N.H. Jaber introduced the notion of ψ -subalgebra, ψ -ideal, bifuzzy ψ -subalgebra, bifuzzy ψ -ideal and they introduced the concept of homomorphisms on ψ -algebra and fuzzy homomorphisms on ψ -algebra. In this paper, the concepts of interval-valued bifuzzy ψ -ideal, interval-valued sub-implicative bifuzzy ψ -ideals under homomorphism of ψ -algebras are defined and how the image and the preimage of them under homomorphism of ψ -algebras are studied.

2. Preliminaries

In this section, we give some basic definitions and preliminaries proprieties of ψ -subalgebras and fuzzy ψ -ideals in ψ -algebra such that we include some elementary aspects that are necessary for this paper.

Definition 2.1.([14]. Let (X; +, -, 0) be an algebra with two operations (+) and (-) and constant (0). X is called an ψ -algebra if it satisfies the following properties: for all $x, y, z \in X$,

$$(\psi_1) \ x - x = 0,$$

$$(\psi_2) (0-x) + x = 0,$$

$$(\psi_3) (x - y) - z = x - (z + y),$$

$$(\psi_4)(y+x)-(x-z)=y+z.$$

In , we can define a binary relation (\leq) by : $x \leq y$ if and only if x + y = 0 and x - y = 0, $x, y \in X$.

Definition 2.2. [13].

Let (X; +, -, 0) be a ψ -algebra and let S be a nonempty set of X. S is called a ψ - subalgebra of X if $x + y \in S$ and $x - y \in S$, whenever $x, y \in S$.

Definition 2.3. [15].

A nonempty subset I of a ψ -algebra (X; +, -, 0) is called a ψ -ideal of X if it satisfies: for $x, y, z \in X$,

ISSN: 2643-640X

Vol. 8 Issue 6 June - 2024, Pages: 69-82

- (1) $0 \in I$,
- (2) $(y+z) \in I$ and $(x-z) \in I$ imply $(y+x) \in I$.

Proposition 2.4.[2].

Every ψ -ideal of ψ -algebra is a ψ -subalgebra of X and the converse is not true.

Definition 2.5.[4].

Let X be a nonempty set, a fuzzy subset μ of X is a mapping $\mu: X \to [0,1]$.

Definition 2.6.[14].

For any $t \in [0,1]$ and a fuzzy subset μ in a nonempty set X, the set

 $U(\mu, t) = \{x \in X \mid \mu(x) \ge t\}$ is called **an upper t-level cut of \mu**, and the set $L(\mu, t) = \{x \in X \mid \mu(x) \le t\}$ is called **a lower t-level cut of \mu**.

Definition 2.7.[13].

Let (X; +, -, 0) be a ψ -algebra, a fuzzy subset μ of X is called a fuzzy ψ -subalgebra of X if for all $x, y \in X$,

- 1- $\mu(x + y) \ge \min\{\mu(x), \mu(y)\}\$ and
- 2- $\mu(x y) \ge \min\{\mu(x), \mu(y)\}.$

Definition 2.8.[15].

Let (X; +, -, 0) be a ψ -algebra, a fuzzy subset μ of X is called a fuzzy ψ -ideal of X if it satisfies: for all $x, y, z \in X$,

- (FI₁) $\mu(0) \ge \mu(x)$,
- (FI₂) $\mu(y+x) \ge \min\{\mu(y+z), \mu(x-z)\}.$

Proposition 2.9.[15].

Every fuzzy ψ -ideal of ψ -algebra (X; +, -, 0) is a fuzzy ψ -subalgebra of X.

Proposition 2.10.[15].

- 1- Let μ be a fuzzy subset of ψ -algebra (X; +, -, 0). If μ is a fuzzy ψ -subalgebra of X, for any $t \in [0,1]$, μ_t is a ψ -subalgebra of X.
- 2- Let μ be a fuzzy subset of ψ -algebra (X; +, -, 0). If for all $t \in [0,1]$, μ_t is a ψ -subalgebra of X, then μ is a fuzzy ψ -subalgebra of X.
- 3- Let μ be a fuzzy ideal of ψ -algebra (X; +, -, 0). If μ is a fuzzy ψ -ideal of X, then for any $t \in [0,1]$, μ_t is an ψ -ideal of X.
- 4- Let μ be a fuzzy ideal of ψ -algebra (X; +, -, 0). If for all $t \in [0,1]$, μ_t is an ψ -ideal of X, then μ is a fuzzy ψ -ideal of X.

Now, we will recall the concept of anti-fuzzy subsets.

Definition 2.11. [14].

Let (X; +, -, 0) be an ψ -algebra, a fuzzy subset μ of X is called **an anti-fuzzy** ψ -subalgebra of X if for all $x, y \in X$,

$$\overline{AF\psi S_1} \ \mu (x+y) \leq \max \{\mu (x), \mu (y)\},\$$

$$AF\psi S_2$$
) $\mu(x-y) \leq max \{\mu(x), \mu(y)\}$.

Proposition 2.12. [4].

Let μ be an anti-fuzzy subset of an ψ -algebra (X; +, -, 0).

- 1- If μ is an anti-fuzzy ψ -subalgebra of , then it satisfies for any $t \in [0, 1]$, $L(\mu, t) \neq \emptyset$ implies $L(\mu, t)$ is a ψ -subalgebra of X.
- 2- If $L(\mu,t)$ is a ψ -subalgebra of X, for all $t \in [0,1]$, $L(\mu,t) \neq \emptyset$, then μ is an anti-fuzzy ψ -subalgebra of X.

Definition 2.13. [6]:

Let (X; +, -, 0) be an ψ -algebra, a fuzzy subset μ of X is called **an anti-fuzzy** ψ -ideal of X if it satisfies the following conditions, for all $x, y \in X$,

$$(AF\psi I_1) \quad \mu\left(0\right) \leq \mu\left(x\right),$$

$$(AF\psi I_2) \ \mu(y+x) \le max\{ \mu(y+z), \mu(x-z) \}.$$

Proposition 2.14. [4].

Let μ be an anti-fuzzy subset of an ψ -algebra (X; +, -, 0).

- 1- If μ is an anti-fuzzy ψ -ideal of , then it satisfies for any $t \in [0, 1]$, $L(\mu, t) \neq \emptyset$ implies $L(\mu, t)$ is an ψ -ideal of X.
- 2- If $L(\mu, t)$ is an ψ ideal of X, for all $t \in [0, 1]$, $L(\mu, t) \neq \emptyset$, then μ is an anti-fuzzy ψ -ideal of X.

Definition 2.15. [12].

Let $f:(X;+,-,0) \to (Y;+',-',0')$ be a mapping nonempty ψ -algebras X and Y respectively. If μ is anti-fuzzy subset of X, then the anti-fuzzy subset β of Y defined by:

$$f(\mu)(y) = \begin{cases} \inf\{\mu(x) \colon x \in f^{-1}(y)\} & \text{if } f^{-1}(y) = \{x \in X, f(x) = y\} \neq \emptyset \\ 1 & \text{otherwise} \end{cases}$$

is said to be the image of μ under f.

Similarly if β is anti-fuzzy subset of , then the fuzzy subset $\mu = (\beta \circ f)$ of X (i.e the anti-fuzzy subset defined by $\mu(x) = \beta(f(x))$, for all

 $x \in X$) is called the pre-image of β under f.

Now, we will recall the concept of bifuzzy subsets.

Definition 2.16. [6].

Let $A = \{(x, \mu_A(x), \nu_A(x)) \mid x \in X\}$ be a bifuzzy subset of a ψ -algebra X. A is said to be **an bifuzzy** ψ -subalgebra of X if: for all $x, y \in X$,

(IFS₁)
$$\mu_A(x + y) \ge min\{\mu_A(x), \mu_A(y)\}$$
 and

$$\mu_A(x-y) \geq min \{ \mu_A(x), \mu_A(y) \}.$$

(IFS₂)
$$v_A(x+y) \le max \{v_A(x), v_A(y)\}$$
 and

$$v_A(x-y) \leq max \{v_A(x), v_A(y)\}.$$

i.e., μ_A is fuzzy ψ -subalgebra of ψ -algebra and ν_A is anti-fuzzy ψ -subalgebra of ψ -algebra.

Definition 2.17. [5].

Let $A = \{(x, \mu_A(x), \nu_A(x)) \mid x \in X\}$ be a bifuzzy subset of a ψ -algebra (X; +, -, 0). A is said to be a **bifuzzy** ψ -ideal of **X** if for all $x, y, z \in X$,

$$(IF\psi_1)$$
 $\mu_A(0) \ge \mu_A(x)$ and $\nu_A(0) \le \nu_A(x)$,

$$(IF\psi_2) \ \mu_A(y+x) \ge min\{\mu_A(y+z), \mu_A(x-z)\}$$
 and

$$(IF\psi_3) \quad \nu_A(y+x) \le \max\{\nu_A(y+z), \nu_A(x-z)\}.$$

i.e., μ_A is fuzzy ψ -ideal of ψ -algebra and ν_A is anti-fuzzy ψ -ideal of ψ -algebra.

Now, we will recall the concept of interval-valued fuzzy subsets.

Remark 2.18. [7].

An interval number is $\tilde{a} = [a^-, a^+]$, where $0 \le a^- \le a^+ \le 1$. Let I be a closed unit interval, (i.e., I = [0, 1]).

Let D[0, 1] denote the family of all closed subintervals of I = [0, 1], that is, D[0, 1] = { $\tilde{a} = [a^-, a^+] | a^- \le a^+$, for $a^-, a^+ \in I$ }.

Now, we define what is known as refined minimum (briefly, rmin) of two element in D[0,1].

Definition 2.19. [3].

We also define the symbols (\geq) , (\leq) , (=), "rmin" and "rmax" in case of two elements in D[0,1]. Consider two interval numbers (elements numbers)

$$\tilde{a} = [a^-, a^+], \tilde{b} = [b^-, b^+] \text{in D}[0, 1] : \text{Then}$$

- (1) $\tilde{a} \ge \tilde{b}$ if and only if, $a^- \ge b^-$ and $a^+ \ge b^+$,
- (2) $\tilde{a} \leq \tilde{b}$ if and only if, $a^- \leq b^-$ and $a^+ \leq b^+$,
- (3) $\tilde{a} = \tilde{b}$ if and only if, $a^- = b^-$ and $a^+ = b^+$,
- (4) rmin $\{\tilde{a}, \tilde{b}\}=[\min\{a^-, b^-\}, \min\{a^+, b^+\}],$
- (5) rmax $\{\tilde{a}, \tilde{b}\}=[\max\{a^-, b^-\}, \max\{a^+, b^+\}],$

Remark 2.20. [11].

Let $\tilde{0} = [0, 0]$ as its least element and $\tilde{1} = [1, 1]$ as its greatest element. Let $\tilde{a}_i \in D[0, 1]$ where $i \in \Lambda$. We define $r \inf_{i \in \Lambda} \tilde{a} = [r \inf_{i \in \Lambda} a^-, r \inf_{i \in \Lambda} a^+]$, $r \sup_{i \in \Lambda} \tilde{a} = [r \sup_{i \in \Lambda} a^-, r \sup_{i \in \Lambda} a^+]$.

Definition 2.21. [10].

Vol. 8 Issue 6 June - 2024, Pages: 69-82

An **interval-valued fuzzy subset** $\widetilde{\mu}_A$ on subset is defined as $\widetilde{\mu}_A = \{<\mathbf{x}, [\mu_A^-(\mathbf{x}), \mu_A^+(\mathbf{x})] > | \mathbf{x} \in X\}$. Where $\mu_A^-(\mathbf{x}) \leq \mu_A^+(\mathbf{x})$, for all $\mathbf{x} \in X$. Then the ordinary fuzzy subsets $\mu_A^-: X \to [0, 1]$ and $\mu_A^+: X \to [0, 1]$ are called a **lower fuzzy subset and an upper fuzzy subset** of $\widetilde{\mu}_A$ respectively.

Let
$$\widetilde{\mu}_{\!A}^-(\mathbf{x})=[\mu_{\!A}^-(\mathbf{x})\;,\,\mu_{\!A}^+(\mathbf{x})\;]\;,\,\widetilde{\mu}_{\!A}^-:\mathbf{X}\to\mathbf{D}[0,\,1],$$
 then $\mathbf{A}=\{<\mathbf{x},\,\widetilde{\mu}_{\!A}^-(\mathbf{x})>\mid\mathbf{x}\in\mathbf{X}\}\;.$

Definition 2.22.[7].

Let (X; +, -, 0) be a nonempty set. A interval-valued bifuzzy set Ω in a structure $\Omega = \{< x, \tilde{\mu}_{\Omega}(x), \tilde{v}_{\Omega}(x) > | x \in X \}$, which is briefly denoted by $\Omega = <\tilde{\mu}_{\Omega}, \tilde{v}_{\Omega}>$, where $\tilde{\mu}_{\Omega}: X \to D[0, 1], \tilde{\mu}_{\Omega}$ is an interval-valued fuzzy subset of X and $\tilde{v}_{\Omega}: X \to D[0, 1], \tilde{v}_{\Omega}$ is an interval-valued fuzzy subset of X.

Proposition 2.23.[5].

Let (X; +, -, 0) be an ψ -algebra. An interval-valued bifuzzy subset $\Omega = \langle \tilde{\mu}_{\Omega}, \tilde{v}_{\Omega} \rangle$ of . If for all $\tilde{t} \in D[0, 1]$ and $\tilde{s} \in D[0, 1]$, the set $\widetilde{U}(\Omega; \tilde{t}, \tilde{s})$ is an ψ -subalgebra of X, then Ω is an interval-valued bifuzzy ψ -subalgebra of X.

3. Interval-valued Bifuzzy ψ -ideals of ψ -algebra

In this section, we will introduce a new notion called interval-valued bifuzzy ψ -ideals of ψ -algebra and study several properties of it.

Definition 3.1.

Let (X; +, -, 0) be an ψ -algebra. An interval-valued bifuzzy subset $\Omega = \langle \tilde{\mu}_{\Omega}, \tilde{v}_{\Omega} \rangle$ of X is called **interval-valued bifuzzy** ψ -ideal of X if, for all $x, y, z \in X$:

$$(\mathrm{IV}\psi\mathrm{I}_{1})\ \ \widetilde{\mu}_{\Omega}\left(0\right)\geqslant\widetilde{\mu}_{\Omega}\left(x\right),\ \text{and}\ \widetilde{v}_{\Omega}\left(0\right)\leqslant\widetilde{v}_{\Omega}\left(x\right),$$

$$(IV\psi I_2)$$
 $\tilde{\mu}_{\Omega}(y+x) \geq rmin\{\tilde{\mu}_{\Omega}(y+z), \tilde{\mu}_{\Omega}(x-z)\}, and$

$$\tilde{v}_{O}(y+x) \leq max\{\tilde{v}_{O}(y+z), \tilde{v}_{O}(x-z)\}.$$

Example 3.2.

Let $X = \{0, a, b, c, d\}$ be a set with the following table:

+	0	a	b	С	d
0	0	a	b	С	d
a	a	b	С	d	0
b	b	С	d	0	a
С	С	d	0	a	b
d	d	0	a	b	С

-	0	a	b	С	d
0	0	0	0	0	0
a	a	0	0	0	a
b	b	b	0	0	a
С	с	b	d	0	a
d	d	d	d	d	0

Then (X; +, -, 0) is an ψ -algebra. It is easy to show that $I = \{0, c\}$ and $J = \{0, d\}$ are ψ -ideals of X.

We defined two cubic set $\Omega_1 = \{(x, \tilde{\mu}_{\Omega 1}(x), \tilde{v}_{\Omega 1}(x)) \mid x \in X\}$ and $\Omega_2 = \{(x, \tilde{\mu}_{\Omega 2}(x), \tilde{v}_{\Omega 2}(x)) \mid x \in X\}$ of X by :-

$$\tilde{\mu}_{\Omega 1}(x) = \begin{cases} [0.5, 0.8] &, & \text{if } x \in \{0, c\}, \\ [0.4, 0.7], & \text{if } x \in \{a, b\}, \\ [0.3, 0.8], & \text{otherwise} \end{cases} \quad \begin{bmatrix} [0.5, 0.8] &, & \text{if } x \in \{0, c\}, \\ [0.4, 0.7], & \text{if } x \in \{a, b\}, \\ [0.3, 0.8], & \text{otherwise} \end{cases}$$

$$\tilde{\mu}_{\Omega 2}(x) = \begin{cases} [0.4, 0.9] \text{ , ifx} \in \{0, d\}, \\ [0.3, 0.5], \text{ otherwise.} \end{cases} \text{ and } \tilde{v}_{\Omega 2}(x) = \begin{cases} [0.4, 0.9] \text{ , ifx} \in \{0, d\}, \\ [0.3, 0.7], \text{ otherwise.} \end{cases}$$

Then \varOmega_1 and \varOmega_2 are interval-valued bifuzzy $\psi\text{-ideal}$ of X .

Proposition 3.3.

Let (X; +, -, 0) be an ψ -algebra. An interval-valued bifuzzy subset $\Omega = \langle \tilde{\mu}_{\Omega}, \tilde{v}_{\Omega} \rangle$ of X. If Ω is an interval-valued bifuzzy ψ -ideal of X, then for all $\tilde{t}, \tilde{s} \in D[0, 1]$, the set $\widetilde{U}(\Omega; \tilde{t}, \tilde{s})$ is an ψ -ideal of X.

Proof.

Assume that $\Omega = \langle \tilde{\mu}_{\Omega}, \tilde{v}_{\Omega} \rangle$ is an interval-valued bifuzzy ψ -ideal of X and let $\tilde{t}, \tilde{s} \in D[0, 1]$, be such that $\tilde{U}(\Omega; \tilde{t}, \tilde{s}) \neq \emptyset$,

$$\tilde{\mu}_{\Omega}(\tilde{0}) \geqslant \tilde{\mu}_{\Omega}(x) \geqslant \tilde{t} \text{ and } \tilde{v}_{\Omega}(\tilde{0}) \leqslant \tilde{v}_{\Omega}(x) \leqslant \tilde{s} \text{ , for all } x \in X.$$

Let x, y, $z \in X$ such that +z, $x-z \in \widetilde{U}(\Omega; \widetilde{t}, \widetilde{s})$, then $\widetilde{\mu}_{\Omega}(y+z) \geqslant \widetilde{t}$, $\widetilde{\mu}_{\Omega}(x-z) \geqslant \widetilde{t}$ and $\widetilde{v}_{\Omega}(y+z) \leqslant \widetilde{s}$, $\widetilde{v}_{\Omega}(x-z) \leqslant \widetilde{s}$. Since Ω is an interval-valued bifuzzy ψ -ideal of X, we get

$$\tilde{\mu}_{\Omega}(y+x) \geqslant \min\{ \ \tilde{\mu}_{\Omega} \ (y+z), \tilde{\mu}_{\Omega} \ (x-z) \} \geqslant \tilde{t} \ \text{and} \ \ \tilde{v}_{\Omega} \ (y+x) \leqslant \max\{ \ \tilde{v}_{\Omega} \ (y+z), \tilde{v}_{\Omega} \ (x-z) \} \leqslant \tilde{s}. \ \text{Thus} \ +x \ \in \ \widetilde{U} \ (\Omega; \ \tilde{t}, \ \tilde{s}).$$

Hence the set $\widetilde{U}(\Omega; \widetilde{t}, \widetilde{s})$ is an ψ -ideal of X. \triangle

Proposition 3.4.

Let (X; +, -, 0) be an ψ -algebra. An interval-valued bifuzzy subset $\Omega = \langle \tilde{\mu}_{\Omega}, \tilde{v}_{\Omega} \rangle$ of . If for all $\tilde{t}, \tilde{s} \in D[0, 1]$, the set $\tilde{U}(\Omega; \tilde{t}, \tilde{s})$ is an ψ -ideal of X, then Ω is an interval-valued bifuzzy ψ -ideal of X.

Proof.

Suppose that $\widetilde{U}(\Omega; \widetilde{t}, \widetilde{s})$ is an ψ -ideal of X and let

$$\tilde{\mu}_{\mathcal{O}}(\tilde{0}) \geqslant \tilde{\mu}_{\mathcal{O}}(x) \geqslant \tilde{t} \text{ and } \tilde{v}_{\mathcal{O}}(\tilde{0}) \leqslant \tilde{v}_{\mathcal{O}}(x) \leqslant \tilde{s} \text{, for all } x \in X.$$

$$x$$
, y , $z \in X$ be such that $\tilde{\mu}_{\Omega}(y+x) < \min \{\tilde{\mu}_{\Omega}(y+z), \tilde{\mu}_{\Omega}(x-z)\}$, and $\tilde{v}_{\Omega}(y+x) > \max \{\tilde{v}_{\Omega}(y+z), \tilde{v}_{\Omega}(x-z)\}$.

Consider
$$\tilde{\beta} = 1/2 \{ \tilde{\mu}_{O}(y+x) + \min\{\tilde{\mu}_{O}(y+z), \tilde{\mu}_{O}(x-z) \} \}$$
 and

$$\widetilde{\gamma} = 1/2 \; \{ \; \widetilde{v}_{\Omega} \left(y + x \right) \; + \operatorname{rmax} \{ \widetilde{v}_{\Omega} \left(y + z \right), \, \widetilde{v}_{\Omega} \left(\, x - z \right) \} \}.$$

We have
$$\tilde{\beta} \in D[0, 1]$$
 and $\tilde{\gamma} \in D[0, 1]$, and $\tilde{\mu}_{\Omega}(y + x) \prec \tilde{\beta} \prec \text{rmin } \{\tilde{\mu}_{\Omega}(y + z), \tilde{\mu}_{\Omega}(x - z)\}$ and

$$\tilde{v}_{O}(y+x) > \tilde{\gamma} > r \max \{ \tilde{v}_{O}(y+z), \tilde{v}_{O}(x-z) \}$$
.

It follows that y + z, $x - z \in \widetilde{U}(\Omega; \tilde{t}, \tilde{s})$, and $(y + x) \notin \widetilde{U}(\Omega; \tilde{t}, \tilde{s})$. This is a contradiction.

Hence
$$\tilde{\mu}_{\Omega}(y+x) \geqslant \min\{\tilde{\mu}_{\Omega}(y+z), \tilde{\mu}_{\Omega}(x-z)\} \geqslant \tilde{t} \text{ and } \tilde{v}_{\Omega}(y+x,y) \leqslant \max\{\tilde{v}_{\Omega}(y+z), \tilde{v}_{\Omega}(x-z)\} \leqslant \tilde{s}.$$

Therefore $\Omega = \langle \tilde{\mu}_{\Omega}, \tilde{v}_{\Omega} \rangle$ is an interval-valued bifuzzy ψ -ideal of X. \triangle

Theorem 3.5.

Interval-valued bifuzzy subset $\Omega = \langle \tilde{\mu}_{\Omega}, \tilde{v}_{\Omega} \rangle$ is a interval-valued bifuzzy ψ -ideal of ψ -algebra X if and only if, μ^-_{Ω} , and μ^+_{Ω} are fuzzy ψ -ideals of X and v^-_{Ω} , and v^+_{Ω} are anti-fuzzy ψ -ideals of X.

Proof.

Assume that Ω is an interval-valued bifuzzy ψ -ideal of X, for any x, y, $z \in X$,

$$\tilde{\mu}_{\varOmega}(\tilde{0}) \geq \tilde{\mu}_{\Omega}\left(x\right) \geq \tilde{t} \text{ and } \tilde{v}_{\Omega}\left(\tilde{0}\right) \leq \tilde{v}_{\Omega}\left(x\right) \leq \tilde{s} \text{ , for all } x \in X.$$

$$\begin{split} [\mu^{-}_{\Omega} (y+x), \mu^{+}_{\Omega} (y+x)] &= \tilde{\mu}_{\Omega} (y+x) \geqslant \text{rmin} \{ \tilde{\mu}_{\Omega} (y+z), \tilde{\mu}_{\Omega} (x-z) \} \\ &= \text{rmin} \{ [\mu^{-}_{\Omega} (y+z), \mu^{+}_{\Omega} (y+z)], [\mu^{-}_{\Omega} (x-z), \mu^{+}_{\Omega} (x-z)] \} \\ &= [\text{min} \{ \mu^{-}_{\Omega} (y+z), \mu^{-}_{\Omega} (x-z), \text{min} \{ \mu^{+}_{\Omega} (y+z), \mu^{+}_{\Omega} (x-z) \}]. \end{split}$$

Thus $\mu_{Q}^{-}(y+x) \ge \min \{\mu_{Q}^{-}(y+z), \mu_{Q}^{-}(x-z)\}, \mu_{Q}^{+}(y+x) \ge \min \{\mu_{Q}^{+}(y+z), \mu_{Q}^{+}(x-z)\}$ and

$$\begin{split} [v^{-}_{\Omega}(y+x), v^{+}_{\Omega}(y+x)] &= \tilde{v}_{\Omega}(y+x) \leqslant \max\{\tilde{v}_{\Omega}(y+z), \tilde{v}_{\Omega}(x-z)\} \\ &= \max\{[v^{-}_{\Omega}(y+z), v^{+}_{\Omega}(y+z)], [v^{-}_{\Omega}(x-z), v^{+}_{\Omega}(x-z)]\} \\ &= [\max\{v^{-}_{\Omega}(y+z), v^{-}_{\Omega}(x-z), \max\{v^{+}_{\Omega}(y+z), v^{+}_{\Omega}(x-z)\}]. \end{split}$$

Thus
$$v^-_{\Omega}(y+x) \leq \text{rmax} \{v^-_{\Omega}(y+z), v^-_{\Omega}(x-z)\}, v^+_{\Omega}(y+x) \leq \text{rmax} \{v^+_{\Omega}(y+z), v^+_{\Omega}(x-z)\}$$
.

Therefore μ_{Ω}^{-} , and μ_{Ω}^{+} are fuzzy ψ -ideals of X and v_{Ω}^{-} and v_{Ω}^{+} are anti-fuzzy ψ -ideals of X.

Conversely, let μ^-_{Ω} , and μ^+_{Ω} are fuzzy ψ -ideals of X and v^-_{Ω} and v^+_{Ω} are anti-fuzzy ψ -ideals of X and x, y, $z \in X$, then

$$\tilde{\mu}_{\Omega}(\tilde{0}) \geqslant \tilde{\mu}_{\Omega}(x) \geqslant \tilde{t} \text{ and } \tilde{v}_{\Omega}(\tilde{0}) \leqslant \tilde{v}_{\Omega}(x) \leqslant \tilde{s} \text{, for all } x \in X.$$

$$\mu^{-}_{\Omega}(y+x) \geq \min\{\mu^{-}_{\Omega}(y+z), \mu^{-}_{\Omega}(x-z)\}, \quad \mu^{+}_{\Omega}(y+x) \geq \min\{\mu^{+}_{\Omega}(y+z), \mu^{+}_{\Omega}(x-z)\} \quad \text{and} \quad \mu^{-}_{\Omega}(y+z) \geq \min\{\mu^{-}_{\Omega}(y+z), \mu^{-}_{\Omega}(x-z)\}$$

$$v^-{}_{\Omega} \left(y + x \right) \leq \max \{ v^-{}_{\Omega} \left(y + z \right), v^-{}_{\Omega} (x - z) \}, \quad v^+{}_{\Omega} (y + x) \leq \max \{ v^+{}_{\Omega} (y + z), v^+{}_{\Omega} (x - z) \} \ .$$

Now,
$$\tilde{\mu}_{\Omega}(y+x) = [\mu^{-}_{\Omega}(y+x), \mu^{+}_{\Omega}(y+x)]$$

$$\geq \left[\min\{\mu^{-}_{\Omega}(y+z),\mu^{-}_{\Omega}(x-z)\},\min\{\mu^{+}_{\Omega}(y+z),\mu^{+}_{\Omega}(x-z)\}\right]$$

$$= \operatorname{rmin}\{[\mu_{\Omega}^{-}(y+z), \mu_{\Omega}^{+}(y+z)], [\mu_{\Omega}^{-}(x-z), \mu_{\Omega}^{+}(x-z)]\}$$

= rmin{
$$\tilde{\mu}_{O}(y+z), \tilde{\mu}_{O}(x-z)$$
}, therefore

$$\widetilde{\mu}_{\mathcal{O}}(y+x) \geqslant \min{\{\widetilde{\mu}_{\mathcal{O}}(y+z), \widetilde{\mu}_{\mathcal{O}}(x-zy)\}} \geqslant \widetilde{t} \text{ and }$$

$$\tilde{v}_{\Omega}(y+x) = [v^{-}_{\Omega}(y+x), v^{-}_{\Omega}(y+x)]$$

$$\leq [\min\{v^{-}_{\Omega}(y+z), v^{-}_{\Omega}(x-z)\}, \min\{v^{+}_{\Omega}(y+z), v^{+}_{\Omega}(x-z)\}]$$

$$= \max\{[v^{-}_{\Omega}(y+z), v^{+}_{\Omega}(y+z)], [v^{-}_{\Omega}(x-z), v^{+}_{\Omega}(x-z)]\}$$

$$= \max\{\tilde{v}_{\Omega}(y+z), \tilde{v}_{\Omega}(x-z)\}, \text{ therefore}$$

$$\tilde{v}_\Omega(y+x) \leq \operatorname{rmax} \{ \ \tilde{v}_\Omega(y+z), \tilde{v}_\Omega(x-z) \} \leq \tilde{s} \ .$$

Hence Ω is an interval-valued bifuzzy ψ -subalgebra of X.

Theorem 3.6.

If a interval-valued bifuzzy set $\Omega = \langle \tilde{\mu}_{\Omega}, \tilde{v}_{\Omega} \rangle$ is a interval-valued bifuzzy ψ -ideal of X, then the upper $[t_1, t_2]$ -Level and Lower $[s_1, s_2]$ -Level of Ω are ψ -ideals of X.

Proof.

Let x, y, $z \in U(\tilde{\mu}_{\Omega}|[t_1,t_2])$, then $\tilde{\mu}_{\Omega}(y+z) \geq [t_1,t_2]$ and $\tilde{\mu}_{\Omega}(x-z) \geq [t_1,t_2]$. It follows that $\tilde{\mu}_{\Omega}(y+x) \geq \min\{\tilde{\mu}_{\Omega}(y+z), \tilde{\mu}_{\Omega}(x-z)\} \geq [t_1,t_2]$, so that $y+x \in U(\tilde{\mu}_{\Omega}|[t_1,t_2])$.

Hence $U(\tilde{\mu}_{\Omega} | [t_1, t_2])$ is ψ -ideal of X.

Let
$$x, y, z \in L(\tilde{v}_{\Omega}|[s_1,s_2])$$
, then $\tilde{v}_{\Omega}(y+z) \leq [s_1,s_2]$ and $\tilde{v}_{\Omega}(x-z) \leq [s_1,s_2]$. It follows that

$$\tilde{v}_{\Omega}(y+x) \leq \operatorname{rmax}\{\tilde{v}_{\Omega}(y+z),\,\tilde{v}_{\Omega}(x-z)\} \leq \tilde{s},\, \text{so that } y+x \in \operatorname{L}(\tilde{v}_{\Omega}|\tilde{s})\;.$$

Hence $L(\tilde{v}_{\Omega}|\tilde{s})$ is ψ -ideal of X. \triangle

Corollary 3.7.

Let $\Omega = \langle \tilde{\mu}_{\Omega}, \tilde{v}_{\Omega} \rangle$ be an interval-valued bifuzzy ψ -ideal of X, then

$$\begin{split} \Omega(\tilde{t}, \tilde{s}) &= U(\tilde{\mu}_{\Omega} | [t_1, t_2]) \cap L(\tilde{v}_{\Omega} | [s_1, s_2]) \\ &= \{ x \in X | \tilde{\mu}_{\Omega}(x) \geq \tilde{t}, \tilde{v}_{\Omega}(x) \leq \tilde{s} \} \text{ is an } \psi \text{-ideal of } X \end{split}$$

Remark 3.8.

The following example shows that the converse of Corollary (3.7) is not valid

Example 3.9.

Let $X = \{0, a, b, c, d\}$ be ψ -algebra in example (3.2) and cubic set $\Omega = \langle \tilde{\mu}_{\Omega}(x), \tilde{v}_{\Omega}(x) \rangle$ of X by

$$\tilde{\mu}_{\Omega}(\mathbf{x}) = \begin{cases} [0.6, 0.8], & \text{if } \mathbf{x} = \mathbf{0}, \\ [0.5, 0.6], & \text{if } \mathbf{x} \in \{\mathbf{a}, \mathbf{b}, \mathbf{c}\}, \text{ and } & \tilde{v}_{\Omega}(\mathbf{x}) = \begin{cases} [0.3, 0.4], & \text{if } \mathbf{x} = \mathbf{0}, \\ [0.4, 0.41], & \text{if } \mathbf{x} \in \{\mathbf{a}, \mathbf{b}, \mathbf{c}\}, \\ [0.5, 0.6], & \text{if } \mathbf{x} \in \{\mathbf{d}\}, \end{cases}$$

We take $[t_1,t_2]=[0.41,0.48]$ and $[s_1,s_2]=[0.41,0.48]$, then

$$\Omega([s_1,s_2];t)=U(\tilde{\mu}_{\Omega}|[t_1,t_2])\cap L(\tilde{v}_{\Omega}|[s_1,s_2])=\{x\in X|\tilde{\mu}_{\Omega}(x)\geqslant [t_1,t_2],\tilde{v}_{\Omega}(x)\leqslant [s_1,s_2]\}$$

={0, a, b, c}∩{0, a, b, c}={0, a, b, c} is ψ -ideal of X, but $\Omega = <\tilde{\mu}_{\Omega}$, $\tilde{v}_{\Omega}>$ is not an interval-valued bifuzzy ψ -ideal since $\tilde{\mu}_{\Omega}(y+x)$ $\not\equiv \text{rmin}\{\tilde{\mu}_{\Omega}(y+z), \tilde{\mu}_{\Omega}(x-z)\}$ and $\tilde{v}_{\Omega}(y+x) \not\equiv \text{rmax}\{\tilde{v}_{\Omega}(y+z), \tilde{v}_{\Omega}(x-z)\}$.

Theorem 3.10.

Let $\Omega = <\tilde{\mu}_{\Omega}$, $\tilde{\nu}_{\Omega}>$ be an interval-valued bifuzzy subset of X such that the sets $U(\tilde{\mu}_{\Omega} \mid [\mathsf{t}_1, \mathsf{t}_2])$ and $L(\tilde{\nu}_{\Omega} \mid [\mathsf{s}_1, \mathsf{s}_2])$ are ψ -ideals of X, for every $[\mathsf{t}_1, \mathsf{t}_2]$ and $[\mathsf{s}_1, \mathsf{s}_2] \in D[0,1]$, then $\Omega = <\tilde{\mu}_{\Omega}$, $\tilde{\nu}_{\Omega}>$ is an interval-valued bifuzzy ψ -ideal of X.

Proof.

Let $U(\tilde{\mu}_{\Omega} | [t_1, t_2])$ and $L(\tilde{v}_{\Omega} | [s_1, s_2])$ are ideals of X, for every $\tilde{t}, \tilde{s} \in D[0, 1]$

on the contrary, let $x_0, y_0, z_0 \in X$ be such that

$$\tilde{\mu}_{\Omega}(y_0 + x_0) < \min{\{\tilde{\mu}_{\Omega}(y_0 + z_0), \tilde{\mu}_{\Omega}(x_0 - z_0)\}}.$$

Let
$$\tilde{\mu}_{\Omega}(y_0 + z_0) = [\theta_1, \theta_2]$$
 and $\tilde{\mu}_{\Omega}(x_0 - z_0) = [\theta_3, \theta_4]$ and $\tilde{\mu}_{\Omega}(y_0 + x_0) = [t_1, t_2]$.

Then $[t_1,t_2] < \min\{[\theta_1,\theta_2],[\theta_3,\theta_4]\} = [\min\{\theta_1,\theta_3\},\min\{\theta_2,\theta_4\}].$

So, $t_1 < \min\{\theta_1, \theta_3\}$ and $t_2 < \min\{\theta_2, \theta_4\}$. Let us consider,

$$[\rho_{1},\rho_{2}] = \frac{1}{2} [\tilde{\mu}_{\Omega}(y_{0} + x_{0}) + rmin\{\tilde{\mu}_{\Omega}(y_{0} + z_{0}), \tilde{\mu}_{\Omega}(x_{0} - z_{0})\}]$$

$$= \frac{1}{2} \left[[t_1, t_2] + [min\{\theta_1, \theta_3\}, min\{\theta_2, \theta_4\}] \right]$$

$$= \left[\frac{1}{2}(t_1 + \min\{\theta_1, \theta_3\}), \frac{1}{2}(t_2 + \min\{\theta_2, \theta_4\})\right].$$

Therefore, $\min\{\theta_1, \theta_3\} > \rho_1 = \frac{1}{2}(t_1 + \min\{\theta_1, \theta_3\}) > t_1$ and

$$\min\{\theta_2, \theta_4\} > \rho_2 = \frac{1}{2}(t_2 + \min\{\theta_2, \theta_4\}) > t_2.$$

Hence $[\min\{\theta_1,\theta_3\},\min\{\theta_2,\theta_4\}] > [\rho_1,\rho_2] > [t_1,t_2]$, so that $(y_0+x_0) \notin U(\tilde{\mu}_{\Omega}|[t_1,t_2])$ which is a contradiction, since $\tilde{\mu}_{\Omega}(y_0+z_0)=[\theta_1,\theta_2] > [\min\{\theta_1,\theta_3\},\min\{\theta_2,\theta_4\}] > [\rho_1,\rho_2]$ and $\tilde{\mu}_{\Omega}(x_0-z_0)=[\theta_3,\theta_4] > [\min\{\theta_1,\theta_3\},\min\{\theta_2,\theta_4\}] > [\rho_1,\rho_2]$ this implies

 $(y_0 + x_0) \in U(\tilde{\mu}_{\Omega} | [t_1, t_2])$. Thus $\tilde{\mu}_{\Omega}(y + x) \ge \min{\{\tilde{\mu}_{\Omega}(y + z), \tilde{\mu}_{\Omega}(x - z)\}}$, for all $x, y, z \in X$.

And
$$\tilde{v}_{\Omega}(y_0 + x_0) > \text{rmax}\{\tilde{v}_{\Omega}(y_0 + z_0), \tilde{v}_{\Omega}(x_0 - z_0)\}.$$

Let
$$\tilde{v}_{\Omega}(y_0 + z_0) = [\eta_1, \eta_2]$$
 and $\tilde{v}_{\Omega}(x_0 - z_0) = [\eta_3, \eta_4]$ and $\tilde{v}_{\Omega}(y_0 + x_0) = [s_1, s_2]$.

Then $[s_1,s_2] > \max\{[\eta_1,\eta_2],[\eta_3,\eta_4]\} = [\max\{\eta_1,\eta_2\},\max\{\eta_3,\eta_4\}].$

So, $s_1 > \max\{\eta_1, \eta_3\}$ and $s_2 > \max\{\eta_2, \eta_4\}$. Let us consider,

$$[\sigma_1, \sigma_2] = \frac{1}{2} [\tilde{v}_{\Omega}(y_0 + x_0) + \operatorname{rmax} \{\tilde{v}_{\Omega}(y_0 + z_0), \tilde{v}_{\Omega}(x_0 - z_0)\}]$$

$$= \frac{1}{2} \left[[s_1, s_2] + [max\{\eta_1, \eta_3\}, max\{\eta_2, \eta_4\}] \right]$$

$$= \left[\frac{1}{2}(s_1 + \max\{\eta_1, \eta_3\}), \frac{1}{2}(s_2 + \max\{\eta_2, \eta_4\})\right].$$

Therefore, $\max\{\eta_1, \eta_3\} < \sigma_1 = \frac{1}{2}(s_1 + \max\{\eta_1, \eta_3\}) < s_1$ and

$$\max\{\eta_2, \eta_4\} < \sigma_2 = \frac{1}{2}(s_2 + \max\{\eta_2, \eta_4\}) < s_2.$$

Hence $[\max\{\eta_1,\eta_3\},\max\{\eta_2,\eta_4\}] < [1,\sigma_2] < [s_1,s_2]$, so that $(y_0 + x_0) \notin U(\tilde{v}_{\Omega} | [s_1,s_2])$ which is a contradiction, since

$$\tilde{v}_{\Omega}(y_0 + z_0) = [\eta_1, \eta_2] \prec [\max\{\eta_1, \eta_3\}, \max\{\eta_2, \eta_4\}] \prec [\sigma_1, \sigma_2]$$
 and

$$\tilde{v}_{\Omega}(x_0 - z_0) = [\eta_2, \eta_4] < [\min\{\eta_1, \eta_3\}, \min\{\eta_2, \eta_4\}] < [\sigma_1, \sigma_2]$$
 this implies

$$(y_0 + x_0) \in U(\tilde{v}_{\Omega} | [s_1, s_2])$$
. Thus $\tilde{v}_{\Omega}(y + x) \leq \max{\{\tilde{v}_{\Omega}(y + z), \tilde{v}_{\Omega}(x - z)\}}$, for all $x, y, z \in X$.

Hence, $\Omega = \langle \tilde{\mu}_{\Omega}, \tilde{v}_{\Omega} \rangle$ is an interval-valued bifuzzy ψ -ideal of $X.\triangle$

Theorem 3.11.

Any ψ -ideal of ψ -algebra(X; +, -, 0) can be realized as both the upper [t_1 , t_2]-Level and Lower [s_1 , s_2]-Level of some interval-valued bifuzzy ψ -ideals of X.

Proof.

Let P be an interval-valued bifuzzy ψ -ideal of X and Ω be interval-valued bifuzzy subset on X defined by

$$\tilde{\mu}_{\Omega}(\mathbf{x}) \!\!=\!\! \! \begin{cases} [\alpha_1, \alpha_2], & \text{if } \mathbf{x} \in P \\ [0, 0], & \text{otherwise} \end{cases} \quad \text{and} \quad \tilde{v}_{\Omega}(\mathbf{x}) \!\!=\!\! \begin{cases} [\beta_1, \beta_2], & \text{if } \mathbf{x} \in P \\ [1, 1], & \text{othrwise} \end{cases}$$

For all $[\alpha_1, \alpha_2] \in D[0,1]$ and $[\beta_1, \beta_2] \in D[0,1]$, we consider the following cases

Case 1) If
$$y + z$$
, $x - z \in P$, then $\tilde{\mu}_{\Omega}(y + z) = [\alpha_1, \alpha_2]$, $\tilde{v}_{\Omega}(y + z) = [\beta_1, \beta_2]$ and $\tilde{\mu}_{\Omega}(x - z) = [\alpha_1, \alpha_2]$, $\tilde{v}_{\Omega}(x - z) = [\beta_1, \beta_2]$.

Thus, $\tilde{\mu}_{\mathcal{O}}(y+x)=[\alpha_1,\alpha_2]=\min\{[\alpha_1,\alpha_2],[\alpha_1,\alpha_2]\}=\min\{\tilde{\mu}_{\mathcal{O}}(y+z),\tilde{\mu}_{\mathcal{O}}(x-z)\}$ and

$$\tilde{v}_{\mathcal{O}}(y+x) = \max\{[\beta_1, \beta_2], [\beta_1, \beta_2]\} = \max\{\tilde{v}_{\mathcal{O}}(y+z), \tilde{v}_{\mathcal{O}}(x-z)\}.$$

Case 2) If $y + z \in P$ and $x - z \notin P$, then $\tilde{\mu}_{\Omega}(y + z) = [\alpha_1, \alpha_2]$, $\tilde{v}_{\Omega}(y + z) = [\beta_1, \beta_2]$ and $\tilde{\mu}_{\Omega}(x - z) = [0, 0]$, $\tilde{v}_{\Omega}(x - z) = [1, 1]$.

Thus
$$\tilde{\mu}_{\Omega}(y+x)=[0,0] \ge \min\{[\alpha_1,\alpha_2],[0,0]\}=\min\{\tilde{\mu}_{\Omega}(y+z),\tilde{\mu}_{\Omega}(x-z)\}$$
 and

$$\tilde{v}_{\Omega}(y+x) = [1,1] \leq \max[[\beta_1,\beta_2],[1,1]] = \max\{\tilde{v}_{\Omega}(y+z),\tilde{v}_{\Omega}(x-z)\}.$$

 $\begin{aligned} \text{\textbf{Case 3}) If } y + z \not\in \text{P and } x - z \in \text{P, then} & \quad \tilde{\mu}_{\Omega}(y + z) = [0, 0], \\ \tilde{\nu}_{\Omega}(y + z) = [1, 1] & \quad \text{and } \\ \tilde{\mu}_{\Omega}(x - z) = [\alpha_{1}, \alpha_{2}], \\ \tilde{\nu}_{\Omega}(x - z) = [\beta_{1}, \beta_{2}]. \end{aligned} \\ \text{Thus,} \\ \tilde{\mu}_{\Omega}(y + x) = [0, 0] & \quad \text{rmin}\{[0, 0], [\alpha_{1}, \alpha_{2}]\} = \text{rmin}\{\tilde{\mu}_{\Omega}(y + z), \\ \tilde{\mu}_{\Omega}(x - z)\} \text{ and } \\ \tilde{\nu}_{\Omega}(y + x) = [1, 1] \\ & \quad \text{max}[[1, 1], [\beta_{1}, \beta_{2}]] = \text{max}\{\tilde{\nu}_{\Omega}(y + z), \\ \tilde{\nu}_{\Omega}(x - z)\}. \end{aligned}$

Case 4) If
$$y + z \notin P$$
, $x - z \notin P$ and y, then $\tilde{\mu}_{\Omega}(y + z) = [0,0]$, $\tilde{v}_{\Omega}(y + z) = [1,1]$ and $\tilde{\mu}_{\Omega}(x - z) = [0,0]$, $\tilde{v}_{\Omega}(x - z) = [1,1]$.

Now,
$$\tilde{\mu}_{\Omega}(y+x)=[0,0]=\min\{[0,0],[0,0]\}=\min\{\tilde{\mu}_{\Omega}(y+z),\tilde{\mu}_{\Omega}(x-z)\}$$
 and $\tilde{v}_{\Omega}(y+x)=[1,1]\leq \max\{1,1]=\max\{\tilde{v}_{\Omega}(y+z),\tilde{v}_{\Omega}(x-z)\}$.

Hence,
$$\tilde{\mu}_{\Omega}(y+x) \geqslant \min\{ \tilde{\mu}_{\Omega}(y+z), \tilde{\mu}_{\Omega}(x-z) \}$$
 and $\tilde{v}_{\Omega}(y+x) \leqslant \max\{ \tilde{v}_{\Omega}(y+z), \tilde{v}_{\Omega}(x-z) \}$.

Therefore, Ω is an interval-valued bifuzzy ψ -ideal of X. \triangle

Theorem 3.12.

Every interval-valued bifuzzy ψ -ideal of ψ -algebra (X; +, -, 0) is an interval-valued bifuzzy ψ -subalgebra of X.

Proof:

Let (X; +, -, 0) be an ψ -algebra and $\Omega = \langle \tilde{\mu}_{\Omega}(x), \tilde{v}_{\Omega}(x) \rangle$ is an interval-valued bifuzzy ψ -ideal of X.

Since Ω is an interval-valued bifuzzy ψ -ideal of X, then by Proposition (3.4), for every $\tilde{t}, \tilde{s} \in D[0, 1]$, $\widetilde{U}(\Omega; \tilde{t}, \tilde{s}) = \{x \in X \mid \tilde{\mu}_{\Omega}(x) \geq \tilde{t}, \tilde{v}_{\Omega}(x) \leq \tilde{s}\}$, is ideal of X. By Proposition (2.4), for every $\tilde{t}, \tilde{s} \in D[0, 1]$, $\widetilde{U}(\Omega; \tilde{t}, \tilde{s})$ is ψ -subgalgebra of X.

Hence Ω is an interval-valued bifuzzy ψ -subalgebra of X by Proposition (2.23). \square

Remark 3.13.

The converse of Theorem (3.12) is not true as the following example:

Example 3.14.

Let $X=\{0,1,2,3\}$ in which (+,-) be a defined by the following table:

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

-	0	1	2	3
0	0	0	0	0
1	1	0	0	0
2	2	0	0	0
3	3	3	3	0

Then (X; +, -, 0) is an ψ -algebra. Define an interval-valued bifuzzy subset $\Omega = \langle \tilde{\mu}_{\Omega}, \lambda_{\Omega} \rangle$ of X is fuzzy subset $\mu: X \to [0,1]$ by:

$$\tilde{\mu}_{\varOmega}\left(\mathbf{x}\right) = \begin{cases} [0.3, 0.5] & if \, x = \{0, 1, 2\} \\ [0.4, 0.6] & otherwise \end{cases} \quad \text{and} \quad \tilde{v}_{\varOmega} = \begin{cases} [0.4, 0.8] & if \, x = \{0, 1, 2\} \\ [0.2, 0.7] & otherwise \end{cases}.$$

The set $\Omega = \langle \tilde{\mu}_{\Omega}(x), \tilde{\nu}_{\Omega}(x) \rangle$ is not an interval-valued bifuzzy ψ -ideal of X.

Note that \tilde{v}_{Ω} is not an anti-fuzzy ψ -ideal of X since

$$\tilde{v}_{\Omega}(1+2) = [0.2,0.7] \Rightarrow [0.4,0.8] = \max{\{\tilde{v}_{\Omega}(1+0), \tilde{v}_{\Omega}(2-0)\}}$$

$$= \max{\{\tilde{v}_{\Omega}(1), \tilde{v}_{\Omega}(2)\}}.$$

Proposition 3.15.

If an interval-valued bifuzzy subset $\Omega = \langle \tilde{\mu}_{\Omega}, \tilde{v}_{\Omega} \rangle$ is an interval-valued bifuzzy ψ -ideal of X, then the upper $[t_1,t_2]$ -Level and Lower $[s_1,s_2]$ -Level of Ω are ψ -ideals of X.

Proof.

Let (y+z), $(x-z) \in U(\tilde{\mu}_{\Omega}|[t_1,t_2])$, then $\tilde{\mu}_{\Omega}(y+z) \geq [t_1,t_2]$ and $\tilde{\mu}_{\Omega}(x-z) \geq [t_1,t_2]$. It follows that $\tilde{\mu}_{\Omega}(y+x) \geq \min\{\tilde{\mu}_{\Omega}(y+z), \tilde{\mu}_{\Omega}(x-z)\} \geq [t_1,t_2]$, so that

 $(y + x) \in U(\tilde{\mu}_{\Omega} | [t_1, t_2])$. Hence $U(\tilde{\mu}_{\Omega} | [t_1, t_2])$ is an ψ -ideal of X.

Let (y+z), $(x-z) \in L(\tilde{v}_{\Omega}|[s_1,s_2])$, then $\tilde{v}_{\Omega}(y+z) \leq [s_1,s_2]$ and $\tilde{v}_{\Omega}(x-z) \leq [s_1,s_2]$. It follows that $\tilde{v}_{\Omega}(y+x) \leq \max\{\tilde{v}_{\Omega}(y+z), \tilde{v}_{\Omega}(x-z)\} \leq [s_1,s_2]$, so that

$$(y+x) \in L(\tilde{v}_{\Omega}|[s_1,s_2]))$$
. Hence $L(\tilde{v}_{\Omega}|[s_1,s_2])$ is an ψ -ideal of X . \triangle

Definition 3.16[3].

Let $f: (X; +, -, 0) \rightarrow (Y; +', -', 0')$ be a mapping from the set X to a set Y.

If $\Omega = <\tilde{\mu}_{\Omega}$, $\tilde{v}_{\Omega} > is$ an interval-valued bifuzzy subset of X, then the interval-valued bifuzzy subset $\beta = <\tilde{\mu}_{\beta}$, $\tilde{v}_{\beta} > of Y$ defined by:

$$f(\tilde{\mu}_{\Omega})(y) = \tilde{\mu}_{\beta}(y) = \begin{cases} rsup \ \tilde{\mu}_{\Omega}(x) & if \quad f^{-1}(y) = \{x \in X, f(x) = y\} \neq \emptyset \\ 0 & otherwise \end{cases}$$

$$f(\tilde{v}_{\Omega})(y) = \tilde{v}_{\beta}(y) = \begin{cases} \inf_{x \in f^{-1}(y)} \tilde{v}_{\Omega}(x) & if \quad f^{-1}(y) = \{x \in X, f(x) = y\} \neq \emptyset \\ 1 & otherwise \end{cases}$$

is said to be the image of Ω under f.

Similarly if $\beta = \langle \tilde{\mu}_{\beta} \rangle$, $\tilde{v}_{\beta} >$ is an interval-valued bifuzzy subset of Y, then the interval-valued bifuzzy subset $\Omega = (\beta \circ f)$ in X (i.e the interval-valued bifuzzy subset defined by $\tilde{\mu}_{\Omega}(x) = \tilde{\mu}_{\beta}(f(x))$, $\tilde{v}_{\Omega}(x) = \tilde{v}_{\beta}(f(x))$ for all $x \in X$) is called **the pre-image** of β under f).

Theorem 3.18.

A homomorphic pre-image of interval-valued bifuzzy ψ -ideal is also interval-valued bifuzzy ψ -ideal.

Proof.

Let $f:(X;+,-,0) \to (Y;+',-',0')$ be homomorphism from an ψ -algebra X into an ψ -algebra Y.

If $\beta = <\tilde{\mu}_{\beta}$, $\tilde{v}_{\beta}>$ is interval-valued bifuzzy ψ -ideal of Y and $\Omega = <\tilde{\mu}_{\Omega}$, $\tilde{v}_{\Omega}>$ the pre-image of β under f, then $\tilde{\mu}_{\Omega}$ (x) = $\tilde{\mu}_{\beta}$ (f (x)), \tilde{v}_{Ω} (x) = \tilde{v}_{β} (f (x)), for all $x \in X$. Let $x \in X$, then

$$(\widetilde{\mu}_{\Omega})(0) = \widetilde{\mu}_{\beta}(f(0)) \geqslant \widetilde{\mu}_{\beta}(f(x)) = \widetilde{\mu}_{\Omega}(x), \text{ and } (\widetilde{v}_{\Omega})(0) = \widetilde{v}_{\beta}(f(0)) \leqslant \widetilde{v}_{\beta}(f(x)) = \widetilde{v}_{\Omega}(x).$$

Now, let $x, y, z \in X$, then

$$\tilde{\mu}_{\Omega}\left(y+x\right)=\tilde{\mu}_{\beta}\left(f\left(y+x\right)\right)$$

$$\geq \operatorname{rmin} \left\{ \widetilde{\mu}_{\beta} \left(f \left(y+z \right), \widetilde{\mu}_{\beta} \left(f \left(x-z \right) \right) \right. \right\}$$

= rmin
$$\{\tilde{\mu}_{\Omega}(y+z), \tilde{\mu}_{\Omega}(x-z)\}$$
, and

$$\tilde{v}_{\Omega}\left(y+x\right)=\tilde{v}_{\beta}\left(f\left(y+x\right)\right)$$

$$\leq \text{rmax} \left\{ \tilde{v}_{\beta} \left(f \left(y + z \right), \tilde{v}_{\beta} \left(f \left(x - z \right) \right) \right\} \right\}$$

$$= \operatorname{rmax} \left\{ \tilde{v}_{\Omega}(y+z), \tilde{v}_{\Omega}(x-z) \right\}.$$

Definition 3.19[2].

Let $f: (X; +, -, 0) \rightarrow (Y; +', -', 0')$ be a mapping from a set X into a set Y.

 $\Omega = <\tilde{\mu}_{\Omega}$, $\tilde{v}_{\Omega}>$ is an interval-valued bifuzzy subset of X has sup and inf properties if for any subset T of X, there exist $t, s \in T$ such that $\tilde{\mu}_{\Omega}(t) = \underset{t0 \in T}{rsup} \ \tilde{\mu}_{\Omega}(t_0)$ and $\tilde{v}_{\Omega}(s) = \underset{s0 \in T}{rinf} \ \tilde{v}_{\Omega}(s_0)$.

Theorem 3.20.

Let $f:(X;+,-,0) \to (Y;+',-',0')$ be a epimorphism from an ψ -algebra X into an ψ -algebra Y. For every interval-valued bifuzzy ψ -ideal $\Omega = \langle \tilde{\mu}_{\Omega}, \tilde{v}_{\Omega} \rangle$ of X with **sup and inf properties**, then $f(\Omega)$ is an interval-valued bifuzzy ψ -ideal of Y.

Proof.

Since $rsup(\emptyset) = [0, 0]$ and $rinf(\emptyset) = [1,1]$, then

Note that, $0 \in f^{-1}(0)$ where 0,0' are the zero of X and Y, respectively. Thus

$$\tilde{\mu}_{\beta}(0') = \underset{t \in f^{-1}(0')}{\operatorname{rsup}} \tilde{\mu}_{\Omega}(t) = \tilde{\mu}_{\Omega}(0) \geqslant \tilde{\mu}_{\Omega}(x) = \underset{t \in f^{-1}(x')}{\operatorname{rsup}} \tilde{\mu}_{\Omega}(t) = \tilde{\mu}_{\beta}(x'), \text{ and}$$

$$\tilde{v}_{\beta}(0') = \inf_{t \in f^{-1}(0')} \tilde{v}_{\Omega}(t) = \tilde{v}_{\Omega}(0) \leqslant \tilde{v}_{\Omega}(x) = \inf_{t \in f^{-1}(x')} \tilde{v}_{\Omega}(t) = \tilde{v}_{\beta}(x') \text{ ,for all } x \in X \text{ , which implies that } \tilde{\mu}_{\beta}(0') \geqslant \tilde{\mu}_{\beta}(x') \text{ ,and } \tilde{v}_{\beta}(0') \leqslant \tilde{v}_{\beta}(x') \text{ , for all } x' \in Y \text{ .}$$

Hence $(\tilde{\mu}_{\Omega})(0) \geqslant \tilde{\mu}_{\Omega}(x)$ and $(\tilde{v}_{\Omega})(0) \leqslant \tilde{v}_{\Omega}(x)$, for all $x \in X$.

For any x', y', z' \in Y, let x \in $f^{-1}(x')$, y \in $f^{-1}(y')$ and z \in $f^{-1}(z')$ be such that

By Definition
$$\tilde{\mu}_{\beta}(y' + 'z') = f(\tilde{\mu}_{\Omega})(y' + 'z') = \underset{y+z \in f^{-1}(y' + 'z')}{rsup} \tilde{\mu}_{\Omega}(y+z) \&$$

$$\tilde{v}_{\beta}(y'+'z')=f(\tilde{v}_{\Omega})(y'+'z')=\inf_{y+z\;\in f^{-1}(y'+'z')}\tilde{v}_{\Omega}(y+z)\;\;\text{and}\;\;$$

$$\tilde{\mu}_{\beta}(x'-'z') = f(\tilde{\mu}_{\Omega})(x'-'z') = \underset{x-z \in f^{-1}(x'-'z')}{rsup} \tilde{\mu}_{\Omega}(x-z) \&$$

$$\tilde{v}_{\beta}(x'-'z')=f(\tilde{v}_{\Omega})(x'-'z')=\inf_{x-z\,\in f^{-1}(x'-'z')}\tilde{v}_{\Omega}(x-z)\;\text{for all}\;\;x',y'\,,z'\in Y\;\;\text{and}\;\;$$

Also,

$$\begin{split} \tilde{\mu}_{\beta}(y'+x') &= \underset{t \in f^{-1}(y'+\prime x\prime)}{\operatorname{rsup}} \tilde{\mu}_{\Omega}(t) = \tilde{\mu}_{\Omega}(y+x) \\ & \geqslant \operatorname{rmin} \left\{ \tilde{\mu}_{\Omega}\left(y+z\right), \tilde{\mu}_{\Omega}\left(x-z\right) \right\}, \\ &= \operatorname{rmin} \left\{ \underset{t \in f^{-1}(y'+\prime z\prime)}{\operatorname{rsup}} \tilde{\mu}_{\Omega}(t), \underset{t \in f^{-1}(x'-\prime z\prime)}{\operatorname{rsup}} \tilde{\mu}_{\Omega}(t) \right\} \\ &= \operatorname{rmin} \left\{ \tilde{\mu}_{\beta}(y'+z'), \tilde{\mu}_{\beta}(x'-z') \right\} \text{ and} \\ \tilde{v}_{\beta}(y'+x') &= \underset{t \in f^{-1}(y'+\prime x\prime)}{\operatorname{rin}} \tilde{\mu}_{\Omega}(t) = \tilde{v}_{\Omega}(y+x) \\ & \leqslant \operatorname{rmax} \left\{ \tilde{v}_{\Omega}\left(y+z\right), \tilde{v}_{\Omega}\left(x-z\right) \right\}, \\ &= \operatorname{rmax} \left\{ \underset{t \in f^{-1}(y'+\prime z\prime)}{\operatorname{rin}} \tilde{v}_{\Omega}(t), \underset{t \in f^{-1}(x'-\prime z\prime)}{\operatorname{rin}} \tilde{v}_{\Omega}(t) \right\} \end{split}$$

Vol. 8 Issue 6 June - 2024, Pages: 69-82

= rmax {
$$\tilde{v}_{\beta}(y' + 'z')$$
, $\tilde{v}_{\beta}(x' - 'z')$ }.

$$\tilde{\mu}_{\beta}(y' + 'x') \ge rmin\{\tilde{\mu}_{\beta}(y' + 'z'), \tilde{\mu}_{\beta}(x' - z')\},$$
 and

$$\tilde{v}_{\beta}(y'+'x') \leq rmax\{\tilde{v}_{\beta}(y'+'z'), \tilde{v}_{\beta}(x'-'z')\}, \text{ for all } x', y', z' \in Y.$$

Hence, β is an interval-valued bifuzzy ψ -ideal of . \triangle

References

- [1] A.T. Hameed and B.H. Hadi, **Anti-Fuzzy AT-Ideals on AT-algebras**, Journal Al-Qadisyah for Computer Science and Mathematics, vol.10, no.3(2018), 63-74.
- [2] A.T. Hameed and B.H. Hadi, **Interval-valued bifuzzy AT-subalgebras and Fuzzy AT-Ideals on AT-algebra**, World Wide Journal of Multidisciplinary Research and Development, vol.4, no.4(2018), 34-44.
- [3] A.T. Hameed and E.K. Kadhim, **Interval-valued IFAT-ideals of AT-algebra**, Journal of Physics: Conference Series (IOP Publishing), 2020, pp:1-5.
- [4] A.T. Hameed and N.H. Malik, (2021), (β, α)-Fuzzy Magnified Translations of AT-algebra, Journal of Physics: Conference Series (IOP Publishing), 2021, pp:1-13.
- [5] A.T. Hameed and N.H. Malik, (2021), **Magnified translation of intuitionistic fuzzy AT-ideals on AT-algebra**, Journal of Discrete Mathematical Sciences and Cryptography, (2021), pp:1-7.
- [6] A.T. Hameed and N.J. Raheem, (2020), **Hyper SA-algebra**, International Journal of Engineering and Information Systems (IJEAIS), vol.4, Issue 8, pp.127-136.
- [7] A.T. Hameed and N.J. Raheem, (2021), **Interval-valued Fuzzy SA-ideals with Degree (λ,κ) of SA-algebra**, Journal of Physics: Conference Series (IOP Publishing), 2021, pp:1-13.
- [8] A.T. Hameed, N.J. Raheem and A.H. Abed, (2021), **Anti-fuzzy SA-ideals with Degree** (λ,κ) of **SA-algebra**, Journal of Physics: Conference Series (IOP Publishing), 2021, pp:1-16.
- [9] A.T. Hameed, S.H. Ali and , R.A. Flayyih, **The Bipolar-valued of Fuzzy Ideals on AT-algebra**, Journal of Physics: Conference Series (IOP Publishing), 2021, pp:1-9.
- [10] A.T. Hameed, H.A. Mohammed and A.H. Abed, Anti-fuzzy ideals of BZ-algebras, (2023).
- [11] A.T. Hameed, S.M. Mostafa and A.H. Abed, **Cubic KUS-ideals of KUS-algebras**, Asian Journal of Mathematical Sciences,vol.8, no.2, pp:36 43, (2017).
- [12] K. Is'eki and S. Yanaka, An Introduction to Theory of BCK-algebras, Math. Japonica, vol. 23 (1979), pp:1-20.
- [13] Jabir N.H. and Hameed A.T. (2023), On The ψ -subalgebras of ψ -algebra, International Journal of Academic and Applied Reserch, ISSN: 2643-9603, Vol. 7, Issue 4, Pages:8-11.
- [14] Jabir N.H. and Hameed A.T. (2023), On the ψ -algebra, Journal of Interdisciplinary Mathematics, ISSN:0972-0502 (Pirnt), ISSN: 2169-012X(On line).
- [15] Jabir N.H. and Hameed A.T. (2023), On The Translations Bifuzzy ψ -ideal of ψ -algebra, Journal of Kufa

for Mathematics, Vol. 10, No. 2, Pages: 140-160.