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Abstract— In this research, we will study the term Soft local function, and through it we can define a new function and call it Soft
**_frontier set and there is an important and closed relationship with it and the Soft operator.
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1. INTRODUCTION

When a scientific problem arises and there is no ability to solve it in the usual ways within a specific space. Attention turns to
expanding or contracting that space and constructing the algebraic and topological properties of these spaces in order to solve
those problems or contribute to the solution process . Hence the successive ideas in building new forms of sets on the basis of
existing and familiar mathematical concepts, as Zadeh built in 1965 [1] the fuzzy sets. In 1999, researcher Molodtsov [2] expanded
fuzzy sets and called them soft sets, depended on the parameters E of members of the universal set x such that the soft set F, =
{(e,F(e));F : E— P(K),A < E}, softempty ¢y = {(e,); ¥ e € E} Kz = {(e,F(e));V e € E}, soft union ant intersection
between two soft sets F, Uy Gg = {(e,F(e) UG(e);V e € E)}, F, Ng Gg = {(e,F(e) N G(e);V e € E)}, the soft complement
of Fp, FoA¢ = {(e,X — F(e)); V e € E}. In 2011 Shabir [3], defined the topology space on these sets in their canonical form but
using soft sets. In 2014 [4], the local function was studied in its usual forms, but using soft on soft points in its three types by
kandil and others as follows, F,* ={soft point ; V soft open containing the soft point 3 u, N F, & I}, where I soft ideal on X;.
In 2014 [5], - operation was studied in its usual forms, but using soft sets on soft points in its three types, by Rodynas [5]

Y(Fy) = {soft point, Isoft open uy containing the soft point 3 up N F,° € Iy } = [(F§)*]°. Itis worth noting that we
mention some of the contributions in this field, where we knew two types of soft points that we called them soft turning and bench
paint [6],[7] also we defined the local function in fuzzy ideal topological space [8], where AL Razzaq [9],[10] conducted a process
of merging between the two fuzzy and soft sets, and through this merging new and diverse points were identified .

2. The Main soft ideal
2.1Definition [5]: Let (K, T, ;) be a soft ideal:

1. Forany soft subset X, (D) = K — (K —=D,) .
2. D, S Kiscalled [3 —soft dense iff D, = K.
2.2Theorem: Let (K, T,1,) be a soft ideal, the statement are equivalents:

Tni,=¢.

If Jq € 14,50 int(Jg) = .
Hy CHLYHy S I
K=%"
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So, soft Hayashi-Samuel space, for any #, < T, H; = 3. If we have any soft ideal topological spaces (f( T, iﬂ), we have
three functions of any soft subset C , of X as follows:F) ;(C,) € T* — F,. 4(C4) €T — F,.4(C,) Where F,. ,(C,) =
ct3-(K —Ca) Ncts(Cp). T = Frg(Cp) = cb7+(Cp) N cby+(K — Cp) and Fy,q(C) = C1" N (K —Cp) .

2.3Definition: Let (X, T, [,) be a soft ideal, then operator ;24 (D.4): £(K) —» U(K), defined by F;4(D4) = D N
(K — )" is called *-soft boundary of D,

2.4proposition: Let (f( T, iﬂ) be a soft ideal space. For any soft subset C , of X, the following are carried:

Dg € Frp(Cr) iff D — 7 (C) -
Fra(Cq) = @ iff C7 Sy (Cp).
Fra(Ca) = (K —Ca)" iff K~ 9™ (Ca) -
4. 1f Cyqis [ —soft dense, then F;2y (Co) = (K —C) ™ .
Proof 1. Let D, € Fyiq(C,) iff D4 € C3 and iff Dy € (K —C,) " iff Dy € Clf and Dy & ¥*(Co) iff Dy € Clf — P*(C)-

w e

Proof 4. Let C, is [ — soft dense, then C; = K, 50, F5 (Ca) = C7 0 (K —C4)" =(X —€,) " . By (proposition 2.4) pare (1)
P (C,) € 7 for any soft subset C 4 in the soft Hayashi-Samuel space. There are some properties that connect ) *-
operator with **- soft frontier in the soft Hayashi-Samuel space.

2.5proposition: Let (X, T, 1) is soft Hayashi-Samuel space, the following statements are correct:

1 Fia@nu) =@ iff Dy =™ (D.a).
2. For each soft closed set D4, F, (D) = D € int(Dy).

Proof. Let D, be soft closed subset of K, F% (D) = D n (K —Dy,) =D n cf(K —Dy), by (Theorem
22),ct(K-Dy)=(K-Dy)" =(K-Dy) 50, Fu(Dy) =D N (fc n mt(Dﬁ)) = D% C int(D,). There are
multiple properties and characteristics to **-soft boundary set, as in the following proposition.

2.6proposition : For any soft subsets B4, C4 in soft ideal (JAC T, I:,l), the properties are true:

Fria(p) = Fioa(R) = 6.
Forany g, € 14, Fi0(Ja) = @.
Fiia(Ba U CL) = Fiiy(Ba) UF(Ca).

ra(Ba) = By =" (B).
Fra(Fria(Ba)) € Fria(BL).
FraBa) = (R =B4)" =" (K - By).
Fria(K —By) = Fria(Ba)
R - F0(Ba) = ' (K — By) U (B).

9. K=y (K —Bu) Up*(Ba) UF5(Ba).

Proof 6. Let F;(B,) =B N(K -By) =B nK — (K- (K -B,) ) =B5nK -9 (By).

N RN E

Proof 8. K — F5y(B) =K — (B n (K —B,) )= (K -B5)Uu(X—(K-By) )=K—(K-(K-B,) )U
P (Ba) = P* (K —By) U™ (By).

Proof 9. Y* (K —B,) U* (B UF; 5 (Br) =K — (K — (K —=Bs) ) U(K — (K —Bs) )Fu(By) = (K —B,) U
(K — (K —Ba) )Fa(By) = K UFL(B,) = K. For the (Definition 2.1), it is simple to show that for any soft open

2.7 proposition : For any soft subsets [, 4, .4 in soft ideal (%, T, 1), the following are correct:

1 T;:/l({lcﬂ n Iizcﬂ) c T;fA(I:LA) U T:*T/l({Zc/l)'
2. Fiia(ha = Toa) € Fiia(lia) U Fia(lw).

www.ijeais.org/ijeais



International Journal of Engineering and Information Systems (IJEAIS)
ISSN: 2643-640X
Vol. 8 Issue 8 August - 2024, Pages: 6-9

3. Fra(hia) UFa(ln) = Fria(lin = Ta) U Fria(lon — hia) U Frig(lg 0 L)
Proof 1. By (Proposition 2.6) part (3,7) we get that F;% (Iq N [r0) = Frog(K —LhaNlhp) = Frogf(K =L, UK —Ly)
Froa(K = la) VF(K = L) = Frig(la) U Frig(fn)-

Proof 2. By part (1) and (Proposition 2.6) part (3,7) we get that F5y (I, — [,4) = FJia (I"M n(x- fzﬂ)) c Fru(li,) v
Fria(K = L) = Fria(ha) U Fa(Bu).

The concept of symmetric difference of [, 4, [, usually denoted by f, 4Af, 4and equal to (f,.4 — I,4) union to (I, — f1.,4), also
equal to (f1.4 U f,.4) — (f1.4 N .4 )and the important property is D4 N (I;4ALx) = (Dg N 11.4)A(D4 N [.4). Through these
observations, there are important properties that relate symmetric difference and **-soft boundary as shown by the following
properties.

2.8 proposition: For any soft subsets [, 4, [,4 in soft ideal (X, T, 1), the properties are true:

Fria(lin) U Fa(hn) = Fria(fin 0 La) U F (g = Bha) U Fra(ha U La).
T;tﬂ(ilcﬂ) U T;t/l(izc/l) = T;f/z(im U i2c/l) u T;tﬂ(i&ﬂ - ilc/l) U :F;f/l(ilcﬁl n iZﬁ)'
Fria(lia) U Fa(hn) = Fioa(ha — Bha) U Frig(Bu — L) U Fri(fia 0 L)
T;f,q(inﬂ) U T;t/l(ilcﬂAizc/l) = Tﬁfﬂ(im - i2c/l) u T;f,q(ihﬂ n izcﬂ) U T';fﬂ(izcﬂ n ilc/l)-
Fria(lrn) U Fria(hablon) = Frig(ha = ) U Fi(ha 0 D) U Fia(Ba 0 1g).

a s~ wDbd e

Proof 1. By (Proposition 2.4) part (2,5) we get that F;% (I,.4) U Froy(lg) = Fria(fin) UF (K — Ly) =
Fra (iuz - (jz - izﬂ)) UFiy (ilc/l n (jZ - iZCA)) UFy, ((ﬁ - IAch) - ilc/l) = :F;f/l(ilcﬁl n iZﬁ) Y T;*A(ilc/l - izc/z) u
A (f( - (im u im)) = ;f,q(im n izaq) U T;f,q(im - im) U T;fﬁ(im U izc/z)-

Proof 2. By (Proposition 2.4) part (2,6) we get that F;% (I1.4) U Frig(B) = Fria(lon) U F (K = Iy) =
Fra((K — L) — L) UF, ((7’5 —L4)n im) UF 4 (iyz - (% - im)) =Fra (f}AC —(hav izﬂ)) V)
Frra(ha — a) UF i (la N hp) = Frig(ha U L) U Fra(lon — Tia) U Frig(ha 0 L)

Proof 4. By (Proposition 2.7) we get that F;% (I1.4) U F oy (laAls) = Frig (ilﬂ - (ilﬂAizﬂ)) U (ilﬂ N (IAMAIAM)) U
((adlo) ~ o)

since £y — (Fablon) = B 0 [(Ba 0 5 U (B’ 0 10)] 0 = ha 0 [(Be U ) 0 (B 0 50)] = B 0
(imc N lh) = hq N Ly Then F2y (im - (imAizaq)) = Fra(han ). Buthy — (hadhy) =L N AL, N
La=lLad(lanlhy)=[han(K-TLauK -L)|V[(lanh)N(K—Ls)]=hau(K -1, =%-
(hn = ). Then 712 (B 0 (hadlo)) = Fria (R = (hn = o)) = Fita(fi = L) Finally, since (FiAl,.q) -
Ly = (imAizaq) n (.’IAC - izaq) = [im n (7’5 - izc/z)]A[ing n (.‘}AC - im)] = (im - iZA)A(p =4 — 4. 50
Fra ((IAMAIAM) - iZﬂ) = T;f/l(im - izcﬂ)-
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