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Abstract: The powerful tool  is Laurent series for the study of local behavior of functions around singularities. In the context of 

differential complexes, Laurent expansions provide a method to represent solutions of differential equations with constant 

coefficients as series.Therefor, this paper shade a light explores the foundational concepts of Laurent expansions in the study of 

differential complexes 
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Introduction 

     The 1950s saw a particularly intense study of the local properties of solutions to general elliptic differential equations, 

particularly for those with Hoelder  continuous coefficients. These properties, zeros of finite or infinite order and unique 

continuation of the solutions, included smoothness of the solution, point singularities and removable singularities, expansions of 

the solutions in asymptotic or convergent series, and branch points of the solutions. Bers's survey provides a handy bibliography 

for these inquiries [1]. The usage of a parametrix with estimates for the coefficients of the major component of the differential 

equation at a unique point, or "freezing," was the fundamental tool in this case. The more knowledge on the local behavior of 

solutions to homogeneous differential equations with constant coefficients, the more successful advancement will be. You can 

think of elliptic operators (or, more broadly, differential operators of constant strength) as perturbations of operators whose 

coefficients are constants (see H¨ormander [3, Ch. 13]) 

    The Theorem on Exponential Representation (cf. Palamodov [4, Ch.II]) provides a wealth of local information for solutions of 

a broad system of differential equations with constant coefficients. The Fourier transformation serves as the basis for both of these 

approaches, which are closely related to one another: the parametrix method and the exponential representation method. Two 

benefits of the parametrix technique are mentioned: Two main benefits are: 1) a broader range of applications (differential 

operators with variable coefficients) and 2) constructiveness. 

     Harvey and Polking [2] proposed the original idea of Laurent series for solutions of homogeneous elliptic differential equations 

with constant coefficients in Rn. They recommended selecting the coefficients so that the series' terms coincide with their Cauchy 

main values (i.e., the coefficients are uniquely defined). 

Cohomology of Hilbert complexes 

      For a complex of a differential operator whose coefficients are constants, the cohomology spaces ℋ𝑖(ℒ0
1(ℰ .)) can be expressed 

in terms of algebra. To be more precise, let 𝒫 represent the ring of polynomials of n complex variables (with complex coefficients) 

𝒵 = (𝒵1, … , 𝒵𝑛)𝜖ℂ
𝑛. To each differential operator 𝒫𝑖  =  𝒫𝑖(𝒟) there corresponds a (𝒦𝑖+1 ×𝒦𝑖)-matrix of polynomials 𝒫𝑖(𝒵), 

which is obtained from 𝒫𝑖(𝒟)by the change of variables𝒟 𝑡𝑜 𝒵. Here, 𝒦𝑖denotes the rank of ℰ𝑖.The matrix 𝒫𝑖(𝒵),  is called the 

full symbol of the differential operator 𝒫𝑖 .   

Then, the complex ℰ . gives rise to the complex of free 𝒫-modules and their 𝒫-mappings 

𝒫𝒦: 0
                  
→     𝒫𝒦0

𝒫0(𝒵)
→   𝒫𝒦1

𝒫1(𝒵)
→   ……

𝒫𝑁−1(𝒵)
→     𝒫𝒦𝑁

           
→  0                     (2.1) 

 

Laurent series for elliptic complexes 

        Suppose ℰ .   =  {ℰ𝑖 , 𝒫𝑖} is an elliptic complex of finite length 𝒩 of homogeneous differential operators with constant 

coefficients .For 𝑗 =  0, 1, . . ., let 𝒫𝑖  denote the vector subspace of 𝒫 consisting of all homogeneous polynomials of degree 

j. Thus,   𝒫𝑖 = ⊕𝑗 𝒫𝑖  . Since each differential operator 𝒫𝑖  is homogeneous, the mappings 𝒫𝑖(𝒵)in the sequence (2.1) 

preserve the grading 𝒫𝒦𝑖 = ⊕𝑗 𝒫𝒦𝑖  Consequently, the cohomology spaces of the complex (2.1) decompose into direct 

sums 

ℋ𝑖+1(𝒫𝒦𝑖) =⊕𝑗

𝒵𝑖+1(𝒫𝒦) ∩ 𝒫𝑗
𝒦𝑖

ℬ𝑖+1(𝒫𝒦𝑖) ∩ 𝒫𝑗
𝒦𝑖
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We also use similar method for the subspace's algebraic complement𝒵𝑖+1(𝒫𝒦) in ℬ𝑖+1(𝒫𝒦𝑖)  
It follows that the differential operators Pi's principal and full symbols overlap due to their homogeneity., i.e. 𝜎(𝒫𝑖)(ℒ)  =  𝒫𝑖(ℒ). 
Now, the ellipticity of the complex ℰ .means that the sequence of symbols 

𝒞𝒦: 0
                  
→     𝒞𝒦0

𝒫0(ℒ)
→   𝒞𝒦1

𝒫1(ℒ)
→   ……

𝒫𝑁−1(ℒ)
→     𝒞𝒦𝑁

           
→  0                          3.1 

is exact for each real cotangent vector ℒ, lying on the unit sphere 𝑆𝑛−1  =  {ℒ ∈  𝑅𝑛 ∶ |ℒ|  =  1}. 
However, a basic principle derived from linear algebra indicates that the complex (3.1) at the term 𝒞𝒦𝑖  is comparable to the 

matrix's non-singularity 

∆𝑖(ℒ) = (𝒫𝑖̃(ℒ))
∗𝒫𝑖(ℒ) + 𝒫𝑖−1(ℒ)(𝒫𝑖−1̃(ℒ))

∗ 

Where 𝒫𝑖̃(ℒ) = |ℒ|
2(𝒫−𝒫𝑖)and 𝒫is the largest of the numbers 𝒫𝑖 . 

Lemma 3.1[6]  For each 𝑗 =  0, 1, . . ., the sesquilinear form 

(𝒫1, 𝒫2) = ∫ ((∆𝑖(ℒ))
−1
 (𝒫𝑖̃(ℒ))

∗𝒫1(ℒ), (∆𝑖(ℒ))
−1
 (𝒫𝑖̃(ℒ))

∗𝒫2(ℒ)
𝑠𝑛−1

)𝑑𝑠(ℒ)        3.2 

yields a scalar product on𝒵𝑖+1(𝒫𝒦) ∩ 𝒫𝑗
𝒦𝑖+1  

proof For the proof we have only to verify the assertion that (𝒫, 𝒫)  =  0, for 𝒫 ∈ 𝒵𝑖+1(𝒫𝒦) ∩ 𝒫𝑗
𝒦𝑖+1 implies 𝒫 = 0. 

Indeed, if (𝒫, 𝒫) = 0, then (∆𝑖(ℒ))
−1
 (𝒫𝑖̃(ℒ))

∗𝒫(ℒ) = 0 for each ℒ ∈  𝑠𝑛−1. Since also 𝒫𝑖+1(ℒ)𝒫(ℒ)  =  0, we have                 

            𝒫(ℒ) = (∆𝑖(ℒ))
−1
∆𝑖+1(ℒ)𝒫(ℒ) 

                       = ((∆𝑖+1(ℒ))
−1
 (𝒫𝑖+1̃(ℒ))

∗𝒫𝑖+1(ℒ) + 𝒫𝑖(ℒ)(∆𝑖(ℒ))
−1
 (𝒫𝑖̃(ℒ))

∗)𝒫(ℒ) 
                       = 0, 

for each ℒ on the sphere 𝑠𝑛−1. 
However, in view of the homogeneity, Thus, 𝒫 = 0,as required.                          ∎ 

Let ℋ𝑗
𝑖+1(𝒫𝒦) stand for the orthogonal complement of the vector subspace ℬ𝑖+1(𝒫𝒦) ∩ 𝒫𝑗

𝒦𝑖+1  in 𝒵𝑖+1(𝒫𝒦) ∩

𝒫𝑗
𝒦𝑖+1with respect to the scalar product 3.2 Since, for 𝑗 <  𝒫𝑖 , it is clear that ℬ𝑖+1(𝒫𝒦) ∩ 𝒫𝑗

𝒦𝑖+1 = {0},we have  

                                     ℋ𝑗
𝑖+1(𝒫𝒦) = 𝒵 𝑖+1(𝒫𝒦) ∩ 𝒫𝑗

𝒦𝑖+1      for such j. 

Lemma 3.2[6]  For 𝑗 ≥  𝒫𝑖 , the space ℋ𝑗
𝑖+1(𝒫𝒦) consists in those and only those 

𝒵𝑖+1(𝒫𝒦) ∩ 𝒫𝑗
𝒦𝑖+1 for which 

= ∫ ((∆𝑖(ℒ))
−1
 (𝒫𝑖̃(ℒ))

∗𝒽(ℒ), 𝒫(ℒ)
𝑠𝑛−1

)𝑑𝑠(ℒ) = 0                3.3 

Proof By definition, ℋ𝑗
𝑖+1(𝒫𝒦) consists of those  𝒽 ∈  𝒵𝑖+1(𝒫𝒦) ∩ 𝒫𝑗

𝒦𝑖+1for 

which (𝒽, 𝒫2)  =  0 whenever 𝒫2  ∈  ℬ
𝑖+1(𝒫𝒦) ∩ 𝒫𝑗

𝒦𝑖+1 . 

Let us consider the sesquilinear form (3.2) for such𝒫2, i.e. for 𝒫2(ℒ) = 𝒫𝑖(ℒ)𝒫(ℒ) 

, where 𝓅 ∈ 𝒫𝑗−𝑝𝑖
𝒦𝑖 , We have 

(𝒽, 𝒫2) = ∫ ((∆𝑖(ℒ))
−1
 (𝒫𝑖̃(ℒ))

∗𝒽(ℒ), (∆𝑖(ℒ))
−1
 (𝒫𝑖̃(ℒ))

∗𝓅(ℒ)
𝑠𝑛−1

)𝑑𝑠(ℒ) 

                      = ∫ ((∆𝑖(ℒ))
−1
 (𝒫𝑖̃(ℒ))

∗𝒽(ℒ), 𝓅(ℒ)
𝑠𝑛−1

)𝑑𝑠(ℒ) 

                      −∫ ((∆𝑖(ℒ))
−1
 (𝒫𝑖̃(ℒ))

∗𝒽(ℒ), (∆𝑖(ℒ))
−1
𝒫𝑖−1(ℒ) (𝒫𝑖−1̃(ℒ))

∗𝓅(ℒ)
𝑠𝑛−1

)𝑑𝑠(ℒ) 

 

Since 𝒫∆ =  ∆𝒫 and 𝒫∗𝒫∗̃ = 0, the integral in the last term on the right side is identically equal to zero. From this the 

assertion of the lemma follows.            ∎        

 

Now, if we set ℋ𝑗
𝑖+1(𝒫𝒦)  = ⊕ 𝑗 ℋ𝑗

𝑖+1(𝒫𝒦), then we have the following: 

Lemma 3.3[6] For any i = 0, 1, . . . ,N − 1, ℬ𝑖+1(𝒫𝒦) = ℋ𝑗
𝑖+1(𝒫𝒦) ⊕ 𝑗𝒵𝑖+1(𝒫𝒦). 

Proof. Indeed, by the Rellich Theorem, for each j = 0, 1, . . ., the space ℋ𝑗
𝑖+1(𝒫𝒦)  is the algebraic complement of 

ℬ𝑖+1(𝒫𝒦) ∩ 𝒫𝑗
𝒦𝑖+1 in 𝒵𝑖+1(𝒫𝒦) ∩ 𝒫𝑗

𝒦𝑖+1  Thus, in view of the homogeneity of 𝒫𝑖(ℒ)  

                                           𝒵𝑖+1(𝒫𝒦) = ⊕ 𝑗𝒵𝑖+1(𝒫𝒦)  ∩ 𝒫𝑗
𝒦𝑖+1  

                                                             = ⊕ 𝑗( ℋ𝑗
𝑖+1(𝒫𝒦)  ⊕ ℬ𝑖+1(𝒫𝒦) ∩ 𝒫𝑗

𝒦𝑖+1  
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                                                              = (⊕ 𝑗 ℋ𝑗
𝑖+1(𝒫𝒦))  ⊕ (ℬ𝑖+1(𝒫𝒦) ∩ 𝒫𝑗

𝒦𝑖+1) 

                                                              = ℋ𝑖+1(𝒫𝒦)  ⊕ ℬ𝑖+1(𝒫𝒦), 
as required.                                                                                                           ∎ 

Before formulating the definitive result, we make some remarks regarding the fundamental solution for ℰ .. As we have 

said, ∆𝑖= ∆𝑖(𝒟)are elliptic differential operators of order 2𝑝 with constant coefficients. Denote by ℯ(𝑥) a fundamental 

solution of convolution type for the (scalar) differential operator ∏ ∆𝑖(𝒟)
𝑁
𝑖=0  and set  

Φ𝑖(𝑥) =  𝒫𝑖−1
∗̃ (𝒟)(𝑎𝑑𝑗∆𝑖(𝒟))( ∏ det ∆𝑗(𝒟)

𝑖≠𝑗
0≤𝑗≤𝑁

)ℯ(𝑥)             3.3 

for 𝑖 =  1, . . . , 𝑁 and Φ𝑖(𝑥) = 0 for the remaining i. 

In the following lemma we make more explicit the construction of a fundamental solution of convolution type for a non-

degenerate complex of differential operators with constant coefficients (cf. Tarkhanov [7]). 

Lemma 3.4 As defined by (3.3), Φ (𝑥) = (Φ𝑖(𝑥))is a fundamental solution of convolution type for the complex ℰ .. 
Proof. Indeed, from the equality 𝒫𝑖∆𝑖=  𝒫𝑖+1∆𝑖 we obtain  

                                             𝒫𝑖+1∆𝑖𝒫𝑖(𝑑𝑒𝑡∆𝑖) = (𝑑𝑒𝑡∆𝑖+1) 𝒫𝑖(𝑎𝑑𝑗∆𝑖)  
Whence 

  𝒫𝑖−1(𝒟)Φ𝑖(𝑥) + Φ𝑖+1(𝑥)(𝑥)𝒫𝑖(𝒟) = 

                             

(

 
 
𝒫𝑖−1𝒫𝑖−1

∗̃ (𝒟) 𝑎𝑑𝑗∆𝑖(𝒟)( ∏ det ∆𝑗

𝑖≠𝑗
0≤𝑗≤𝑁

)+ 𝒫𝑖−1
∗̃ (𝒟) 𝑎𝑑𝑗∆𝑖𝒫𝑖 ( ∏ det ∆𝑗

𝑖≠𝑗
0≤𝑗≤𝑁

)

)

 
 
ℯ(𝑥)    

= ∆𝑖𝑎𝑑𝑗∆𝑖 ( ∏ det ∆𝑗

𝑖≠𝑗
0≤𝑗≤𝑁

)ℯ(𝑥)                                                                   

                          = 𝛿(𝑥)𝐼𝒦𝑖                                                                        ∎                                                                                        

Theorem 3.5 (cf. [5]) Let ℰ . be an elliptic complex of homogeneous differential operators with constant coefficients on X. 

Then, for each section    𝑢 ∈ 𝒵𝑖(𝒟𝑖 (ℰ𝑖|
𝑋\0
)) ∩ 𝒟′(ℰ𝑖), there is a unique class [𝒰ℯ] ∈  

𝒵𝑖(𝒟𝑖(ℰ .)

𝒫(𝒵𝑖−1(𝒟′(ℰ .|𝑋\0))∩𝒟
′(ℰ𝑖−1)

 and column 

vectors 𝒽𝑗 ∈ ℋ |
>+∞(𝒫‖), 𝑗 = 0,1, … . 𝐽(𝒰) such that 

𝒰 = 𝒰ℯ +∑Φ ∗ (𝒽𝑗(𝒟)𝛿)         𝑜𝑛       𝑋\0.

𝑗

                3.4 

In conclusion, we emphasize that in (3.4) the sum is finite. If for a section 

𝑢 ∈ 𝒵𝑖(𝒟𝑖 (ℰ𝑖|
𝑋\0
)), we assume only that it extends to the whole neighborhood in the class of hyperfuntions, then, as 

before, we are guaranteed the existence of an expansion (3.4), but the sum on the right-hand side of (3.4) may be infinite [5]. 
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