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Abstract: Coloring graphs is a fundamental problem that arose during the attempt to resolve the four-color theorem. The main focus 

lies in finding the minimum number of colors required for a proper graph coloring. Additionally, there is an interest in determining 

the total count of distinct proper colorings achievable with a specific number of colors on a graph. These values can be computed 

using the Chromatic Polynomial, a specialized function linked to each graph. Graphs 𝐺 and 𝐻 are considered chromatically 

equivalent if they have the same chromatic polynomial. A graph 𝐺 is chromatically unique if it is isomorphic to any graph 𝐻 that is 

chromatically equivalent to 𝐺. The exploration of chromatically equivalent and chromatically unique problems is known as 

chromaticity. This paper explores the chromaticity of circulant graph, focusing on their chromatic equivalence and uniqueness. 
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1. INTRODUCTION  

A graph 𝐺 is considered planar if it can be represented on a plane without any edges crossing each other. Koh, K.M. and K.L. Teo 

defined a 𝜆-coloring of a graph 𝐺 as a mapping 𝛷 ∶  𝑉(𝐺) → {1,2,3, … , 𝜆} such that: 𝛷 (𝑎)  ≠  𝛷 (𝑏) for every edge 𝑎𝑏 ∈  𝐸(𝐺). 

The smallest value of 𝜆 for which G can be properly colored is known as the chromatic number, and G is then referred to as being λ-

colorable. In their quest to prove the four-color problem (the conjecture that every planar graph is 4-colorable), mathematicians 

developed various useful techniques for addressing graph coloring problems. Birkhoff [3] proposed a method to tackle the four-color 

problem by introducing a function 𝑃(𝑀, 𝜆), representing the count of proper 𝜆-colorings of a map 𝑀. This function, 𝑃(𝑀, 𝜆), 

corresponds to a polynomial known as the chromatic polynomial of 𝑀. 

In 1932, Whitney [11] took the study of chromatic polynomials from maps to graphs to a new level, contributing significantly to its 

expansion. He also made significant strides in establishing fundamental results in this field. Then, in 1968, Read [9] sought to 

determine a necessary and sufficient condition for two graphs to be chromatically equivalent (χ-equivalent), meaning to have 

identical chromatic polynomials. 

Chao and Whitehead Jr. [14] defined a graph as chromatically unique (χ-unique) if no other graphs share its chromatic polynomial, 

and raised another question: What is the necessary and sufficient condition for a graph to be chromatically unique? 

The study of chromaticity delves into the aforementioned questions regarding chromatic equivalence and chromatic uniqueness. 

Throughout the period when the Four-Color Problem remained unsolved for over a century, various approaches were introduced in 

pursuit of a solution to this renowned problem [7]. 

The order 𝑛 graph is produced by linking new edges to each pair of vertices in the cycle 𝐶𝑛 that have a distance of 𝑘. This is 

represented by 𝐶𝑛(𝑘), where 𝑛 and 𝑘 are integers and 2 ≤ 𝑘 ≤ ⌊
𝑛

2
⌋, ⌊𝑥⌋ 𝑖𝑠 the biggest number that is equal to or less than 𝑥, the graph 

𝐶𝑛(2), is called a chorded cycle [10].The prism graph 𝑌𝑛 is defined as the Cartesian product of 𝐶𝑛 ×  𝐾2, where 𝐾2 represents the 

complete graph with two vertices and 𝐶𝑛 represents the cycle graph with 𝑛 vertices [2]. The Mobius Ladder 𝑀𝑛 is obtained by 

connecting the opposite end points of two copies of 𝑃𝑛 ×  𝑃2, forming a graph as described in reference [11].  

A Turan graph, also known as a maximally saturated graph, is represented by 𝑇(𝑛; 𝑘) and is defined as the complete 𝑘-partite graph 

of order 𝑛 with all parts having sizes approximately equal to ⌊𝑛/𝑘⌋ 𝑜𝑟 ⌈𝑛 ∕ 𝑘⌉ [1]. 

A circulant graph with 𝑛 nodes and jumps  𝑠1, 𝑠2, ⋯ , 𝑠𝑘 is denoted by 𝐶𝑛
𝑠1,𝑠2,…,𝑠𝑘. This is the regular graph of 2𝑘 with 𝑛 vertices labeled 

{0, 1, 2,· · · , 𝑛 − 1}, such that each vertex 𝑖 (0 ≤  𝑖 ≤  𝑛 − 1) is adjacent to 2𝑘 vertices 𝑖 ± 𝑠1, 𝑖 ±  𝑠2,· · · , 𝑖 ± 𝑠𝑘   𝑚𝑜𝑑 𝑛. The 

simplest circulant graph is the 𝑛 vertex cycle 𝐶𝑛
1 . The next simplest is the square of the cycle 𝐶𝑛

1,2
 in which each vertex is connected 

to both of its neighbors and to the neighbors of its neighbor [6].  

2. REQUIREMENTS:  

This section introduces some established results that contribute to proving the main result. 

Example 2.1. [7] For the complete graph 𝐾𝑛 of order 𝑛, we have 

𝑃(𝐾𝑛 ;  𝜆)  =  𝜆(𝜆 −  1)  · · ·  (𝜆 −  𝑛 +  1) 

Theorem 2.1. [7]. In a graph 𝐺, let 𝑢 and 𝑣 be two non-adjacent vertices. Then,  

𝑃 (𝐺;  𝜆)  =  𝑃 (𝐺 + 𝑢𝑣, 𝜆)  +  𝑃 (𝐺 ∘ 𝑢𝑣, 𝜆) 
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Where 𝐺 + 𝑢𝑣 is created by appending a new edge 𝑢𝑣 to 𝐺, where 𝑢, 𝑣 ∈ 𝑉(𝐺), 𝑢𝑣 ∉ 𝐸(𝐺); 𝐺 ∘ 𝑢𝑣 is created by contracting the two 

vertices that coincide with 𝑒 and eliminating all but one of the many edges, if any. 

Theorem 2.2. [14]. Assume that 𝑒 is an edge in graph 𝐺, Then, 

𝑃(𝐺, 𝜆)  =  𝑃(𝐺 −  𝑒;  𝜆)  −  𝑃(𝐺 ∘ 𝑒;  𝜆) 

It is acknowledged to analyze a graph drawing to indicate its chromatic polynomial, where 𝐺 − 𝑒 is the graph formed from 𝐺 by 

eliminating 𝑒.  

Example 2.2. [7]. Let 𝐶𝑛 be a cycle graph of order 𝑛. Then 

𝑃(𝐶𝑛 , 𝜆) = (𝜆 −  1)𝑛 +  (−1)𝑛(𝜆 −  1) 

Theorem 2.3. (Zykov [15]). Let 𝐺1 and 𝐺2 be two graphs and 𝐺1𝜖𝜉[𝐺1𝑈𝑟𝐺2], 
Then 

𝑃(𝐺;  𝜆)  =  
𝑃(𝐺1, 𝜆)𝑃(𝐺1, 𝜆)

𝑃(𝐾𝑟 , 𝜆)
 

Theorem 2.4. [10] If 𝐺 and 𝐻 are two graphs that are chromatically equivalent, then we get: 

1. |𝑉( 𝐺)| = |𝑉(𝐻)| 
2. |𝐸(𝐺)| = |𝐸(𝐻)| 
3. 𝜒(𝐺) =  𝜒(𝐻)  

4. 𝐺 is connected iff 𝐻 is connected 

5. 𝐺 is 2-connected iff 𝐻 is 2-connected 

6. 𝑔(𝐺) = 𝑔(𝐻) 

7. There are an equal number of shortest cycles between 𝐺 and 𝐻. 

8. 𝐺 is bipartite iff 𝐻 is bipartite. 

Example 2.3. [5] Any graph that is empty 𝑂𝑛, complete 𝐾𝑛 and cycle 𝐶𝑚, where 𝑛 ≥  1 and 

𝑚 ≥  3, is 𝜒-unique. 

Theorem 2.5. [13] For every 𝑝;  𝑞 ≥  2, the complete bipartite graph 𝐾(𝑝, 𝑞) is χ-unique. 
Theorem 2.6. [4] If |𝑛𝑖 −  𝑛𝑗|  ≤  1 for all 𝑖, 𝑗 =  1,2, … , 𝑡., then the complete 𝑡-partite graph 𝐾(𝑛1, 𝑛2, … , 𝑛𝑡) is 𝜒-unique for 
all 𝑡 ≥  2 
Theorem 2.7. [9] When 𝑝 is less than 5, the complement of 𝐶𝑝

̅̅ ̅ is χ-unique. 

Conjecture 2.1. [10] The chorded cycle 𝐶𝑛(2) is χ-unique. for all 𝑛 ≥  4,  
Conjecture 2.2. [12] For each 𝑛 ≥  3, the prism 𝐶𝑛 × 𝐾2  is χ-unique.  
Theorem 2.8. [4] The Turan graph 𝑇(𝑛, 𝑘) with 1 ≤  𝑘 ≤  𝑛 − 1 is χ-unique.  
Conjecture 2.3. [10] the Mobius Ladder 𝑀𝑛, n ≥ 3 is χ-unique. 

3. RESULTS 

Proposition 3.1. For all 𝑛 ≥ 3, the circulant graph 𝐶𝑛
1 is χ-unique. 

Proof. Since Cn
1 is isomorphic to cycle 𝐶𝑛 and by example 2.1, 𝐶𝑛 is χ-unique. In that case, the circulant graph 𝐶𝑛

1 is χ-unique. 

Proposition 3.2. The circulant graph 𝐶𝑛

1,2,3,…,⌊
𝑛

2
⌋
; 𝑛 ≥ 3 is χ-unique. 

Proof. 𝐶𝑛

1,2,3,…,⌊
𝑛

2
⌋
 is isomorphic to complete 𝐾𝑛, with 𝑛 ≥  3. then the proposition becomes true by example 2.1. 

Proposition 3.3 If 𝐺 is defined as 𝐶2𝑛

1,3,5,…,𝑛−
1+(−1)𝑛

2 , then 𝐺 is χ-unique with 𝑛 ≥ 3. 

Proof. The complete bipartite graph 𝐾(𝑝, 𝑞) is isomorphic to G. Then, according to theorem 2.5, 𝐺 is χ-unique. 

Proposition 3.4. For 𝑛 ≥ 2, 𝐶3𝑛

1,2,4,5,7,8,…,⌊
𝑛

2
⌋
 is χ-unique.  

Proof. The complete 3-partite graph 𝐾(𝑛, 𝑛, 𝑛) where 𝑛 ≥ 2 is isomorphic to 𝐶3𝑛

1,2,4,5,7,8,…,⌊
𝑛

2
⌋
.  Since 𝐾(𝑛, 𝑛, 𝑛) is χ-unique 

according to theorem 2.6, so too is 𝐶3𝑛

1,2,4,5,7,8,…,⌊
𝑛

2
⌋
  χ-unique. 

Proposition 3.5. If 𝐺 = 𝐶4𝑛

1,2,3,5,6,7,…,⌊
𝑛

2
⌋
 then G with 𝑛 ≥ 2 is χ- unique.  

Proof. According to theorem 2.6, the graph 𝐾(𝑛, 𝑛, 𝑛, 𝑛)  is χ-unique with 𝑛 ≥ 2, since G ≅ 𝐾(𝑛, 𝑛, 𝑛, 𝑛). Proposition are real. 

Proposition 3.6. The graph 𝐶2𝑛
1,𝑛 with n ≥ 3 is χ-unique. 

Proof. Let G = 𝐶2𝑛
1,𝑛, G is isomorphic to Mobius ladders 𝑀𝑛, 𝑛 ≥  3 then G is χ-unique by conjecture 2.3. 

Proposition 3.7.  𝐶𝑛
1,2, n ≥ 4 is χ-unique. 

Proof. The circulant graph 𝐶𝑛
1,2 is isomorphic to the graph 𝐶𝑛(2), and the graph 𝐶𝑛(2) is χ-unique by conjecture 2.1, then the 

Proposition is realized. 

Proposition 3.8.  𝐶2𝑛
1,2,..,𝑛−1 is χ-unique where 𝑛 ≥ 1. 
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Proof. The circulant graph 𝐶2𝑛
1,2,..,𝑛−1 is isomorphic to turan graph 𝑇(2𝑛, 𝑛) and 𝑇(2𝑛, 𝑛) is χ-unique according to theorem 3.8, 

𝐶2𝑛
1,2,..,𝑛−1 is hence χ-unique. 

Proposition 3.9. 𝐶2𝑛
1,2,3,..,𝑛−2,𝑛 is χ-unique where 𝑛 is even and 𝑛 ≥ 4. 

Proof. Let G = 𝐶2𝑛
1,2,3,..,𝑛−2,𝑛, and observe that G is isomorphic for every 𝑛 is even and 𝑛 ≥  4 to 𝐶2𝑛

̅̅ ̅̅̅ Next, where 𝑛 ≥ 4 we 

conclude that  𝐶2𝑛
̅̅ ̅̅̅ is χ-unique using Theorem 2.7, In the event that 𝑛 is even and 𝑛 ≥ 4, G = 𝐶2𝑛

1,2,3,..,𝑛−2,𝑛 is likewise χ-unique. 

Proposition 3.10. The circulant graph 𝐶2𝑛+1
1,2,3,..,𝑛−1  is χ-unique where n ≥ 4.  

Proof. Considering that 𝐺= 𝐶2𝑛+1
1,2,3,..,𝑛−1, and that 𝐺 is isomorphic to  𝐶2𝑛+1

̅̅ ̅̅ ̅̅ ̅ where 𝑛 ≥ 4, we can infer by theorem 2.7, that 𝐶2𝑛+1
̅̅ ̅̅ ̅̅ ̅ 

In the case where 𝑛 ≥ 4 is χ-unique graph, 𝐺= 𝐶2𝑛+1
1,2,3,..,𝑛−1 is likewise a χ-unique. 

Proposition 3.11. For 𝑛 ≥ 3, 𝐶2𝑛
1,1,𝑛 is χ-unique. 

Proof. Assuming 𝐺 to be the circulant graph 𝐶2𝑛
1,1,𝑛, 𝐺 ≅ 𝐶2𝑛+1

1,2  and χ-equivalent to 𝐶2𝑛+1
1,2  then 𝐺 is χ-unique by proposition 3.7. 

Proposition 3.12. when 𝑛 is odd & 𝑛 ≥ 3, the circulant graph 𝐶2𝑛
2,𝑛  is χ-unique. 

Proof. for odd 𝑛 ≥ 3, the proposition is realized since 𝐶2𝑛
2,𝑛 is isomorphic to the prism 𝐶𝑛 × 𝐾2, which is thereafter χ-unique 

according to conjecture 2.2. 
Problem 3.1. Is every circulant graph χ-unique?  
No, as demonstrated by the example that follows. 

Example 3.1. the circulant graph 𝐶20
1,3,5,7,9,10, is not χ-unique.  

Figure1, shows that, although 𝐻 has the same chromatic polynomial as 𝐶20
1,3,5,7,9,10, it is not isomorphic to it, because the 

circulant graph 𝐶20
1,3,5,7,9,10 does not have a degree 10 vertex, but the graph H does. The outcome was shown using the Maple 

software. 

 
Figure1: 𝐶20

1,3,5,7,9,10 is not isomorphic to 𝐻  

𝑃(𝐶20
1,3,5,7,9,10, 𝜆) =  𝑃(𝐻, 𝜆)

= 𝜆20  −  110𝜆19  +  5895𝜆18  −  203470𝜆17  +  5047210𝜆16  −  95204972𝜆15  +  1410827870𝜆14  
−  16748216540𝜆13 +  161080904565𝜆12  −  1262004786854𝜆11  +  8060199694731𝜆10  
−  41820066733590𝜆9  +  174896929272720𝜆8 −  582075172381440𝜆7 +  1512323170349408𝜆6  
−  2982043806619200𝜆5  +  4276697472098560𝜆4  −  4166497012924800𝜆3  
+  2435161460129792𝜆2  −  633586821259776𝜆 
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