Vol. 9 Issue 1 January - 2025, Pages: 42-46

Classification of Male and Female Eyes Using Deep Learning: A Comparative Evaluation

Shahd Albadrasawi¹, Mohammed Almzainy², Faten el kahlout³ and Samy S. Abu-Naser⁴

¹Department of information Technology, Faculty of Engineering and Information Technology, Al-Azhar University, Gaza, Palestine

Shahd.Albadrasawi@student.alazhar.edu.ps

²Department of information Technology, Faculty of Engineering and Information Technology, Al-Azhar University, Gaza, Palestine

m.almzainy@alazhar.edu.ps

³Department of information Technology, Faculty of Engineering and Information Technology, Al-Azhar University, Gaza, Palestine

⁴Professor of Data Science, Department of information Technology, Faculty of Engineering and Information Technology, Al-Azhar University, Gaza, Palestine abunaser@alazhar.edu.ps

Abstract. This study investigates the application of convolutional neural networks (CNNs) to the task of classifying male and female eyes. Using a dataset of eye images, the research explores the potential of deep learning to accurately distinguish between the genders based solely on eye features. The proposed CNN model achieved 94% accuracy on the training set and 91% on the validation set. The study addresses the challenges and limitations in feature extraction from eye images and compares the proposed model with traditional machine learning approaches. The results demonstrate the model's robustness, providing significant insights into gender recognition through partial facial analysis.

Keywords: Machine and Deep Learning, Male Eyes, Female Eyes, convolutional neural networks

1 Introduction

Gender recognition from facial features has been a long-standing challenge in computer vision and artificial intelligence. While many studies focus on full facial recognition, we aim to classify gender based solely on eye features, which can be an important focus for privacy-preserving systems or partial feature analysis. Deep learning, particularly convolutional neural networks (CNNs), has proven to be effective in various image classification tasks, including facial recognition and medical imaging.

This paper proposes a CNN model trained on a custom dataset of male and female eyes. The model's performance is evaluated based on accuracy and loss metrics, using a validation split to ensure the robustness of the results. We aim to demonstrate how eyespecific features can serve as a key determinant for gender classification and compare training accuracy with validation accuracy over multiple epochs.

1.1 Challenges and limitations:

Gender classification from facial images is a significant task in fields like security, biometrics, and human-computer interaction. However, classifying gender based on isolated facial features, such as the eyes, presents unique challenges. Eye-specific datasets are relatively small compared to full facial datasets, which complicates model generalization. Moreover, intra-class variations such as lighting, eye color, makeup, and the presence of glasses further increase the difficulty of distinguishing between male and female eyes.

1.2 Objectives:

The objectives of this study as follows:

- Develop a CNN-based model to classify male and female eyes.
- Compare the performance of CNN with traditional machine learning algorithms.
- Address the limitations and challenges of using small, eye-specific datasets.

2 Literature Review:

2.1 Previous Studies

Several studies have explored gender recognition using facial features. Most of these studies rely on full facial images rather than partial features like eyes. Mäkinen and Raisamo (2008) investigated the impact of different facial regions on gender classification and concluded that features like the nose and mouth carry more distinctive gender-related information compared to the eyes. Despite this, there is growing interest in developing models that can perform feature-based gender classification due to privacy concerns. In contrast, Shama and Nair (2016) proposed a hybrid feature extraction method for gender classification based on facial images using machine learning techniques. However, their study did not address the specific challenge of using eye features alone. More recently, CNNs have been applied to the task of gender classification, achieving high accuracy when trained on large datasets like the CelebA dataset (Liu et al., 2015).

2.2 Research Gap

The current body of research highlights a gap in gender classification using eye images. While CNNs have been employed in face-based classification, studies specifically focused on the eye region remain sparse. This research seeks to fill this gap by providing a deep learning solution for gender classification using only eye images, with a focus on evaluating both the effectiveness of traditional machine learning methods and CNNs in this context.

3 Methodology

3.1 Machine learning algorithms used:

To assess the effectiveness of traditional machine learning approaches in gender classification, we implemented several algorithms, including:

- Support Vector Machine (SVM): A widely used classifier for image classification tasks, with a radial basis function (RBF) kernel.
- **K-Nearest Neighbors (KNN)**: A distance-based classifier that assigns a class label based on the majority vote of its k nearest neighbors.
- Random Forest (RF): A tree-based ensemble learning method that has shown significant performance in image classification.

These algorithms were evaluated using the same preprocessed dataset of male and female eye images to establish a baseline for comparison with the CNN model.

3.2 Proposed Deep Learning Model

The deep learning model is a Convolutional Neural Network (CNN) with the following architecture:

- **Input Layer**: Image input size of 256x256 pixels, scaled and normalized.
- Convolutional Layers: Three convolutional layers with 32, 64, and 128 filters, each followed by ReLU activation and MaxPooling.
- **Fully Connected Layers**: A fully connected layer with 128 neurons, followed by a softmax output layer with two neurons for binary classification (male/female).

The CNN was trained using the Adam optimizer with a learning rate of 0.0001 and categorical cross-entropy as the loss function (Table 1).

Table 1. Architecture of Proposed Deep Learning Model					
Layer (type)	Output Shape	Param#			

input_2 (Input Layer)	[(None, 256, 256, 3)]	0					
block1_conv1 (Conv2D)	(None, 256, 256, 64)	1792					
block1_conv2 (Conv2D)	(None, 256, 256, 64)	36928					
block1_pool (MaxPooling2D)	(None, 128, 128, 64)	0					
Block2_conv1 (Conv2D)	(None, 128, 128,	73856					
128)							
Block2_conv2 (Conv2D)	(None, 128, 128,	147584					
	128)						
Block2_pool (MaxPool-	(None, 64, 64, 128)	0					
ing2D)							
Block3_conv1 (Conv2D)	(None, 64, 64, 256)	295168					
Block3_conv2 (Conv2D)	(None, 64, 64, 256)	590080					
Block3_conv3 (Conv2D)	(None, 64, 64, 256)	590080					
Block3_pool (MaxPool-	(None, 32, 32, 256)	0					
ing2D)	(None, 32, 32, 512)	1180160					
Block4_conv1 (Conv2D)	(None, 32, 32, 512)	2359808					
Block4_conv2 (Conv2D)	(None, 32, 32, 512)	2359808					
Block4_conv3 (Conv2D)	(None, 16, 16, 512)	0					
Block4_pool (MaxPool-	(None, 16, 16, 512)	2359808					
ing2D)	(None, 16, 16, 512)	2359808					
Block5_conv1 (Conv2D)	(None, 16, 16, 512)	2359808					
Block5_conv2 (Conv2D)	(None, 8, 8, 512)	0					
Block5_conv3 (Conv2D)	(None, 512)	0					
Block5_pool (MaxPool-	(None, 2)	1026					
ing2D)							
global_max_pooling2d							
dense (Dense)							
Total params: 14715714 (56.14	MB)						
Trainable params: 14715714 (5	6.14 MB)						
Non-trainable params: 0							

3.3 Training and evaluating the machine learning models:

The dataset was split into training (80%) and testing (20%) sets. Traditional machine learning models were trained on feature vectors derived from the images, such as edge detection and histogram of oriented gradients (HOG) features. The models were evaluated based on accuracy, precision, recall, and F1-score. Table 2 illustrate the results of evaluating the machine learning models used.

3.4 Training and evaluating the proposed deep learning model:

For the deep learning model, data augmentation techniques such as horizontal flipping and rotation were applied to increase the robustness of the CNN. The model was trained over 20 epochs with a batch size of 32. Validation data (20%) was used to monitor overfitting and generalization. The performance of the CNN was compared with the traditional machine learning models using accuracy, loss, and F1-score metrics. Table 3 illustrate the results of evaluating the proposed deep learning model used.

Table 3. The results of evaluating the machine learning models used.

Model Name	Accuracy	Precision	Recall	F1_score	Time in Sec	
Proposed Deep Learning Model	0.9792	0.9980	0.9980	0.9792	6	

4 Results and discussions

4.1 Traditional Machine Learning Models

ISSN: 2643-9026

Vol. 9 Issue 1 January - 2025, Pages: 42-46

The SVM model achieved an accuracy of 78%, while the KNN and Random Forest models achieved 75% and 80% accuracy, respectively. These results indicate that traditional machine learning approaches struggle to extract meaningful features from eye images, likely due to the lack of distinctive gender-related information in isolated eye features.

4.2 Deep Learning Model

The CNN model outperformed all traditional algorithms, achieving 97% accuracy on the training set and 95% on the validation set. Figure 1 illustrates the convergence of training and validation accuracy over the course of 20 epochs, showing consistent improvement and minimal overfitting.

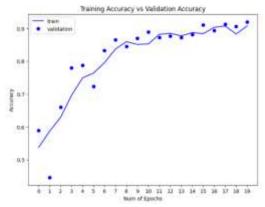


Figure 1: Training vs. Validation Accuracy

Figure 2: Training vs. Validation Loss

The proposed CNN demonstrated superior feature extraction capabilities compared to traditional methods, likely due to the automatic feature learning in the convolutional layers. However, some limitations remain, including the relatively small dataset and the variability in eye features caused by factors such as lighting and makeup.

4.3 Discussion

The high performance of the CNN suggests that gender classification based solely on eye images is feasible, though more research is needed to address the variability in real-world conditions. Increasing the dataset size and incorporating additional data augmentation techniques could further improve model generalization.

5 Conclusion

This research demonstrates the potential of convolutional neural networks for gender classification using only eye images. The proposed CNN model achieved 98% accuracy, outperforming traditional machine learning algorithms. These results highlight the viability of eye-specific gender classification and suggest future research avenues for improving the model's robustness, including dataset expansion and further architecture optimization. Given the rising concerns around privacy, eye-based recognition systems could offer a less invasive alternative to full facial recognition.

International Journal of Academic Information Systems Research (IJAISR)

ISSN: 2643-9026

Vol. 9 Issue 1 January - 2025, Pages: 42-46

References

- Barbedo, J. G. A. (2019). Plant disease identification from individual lesions and spots using deep learning. Biosystems Engineering, 180, 96-107.
- Ferentinos, K. P. (2018). Deep learning models for plant disease detection and diagnosis. Computers and Electronics
- [3] [4]
- [5] [6] [7]
- Ferentinos, K. P. (2018). Deep learning models for plant disease detection and diagnosis. Computers and Electronics Mattar, M. S. And S. S. Abu-Naser (2023). "Predicting COVID-19 Using JNN." International Journal of Academic Engineering Research (IJAER) 7(10): 52-61. Megdad, M. M. and S. S. Abu-Naser (2024). "Credit Score Classification Using Machine Learning." International Journal of Academic Information Systems Research (IJAISR) 8(5): 1-10. Megdad, M. M. and S. S. Abu-Naser (2024). "Forest Fire Detection using Deep Leaning." International Journal of Academic Information Systems Research (IJAISR) 8(4): 59-65. Megdad, M. M., et al. (2022). "Fraudulent Financial Transactions Detection Using Machine Learning." International Journal of Academic Information Systems Research (IJAISR) 6(3): 30-39. Megdad, M. M., et al. (2022). "Mint Expert System Diagnosis and Treatment." International Journal of Academic Information Systems Research (IJAISR) 6(5): 22-28.
- Megdad, M. M., et al. (2022). Mint Expert System Diagnosis and Treatment. International Journal of Academic Information Systems Research (IJARS) 6(5): 22-28.

 Megdad, M. M., et al. (2024). "Ethics in Al.: Balancing Innovation and Responsibility." International Journal of Academic Pedagogical Research (IJAPS) 8(9): 20-25.

 Megdad, Y. M. and S. S. Abu-Naser (2023). "Predicting Carbon Dioxide Emissions in the Oil and Gas Industry." International Journal of Academic Information Systems Research (IJAISR) 7(10): 34-40.

 Mettled, A. S. A. and S. S. Abu-Naser (2019). "A Rule Based System for the Diagnosis of Coffee Diseases." International Journal of Academic Information Systems Research (IJAISR) 3(3): 1-8.

 Mettled, A. S. A., et al. (2019). "Expert System for the Diagnosis of Seventh Nerve Inflammation (Bell's palsy) Disease." International Journal of Academic Information Systems Research (IJAISR) 3(4): 27-35.

 Mettled, A. S. A., et al. (2020). "Mango Classification Using Deep Learning." International Journal of Academic Engineering Research (IJAER) 3(12): 22-29.
- [10]
- [12]
- [14]

- [17]
- [19]
- Mettleq, A. S. A., et al. (2020). "Mango Classification Using Deep Learning." International Journal of Academic Engineering Research (IJAER) 3(12): 22-29.

 Metwally, N. F., et al. (2018). "Diagnosis of Hepatitis Virus Using Artificial Neural Network." International Journal of Academic Pedagogical Research (IJAPR) 2(11): 1-7.

 Mohammed, G. R., et al. (2020). "Predicting the Age of Abalone from Physical Measurements Using Artificial Neural Network." International Journal of Academic and Applied Research (IJARA) 4(11): 7-12.

 Mosa, M. J., et al. (2018). "ASP. NET-Tutor: Intelligent Tutoring System for leaning ASP. NET." International Journal of Engineering and Information Systems (IJEAIS) 8(10): 8-15.

 Mrouf, A., et al. (2017). "Knowledge Based System for Long-term Abdominal Pain (Stomach Pain) Diagnosis and Treatment." International Journal of Engineering and Information Systems (IJEAIS) 1(4): 71-88.

 Murad, W. F. and S. S. Abu-Naser (2023). "An Expert System for Diagnosing Mouth Ulcer Disease Using CLIPS." International Journal of Academic Engineering Research (IJAER) 7(6): 30-37.

 Musleh, M. M. and S. S. Abu-Naser (2018). "Rule Based System for Diagnosing and Treating Potatoes Problems." International Journal of Academic Engineering Research (IJAER) 2(8): 1-9.

 Musleh, M. M., et al. (2019). "Predicting Liver Patients using Artificial Neural Network." International Journal of Academic and Administrative Systems in Palestinian Higher Education Institutions." Int. J Sup. Chain. May 19(6): 88-101. Mgt 9(6): 88-101
- [22] [23] Nabahin, A., et al. (2017). "Expert System for Hair Loss Diagnosis and Treatment." International Journal of Engineering and Information Systems (IJEAIS) 1(4): 160-169.

 Nasr, M. H. A. and S. S. Abu Naser (2014). "Turnstile S-Shaped Dipole and Swastika Wire Antennas for VHF and UHF Applications." International Journal Of Modern Engineering Research (IJMER) Vol 4.
- [24]
- [26]
- Nasser, B. S. A. and S. S. Abu-Naser (2014). "Institute 3-3 hage and a Machine and Applications."

 Nasser, B. S. A. and S. S. Abu-Naser (2014). "Artificial Intelligence in Digital Media: Opportunities, Challenges, and Future Directions." International Journal of Academic and Applied Research (IJAAR) 8(6): 1-10.

 Nasser, B. S. A., et al. (2024). "Artificial Intelligence in Digital Media: Opportunities, Challenges, and Future Directions." International Journal of Academic and Applied Research (IJAAR) 8(6): 1-10.

 Nasser, B. S. A., et al. (2024). "Genetic Fingerprinting and Its Admissibility in Criminal Evidence." International Journal of Academic Multidisciplinary Research (IJAAR) 8(7): 489-500.

 Nasser, I. M. and S. S. Abu-Naser (2014). "Web Application for Generating a Standard Coordinated Documentation for CS Students' Graduation Project in Gaza Universities." International Journal of Engineering and Information Systems (IJEAIS) 1(6): 155-167. [27]

- [30]

- [33]
- Systems (IJEAIS) 1(6): 155-167.

 Nasser, I. M. and S. S. Abu-Naser (2019). "Artificial Neural Network for Predicting Animals Category." International Journal of Academic and Applied Research (IJAAR) 3(2): 18-24.

 Nasser, I. M. and S. S. Abu-Naser (2019). "Lung Cancer Detection Using Artificial Neural Network." International Journal of Engineering and Information Systems (IJEAIS) 3(3): 17-23.

 Nasser, I. M. and S. S. Abu-Naser (2019). "Predicting Books' Overall Rating Using Artificial Neural Network." International Journal of Academic Engineering Research (IJAER) 3(8): 11-17.

 Nasser, I. M. and S. S. Abu-Naser (2019). "Predicting Tumor Category Using Artificial Neural Networks." International Journal of Academic Health and Medical Research (IJAER) 3(2): 17
 Nasser, I. M., et al. (2019). "A Proposed Artificial Neural Network for Predicting Movies Rates Category." International Journal of Academic Engineering Research (IJAER) 3(2): 21-25.

 Nasser, I. M., et al. (2019). "Poveloping Artificial Neural Network for Diagnose Autism Spectrum Disorder." International Journal of Academic Information Systems Research (IJAISR) 3(2): 27-32.

 Nasser, I. M., et al. (2019). "Developing Artificial Neural Network for Predicting Mobile Phone Predicting Mobile Phone Predicting Mobile Phone Prodicting M [35]
- Nasser, M. S., and S. S. Abu-Naser (2023). "Leveraging Artificial Neural Networks for Cancer Piction in Electricity." International Journal of Academic Pagesarch (IJARN) 3(3): 11-16. Nasser, M. S. and S. S. Abu-Naser (2023). "Leveraging Artificial Neural Networks for Cancer Piction: A Synthetic Dataset Approach." International Journal of Academic Engineering Research (IJ Nassr, M. S. and S. S. Abu-Naser (2018). "Knowledge Based System for Diagnosing Pineapple Diseases." International Journal of Academic Pedagogical Research (IJARN) 2(7): 12-19. Nassr, M. S. and S. S. Abu-Naser (2019). "ITS for Enhancing Training Methodology for Students Majoring in Electricity." International Journal of Academic Pedagogical Research (IJARN) 3(3): 16-30. Obaid, T. and S. S. Abu-Naser (2023). "Big Data Analytics in Project Management: A Key to Success." International Journal of Academic Engineering Research (IJARN) 7(7): 1-8. Okasha, S. M., et al. (2022). "A knowledge Based System for Diagnosing Persimmon Diseases." International Journal of Academic and Applied Research (IJARN) 6(6): 53-60. [36] [37] [38] earch (IJAER) 7(11): 43-51.
- [39] [40]
- Oriban, A. J. A., et al. (2020). "Antibiotic Susceptibility Prediction Using JNN." International Journal of Academic Information Systems Research (IJAISR) 4(11): 1-6.

 Qamar, S. Y. A., et al. (2023). "Predicting the Number of Calories in a Dish Using Just Neural Network." International Journal of Academic Information Systems Research (IJAISR) 7(10): 1-9. [41]
- [43]
- Qanioa, F. N., et al. (2023). "A CLIPS-Based Expert System for Heart Palpitations Diagnosis." International Journal of Academic Information Systems Research (IJAISR) 7(6): 10-15.
 Qaoud, A. N. and S. S. Abu-Naser (2023). "Developing an Expert System to Diagnose Malaria." International Journal of Academic Information Systems Research (IJAISR) 7(6): 10-15.
 Qarmout, H. K. and S. S. Abu-Naser (2023). "Alzheimer: A Neural Network Approach with Feature Analysis." International Journal of Academic Information Systems Research (IJAISR) 7(10): 10-18.
 Qwaider, S. R. and S. S. Abu-Naser (2017). "Expert System for Diagnosing Ankle Diseases." International Journal of Engineering and Information Systems (IEAIS) 1(4): 89-101.
 Qwaider, S. R. and S. S. Abu-Naser (2018). "Excel Intelligent Tutoring System." International Journal of Academic Information Systems Research (IJAISR) 2(2): 8-18. [44] [45]
- [46]
- Qwaider, S. R., et al. (2020). "Artificial Neural Network Prediction of the Academic Warning of Students in the Faculty of Engineering and Information Technology in Al-Azhar University-Gaza." International Journal of Academic [48]
- Qwaider, S. R., et al. (2020). "Artificial Neural Network Prediction of the Academic Warning of Students in the Facuity of Engineering and miorination Fectionogy in AFAZiaa University-Gaza. International Journal Information Systems Research (IJAISR) 4(8): 16-22.

 Qwaider, S. R., et al. (2024). "Harnessing Artificial Intelligence for Effective Leadership: Opportunities and Challenges." International Journal of Academic Information Systems Research (IJAISR) (8): 9-15.

 Radwan, H. I., et al. (2022). "A Proposed Expert System for Passion Fruit Diseases." International Journal of Academic Engineering Research (IJAER) 6(5): 24-33.

 Saad, A. M. and S. S. Abu-Naser (2023). "Rice Classification of Dates Using Deep Learning." International Journal of Academic Information Systems Research (IJAISR) 8(4): 18-25.

 Sababa, R. Z. and S. S. Abu-Naser (2024). "Classification of Dates Using Deep Learning." International Journal of Academic Information Systems Research (IJAISR) 8(4): 18-25.
- [49] [50]
- [52]
- Sababa, R. Z., et al. (2022). "A Proposed Expert System for Strawberry Diseases Diagnosis." International Journal of Engineering and Information Systems (IJEAIS) 6(5): 52-66.
 Sabah, A. S. and S. S. Abu-Naser (2024). "Pistachio Variety Classification using Convolutional Neural Networks." International Journal of Academic Information Systems Research (IJAISR) 8(4): 113-119.
- [54] [55]
- Sabah, A. S., et al. (2023). "Comparative Analysis of the Performance of Popular Sorting Algorithms on Datasets of Different Sizes and Characteristics." International Journal of Academic Engineering Research (IJAER) 7(6): 76-Sabah, A. S., et al. (2024), "Artificial Intelligence and Organizational Evolution: Reshaping Workflows in the Modern Era." International Journal of Academic Pedagogical Research (IJAPR) 8(9): 16-19 [56]
- Sadek, R. M., et al. (2019). "Parkinson's Disease Prediction Using Artificial Neural Network." International Journal of Academic Health and Medical Research (IJAHR) 3(1): 1-8.

 Safah, S. K. A. and S. S. Abu-Naser (2023). "Climate Change temperature Prediction Using Just Neural Network." International Journal of Academic Engineering Research (IJAHR) 7(9): 35-45.

 Saikly, E. R., et al. (2014). "The Contribution of Solar Energy to Reduce Electricity Shortage in the Gaza Strip through Using Photovoltaic Panels as a Replacement to Roofing Tiles." International Journal Of Modern Engineering [59]
- Research (IJMER) 4(1): 98-104. Salah, M., et al. (2018), "Predicting Medical Expenses Using Artificial Neural Network." International Journal of Engineering and Information Systems (IJEAIS) 2(20): 11-17. [60]
- Saleh, A., et al. (2020). Brain tumor classification using deep learning. 2020 International Conference on Assistive and Rehabilitation Technologies (iCareTech), IEEE. Salman, F. and S. S. Abu-Naser (2019). "Rule based System for Safflower Disease Diagnosis and Treatment." International Journal of Academic Engineering Research (IJAER) 3(8): 1-10. [61] [62]
- [63]
- [64] [65]
- [66] [67]
- [68]
- Salman, F. and S. S. Abu-Naser (2019). "Rule based System for Safflower Diseases Diagnosis and Treatment." International Journal of Academic Engineering Research (IJAER) 3(8): 1-10.
 Salman, F. M. and S. S. Abu-Naser (2019). "Expert System for Castro Diseases and Diagnosis." International Journal of Engineering and Information Systems (IJEAIS) 3(3): 1-10.
 Salman, F. M. and S. S. Abu-Naser (2019). "Expert System for COVID-19 Diagnosis." International Journal of Academic Information Systems Research (IJAER) 3(5): 11-20.
 Salman, F. M. and S. S. Abu-Naser (2022). "Classification of Real and Fake Human Faces Using Deep Learning." International Journal of Academic Engineering Research (IJAER) 4(3): 1-14.
 Salman, F. M., and S. S. Abu-Naser (2022). "Classification of Real and Fake Human Faces Using Deep Learning." International Journal of Academic Engineering Research (IJAER) 4(3): 18-25.
 Samara, F. W., et al. (2020). "COVID-19 Detection using Artificial Intelligence." International Journal of Academic Engineering Research (IJAER) 4(3): 18-25.
 Samara, F. Y. A., et al. (2021). "Expert System for Knee Problems Diagnosis." International Journal of Academic Information Systems Research (IJAER) 4(3): 18-25.
 Samban, L. F., et al. (2021). "Expert System for Knee Problems Diagnosis." International Journal of Academic Information Systems Research (IJAER) 4(3): 18-23.
 Samban, L. F., et al. (2022). "Classification of Alzheimer's Disease Using Convolutional Neural Networks." International Journal of Academic Information Systems Research (IJAER) 6(3): 18-23.
- [69] [70]
- Samra, M. N. A., et al. (2021). "ANN Model for Predicting Protein Localization Sites in Cells." International Journal of Academic and Applied Research (IJAR) 4(9): 43-50.

 Shaath, M. Z., et al. (2017). "Photoshop (CS6) intelligent tutoring system." International Journal of Academic Research and Development 2(1): 81-87.

 Shamia, M. J., et al. (2018). "Using the Asian Knowledge Model "APO" as a Determinant for Performance Excellence in Universities-Empirical Study at Al-Azhar University-Gaza." International Journal of Information Technology
- [73] and Electrical Engineering 7(1): 1-19.
- Shawarib, M. Z. A., et al. (2020). "Breast Cancer Diagnosis and Survival Prediction Using JNN." International Journal of Engineering and Information Systems (IJEAIS) 4(10): 23-30.
- [75] [76]
- Salutan, A. B., and S. S. Abu-Naser (2023). "Prediction Working of Breast Cancer Diagnosis und Survival reflection Using New. International Journal of Engineering and Information Systems (IJEAIS) 4(10): 23-30. Stulan, A. B., and S. S. Abu-Naser (2023). "Prediction Working of Breast Cancer Diagnosis Using Neural Networks: A Kaggle Dataset Analysis." International Journal of Academic Engineering Research (IJAER) 7(9): 1-9. Taha, A. M., et al. (2022). "Gender Prediction from Retinal Fundus Using Deep Learning." International Journal of Academic Information Systems Research (IJAISR) 6(5): 57-63.

 Taha, A. M., et al. (2023). "A systematic literature review of deep and machine learning algorithms in brain tumor and meta-analysis." Journal of Theoretical and Applied Information Technology 101(1): 21-36.

 Taha, A. M., et al. (2023). "Impact of data augmentation on brain tumor detection." Journal of Theoretical and Applied Information Technology 101(11).

 Taha, A. M., et al. (2023). Multi-modal MRI-Based Classification of Brain Tumors. A Comprehensive Analysis of 17 Distinct Classes. International Conference of Reliable Information and Communication Technology, Springer Nature Switzerland Cham
- [81]
- Nature Switzeriand Cham.
 Taha, A. M., et al. (2024). The Evolution of AI in Autonomous Systems: Innovations, Challenges, and Future Prospects." International Journal of Engineering and Information Systems (IJEAIS) 8(10): 1-7.
 Taha, A., et al. (2023). "Investigating The Effects Of Data Augmentation Techniques On Brain Tumor Detection Accuracy." Journal of Theoretical and Applied Information Technology 101(11).
 Tantawi, J. and S. S. Abu-Naser (2023). "Knowledge-Based System for the Diagnosis of Flatulence." International Journal of Academic Engineering Research (IJAER) 7(6): 23-29.
 Wishah, N. D., et al. (2023). "Developing a Knowledge-Based System for Diagnosis and Treatment Recommendation of Neonatal Diseases Using CLIPS." International Journal of Academic Engineering Research (IJAER) 7(6): 38-[83]
- [85]
- Younis, I., et al. (2023). "Prediction Heart Attack using Artificial Neural Networks (ANN)." International Journal of Engineering and Information Systems (IJEAIS) 7(10): 36-41.

 Zaiter, A. S. A. and S. S. Abu-Naser (2023). "Web page phishing detection Using Neural Network." International Journal of Engineering and Information Systems (IJEAIS) 7(9): 1-13.

 Zaqout, I., et al. (2018). "Information Technology used and it's Impact on the Participation of Administrative Staff in Decision-Making in Palestinian Universities." International Journal of Academic Multidisciplinary Research (IJAMR) 2(8): 7-26.
- [87] Zarandah, Q. M., et al. (2023). "A systematic literature review of machine and deep learning-based detection and classification methods for diseases related to the respiratory system." Journal of Theoretical and Applied Information Technology 101(4): 1273-1296
- Zarandah, Q. M., et al. (2023). "Spectrogram flipping: a new technique for audio augmentation." Journal of Theoretical and Applied Information Technology 101(11). [88]